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Introduction

Stem cell research has made rapid and 
significant progress over the last decade. In 
the context of CNS repair, two lines of research 
are currently being investigated extensively 
for the development of neuronal replacement 
therapies, i.e. the recruitment of endogenous 
neural stem cells and the transplantation of 
exogenous stem cells. The first line of research 
emerged from the observation of a persistent 
neurogenesis taking place in discrete regions 
of the adult brain [1], although its relevance 
in humans is still debated. The second rapidly 
evolved due to recent advances that allow 
deriving, culturing and directing the fate of 
pluripotent stem cells (PSCs) from several 
mammalian species, including humans. 

Both approaches, although experimentally 
different, are conceptually related. They 
are both guided by advances in our basic 
understanding of how the brain develops 
and influence each other in a bidirectional 
manner. This necessary cross talk between 
basic and more applied fields of research is 
particularly well illustrated by a recent study of 
Studer and co-workers. They demonstrated the 
derivation of midbrain dopaminergic neurons 
from human pluripotent stem cells and their 

successful engraftment in animal models of 
Parkinson’s disease [2]. 

Pluripotent stem cells: from 
induced pluripotency to 
regenerative neurosciences

“Pluripotent stem cells (PSCs)” are cells that can 
self-renew and are capable of generating all 
cell types in an organism, with the exception 
of trophoblasts of the placenta. The classical 
method for isolation of PSCs has long been their 
derivation from early embryos. This approach 
has allowed the isolation and development of 
numerous embryonic stem cell lines, of both 
murine and human origin, that are currently 
being used in many laboratories around the 
world. Recent years have seen the development 
of alternative approaches for the production 
of PSCs, in particular, the development of 
protocols to induce pluripotency of more 
differentiated cells, e.g. somatic cells. A major 
breakthrough in the establishment of induced-
PSCs (iPSCs) has been the demonstration 
that the introduction of a limited number of 
transcription factors (TFs) is sufficient to reset 
the epigenome and induce pluripotency in 
rodent [3,4], as well as human somatic cells
[5,6]. Whereas these original experiments relied 

on the use of viral constructs for delivery of 
the TFs, the following years have seen intense 
research aimed at developing non-viral means 
to produce iPSCs. Among other methods, non-
integrating viruses, naked plasmids, peptides 
or small molecules have successfully been 
used, although with variable efficiency [7]. 
While these findings are of great significance, 
this field of research is still in its infancy and 
several concerns remain for iPSC research [8]. 
For example, differing methods of producing 
iPSCs might not all equally induce pluripotency. 
Thus, has previously observed for embryonic 
stem cells, iPSCs produced from cells of 
different origins [9], by different protocols [10] 
or exposed to different microenvironments 
[11], vary in their gene expression signature 
and differentiation potentials. In addition, 
recent studies suggest genetic and epigenetic 
alterations in iPSCs that may arise from 
culturing or reprogramming [8].

The aim of human PSC (hPSCs) research 
was first thought to be the development of 
sufficient cell material to model diseases. In 
this context, a notable advantage of iPSCs 
is their possible derivation from individuals 
suffering from a specific disease, allowing the 
generation of patient-specific cells for high-
throughput drug screening [12]. In addition, 
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the autologous nature of iPSCs makes them 
suitable for transplantation. The feasibility 
and potential benefits of PSC transplantation 
have recently been highlighted in a number 
of studies [13] which used animal models of 
several neurodegenerative disorders. Among 
them, Parkinson’s disease presents several 
advantages to test PSC-based cell replacement 
therapies. First, the pathophysiology of this 
disease is relatively simple with the loss of 
catecholaminergic neurons, in particular 
dopaminergic (DA) neurons of the substantia 
nigra, leading to motor and cognitive 
dysfunctions. In addition, due to its long 
history of fetal DA progenitors transplantation 
in the caudate-putamen starting in the 1970’s 
[14], Parkinson’s disease is a prime illustration 
of the regular progress made in this field 
of research, allowing the establishment of 
new neuronal replacement strategies to be 
guided by previous attempts. Early reports of 
fetal transplant survival and motor function 
improvement in Parkinson’s patients [15] have 
provided a solid ground for the pursuit of this 
research, despite development of side effects 
in some patients [16]. In particular, methods 
to obtain more uniform and defined midbrain 
DA neurons from PSCs have been extensively 
explored. 

generating transplantable 
midbrain da neurons from 
pluripotent stem cells 

The use of hPSCs (i.e. human ES or iPS cells) for 
drug screening or transplantation purposes 
relies on the development of protocols to 
efficiently and homogeneously differentiate 
them into defined cell types. Early studies 
have shown that PSCs differentiate by default 
towards an anterior neuroectodermal fate 
when grown in a serum-free suspension 
culture [17], a process that can be promoted 
by dual inhibition of BMP and TGF-β signaling 
[18]. Subsequent exposure of the obtained 
neural precursors to patterning factors defining 
anterior-posterior and dorso-ventral identity 
during CNS development, can successfully 
direct differentiation towards specific neuronal 
fates [19]. For example, neural precursor cells 
can be instructed to acquire a cortical fate by 

using protocols containing the dorsalizing 
factor retinoic acid [20,21]. Specification toward 
a floor plate fate relies on early exposure to 
the ventralizing factor sonic hedgehog (Shh) 
[22,23]. 

