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Autophagosomes and
multivesicular bodies: two actors
playing at the same stage

During the last decade, a systematic dissection
of the research concerning the lysosomal
machinery of neuronal tissues (so far solely
regarded as serially built degradative
compartments) has set in motion better
understanding of the endosomal-autophagic
pathways. Presently, the general consensus is
that broad crosstalk between early endosomes,
multivesicular bodies (MVB), autophagosomes,
amphisomes and lysosomes (all the effector
structures) play a distinct role in the above
pathways.

MVB have been described

morphologically by means of ultrastructural

Historically,

analysis. Using electron microscopy (Figure 1),
MVB can be visualized as spherical organelles
layered
membrane encompassing several round or

limited by a continuous single
ellipsoidal small vesicles within the inner
matrix [1]. The outer membrane along with the
innermost ones immersed within a clear matrix
have a thickness similar to the plasmalemmal
structure, possibly due to their endocytic
derivation (approximately 5.2 nm) [2,3].

In neurons, MVB are most frequently found
in cell bodies and dendrites. Less commonly
they may also be found in normal axons or
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Abstract

A growing body of research deals with the relationship between the endosomal and autophagic/lysosomal
pathways during developmental stages of the central nervous system. This includes their possible influence
regarding the onset and progression of specific neurodegenerative disorders. In this review we focus our
attention on major alterations affecting two organelles: autophagosomes and multivesicular bodies, both of
which are located at the intersection point of their respective pathways.
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axon terminals in vivo [4-6]. The distribution,
biogenesis and multiple functions of MVB in
neuronal compartments has been extensively
described in a recent review [7]. In this context,
MVB maturation into [8,9] or fusion/sorting with
lysosomes [10-12] aims to target internalized
ligand/receptors, unnecessary proteins and
toxins for clearance via degradation or export
to the extracellular space or neighbouring cells.
The achievement of such a complex goal does
not rule out the interaction with other closed
compartments called autophagosomes that are
essential for the constant turnover of long-lived
proteins, cellular macromolecules and whole
organelles [13-16]. Autophagic activity, also
referred to as type Il programmed cell death

[17], follows defined steps usually termed as
vesicle nucleation and expansion, maturation
and finally degradation orchestrated by
phagophores, autophagosomes/amphisomes
and [18,19].
Therefore, we will concentrate our focus on

autolysosomes  respectively
the experimental data that demonstrates
how vesicular trafficking encompassing both
autophagosomes and MVB ultimately leads
to convergence between the endocytic and
autophagic pathways (Figure 2). Regarding this
specific matter, this review underscores to what
homeostasis

extent developmental neural

and neurodegenerative phenomena

rely on concerted action between MVB,

autophagosomes and related organelles.

Figure 1. Ultrastructural features of three distinct multivesicular bodies (MVB, asterisks) containing inner vesicles
of different size in neuron from a fetal neuronal cell culture. Scale bar = 300 nm.
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Development

The presence of MVB has been ascertained
in dendrites and cell bodies of developing
(embryonic) neurons [20-23]. However, the
involvement of MVB in growth formation and
membrane trafficking necessary for neurite
outgrowth in developing neurons of the cortex
and hippocampus [24-26] remains ambiguous
because the identity of the vesicles as MVB,
recycling endosomes, or another type of
endosome has not yet been elucidated. Despite
this, it has been estimated that there is a higher
number of MVB per spine (MVB density) in
the hippocampal neurons of younger rats
compared to older ones [1].

The
processes during embryonic development has

dramatic impact of autophagic
been recently confirmed [27,28]. In addition,
mutations of autophagy regulatory genes (Atg)
result in severe developmental perturbation.
In mammals, Beclin 1 protein (the orthologue
of Atg6) when bound to Ambra1l protein has
a crucial role in neural tube formation. In
particular, mutations of Ambral seem to be
responsible for midbrain/hindbrain pathologies
[29]. Finally, it should be noted that very few
studies refer to the concomitant presence
of MVB and autophagosomes, especially
concerning their number and distribution.
This makes it difficult and speculative to
argue about quantitative and/or qualitative
differences in CNS neurons at early versus late
developmental stages.

Neurodegeneration

Progressive neurodegenerative disorders,
such as Alzheimer’s disease (AD), Parkinson'’s
disease (PD), amyotrophic lateral sclerosis
(ALS) and frontotemporal dementia (FTD) are
all characterized by massive neuronal loss
that is the final outcome of the aggregation
and deposition of abnormal proteins. Some
research data indicate that both MVB and
(AV) are
during the course of these pathologies

autophagic vacuoles recruited
[30]. It has been ascertained that mutations
or any kind of alteration targeting the
endosomal-lysosomal machinery, with MVB
acting at the intersection point, gives rise to
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Figure 2. Schematic drawing of known and potential interactions between organelles of the endosomal and
autophagic/lysosomal pathways. MVB = multivesicular bodies.

defective endosomal sorting and possible
neuronal demise [31-35]. Alternatively, some
authors have put forward the hypothesis
MVB/late
endosomes and lysosomes by means of
taking over the aberrant proteins [36].
The critical role of MVB in AD has already
been indicated in an early study [37] on the

of a neuroprotective role for

neurites of senile plaques where “giant” and

numerous MVB were found in the cortical
neurons of AD patients [38]. More recently,
Takahashi et al. [39] have provided direct
evidence for the accumulation of amyloid
beta 42 (AP42) taking place immediately
before the appearance of dystrophic neurites
and suggesting the MVB as temporary
docking stations for the harmful peptide. On
the other hand, this phenomenon overlaps
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with an increase of immature AV due to the
impairment of AV transport to lysosomes and
relative failure of lysosome clearance [40].

In PD, the hallmark pathology is represented
by the accumulation of the protein alpha-
synuclein that is also the major component of
Lewy body inclusions. In this case, it has been
demonstrated that an overexpression of alpha-
synuclein induces autophagy impairment
mediated by the inhibition of GTPase Rab-
1A, which is required for the autophagosome
formation [41]. Therefore, at first glance, the
autophagic process could exert beneficial
effects because both macroautophagy and
(CMA)

are actively triggered for alpha-synuclein

chaperone mediated autophagy
degradation in neurons [42-44]. In contrast
with the above findings, it has been reported
that massive cell loss can be observed in the

dopaminergic neurons in postmortem PD

brains as a result of the increase in autophagic
activity determined by oxidative stress [45].
Furthermore, it hasrecently been published that
in patients affected by FTD and ALS, functional
MVB are required for autophagic clearance of
protein aggregates. This was highlighted by the
fact that autophagy degradation is arrested in
cells depleted of endosomal sorting complex
required for transport (ESCRT) subunits or in
cells expressing a mutant form of charged
multivesicular body protein 2B (CHMP 2B)
that has a severe impact on ubiquitin-protein
aggregates [31,40]. An additional study [35] has
indicated a positive correlation between CHMP
2B mutations and FTD manifestation. Therefore,
we can draw the conclusion that concerning
the different neurodegenerative syndromes,
the
autophagy associated with neuronal loss and

boundaries  between  pathogenic

basal neuronal autophagy remain undefined.

Translational Neuroscience

Conclusions

There is an increasing body of data advancing
the concept that prolonged perturbance
or unbalance in the activity ratio between
ESCRT and autophagic machinery with MVB
at the intersection point can switch the
basal autophagic pathway necessary for the
establishment of developmental homeostasis
to the irreversible stages of neurodegenerative
events.
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