The study of Kriks et al. represents a significant 
new step toward the development of protocols 
aimed at generating specific neuronal subtypes 
from PSCs, and is particularly illustrative of the 
evolution of this field of research. By refining 
previously established protocols, they report 
the efficient generation of neurons from human 
PSCs that show a molecular and phenotypic 
signature of midbrain DA neurons [2]. Three 
protocols, consisting of sequentially exposing 
the cells to one or several morphogens, were 
tested and their efficiency to induce a midbrain 
dopaminergic fate directly compared. Control 
cells not exposed to morphogens differentiated 
by default to a dorsal forebrain precursor fate. 
In contrast, and in agreement with their pattern 
of expression in the developing telencephalon, 
exposure to activators of the Shh-signaling 
pathway and to FGF8 resulted in a “ventro-
rostralization” of the cells and acquisition of a 
hypothalamic precursor fate. A subsequent 
timely co-activation of the Wnt-signaling 
pathway by exposing the cells to GSK3β 
inhibitors resulted in their “caudalization” 
and in the generation of midbrain DA 
neuron precursors. Acquisition of a midbrain 
dopaminergic fate was accompanied by a 
reduction in acquisition of other alternative 
fates, as illustrated by lower number of cells 
acquiring a serotonergic or GABAergic fates.

In a second part of the study, although 
systematic comparison of DA neurons 
produced by these different protocols was 
not performed, the authors evaluated the 
capacity of PSC-derived midbrain DA neurons 
to differentiate and functionally mature. By 
performing various measurements, they could 
show that these neurons differentiate more 
efficiently and completely when compared 
to DA neurons obtained by a neural rosette 
intermediate, the currently most widely used 
strategy for deriving DA neurons from PSCs [24]. 
Finally, they showed that grafting of their PSC-
derived midbrain DA neurons at a stage when 
they express the post-mitotic marker NURR1 
resulted in efficient long-term graft survival (i.e. 

up to 4.5 months) with no sign of transplant 
overgrowth in intact and parkinsonian 
immune-deficient mice. This was accompanied 
by a complete rescue of the amphetamine-
induced rotation behavior, which contrasted 
with the absence of functional recovery, poor 
survival and extensive overgrowth observed 
in rosette-derived grafts. Survival and function 
of midbrain DA neuron grafts was confirmed 
by behavioral testing in immunosuppressed 
adult parkinsonian rats. Lastly, transplants 
were performed in the caudate/putamen of 
two immune-suppressed rhesus monkeys after 
MPTP (a neurotoxin precursor) treatment, a 
classic primate model of Parkinson disease, 
demonstrating scalability of this approach. 

From basic developmental 
principles to lineage specific Psc 
differentiation, and back again

These results are significant in several ways. First, 
they illustrate the current evolution of this field 
of research. In particular, they demonstrate how 
basic knowledge acquired in developmental 
biology serves as milestones for establishing 
novel PSC differentiation protocols. This 
knowledge acquired over decades in rodents, 
chickens and frogs allowed the defining of 
general principles and the identifying of 
key patterning molecules involved in the 
regionalization of the developing brain. This 
allowed the development of protocols used 
to generate neuronal subtypes as diverse 
as cortical neurons [21], motoneurons [25], 
basal forebrain cholinergic neurons [26] and 
dopaminergic neurons [2] (for a recent review 
see ([12,27]).

Furthermore, this study illustrates how 
advances in molecular biology, in particular in 
transcriptional profiling of divergent cellular 
lineages and of the distinct CNS cell types 
that they give rise to (see for example [28]) 
have impacted stem cell research. Public 
access to this vast amount of data, as well 
as the development of search engines and 
freewares to analyze them [29] offers unique 
opportunities to identify key transcriptional 
programs involved in neuronal subtype 
specification. These transcriptional programs 
can be used as readouts to assess appropriate 
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specification of PSCs exposed to various 
differentiation protocols, a resource elegantly 
compiled and applied in the study of Kriks and 
collaborators. By systematically performing 
microarrays at defined time points during 
differentiation, the authors were not only 
able to confirm the identity of PSC-derived 
midbrain DA neurons, but also to monitor their 
progression from proliferative progenitors to 
post-mitotic neurons, a crucial step for defining 
the optimal timing for engraftment of these 
cells (see below). The availability of this raw 
data (NCBI’s GEO database, dataset GSE32658) 
will prove to be a precious resource for 
future development and refinement of other 
differentiation protocols.  

Interestingly, the gene expression analysis 
performed by Kirks et al. also led to the 
identification of new transcription factors 
not previously associated with midbrain DA 
neuron development, illustrating how different 
domains of research can inform each other in 
a bidirectional manner. This identification of 
new transcription factors potentially involved 
in midbrain DA neuron generation may offer 
alternatives to the use of patterning molecules to 
induce lineage selection of PSCs, as, for example 
by forcing expression of carefully selected 
transcription factors [30]. In the context of DA 
neuron specification, previous research has 
shown that expression of Lmx1a is sufficient to 
trigger dopamine cell differentiation [31], which 
transplantation promote recovery in an animal 
models of Parkinson’s disease [32]. Identification 
of key transcriptional regulators may also allow 
direct reprogramming of somatic cells into DA 
neurons [33], a technique that might circumvent 
some of the concerns associated with induced-
pluripotency (see above). 

Timing of cells engraftment: 
balancing safety with cell 
integration

Although it has not yet been systematically 
studied in neurodegenerative diseases 
the timing of engraftment in relation to 
disease progression is likely to have a very 
important role in determining the success of 
this procedure, as previously shown in other 
tissues. Equally important however, is the 

timing of engraftment regarding the stage 
of differentiation of the transplanted cells. 
Accumulating evidences indicate that these 
cells must have exited cell cycle to prevent 
risks of teratoma formation, but must remain 
immature enough to show optimal integration 
in the receiving tissue. Prior to the study of 
Kriks et al. several attempts had been made 
to use PSCs of murine or human origin for 
replacing lost dopaminergic neurons in animal 
models of Parkinson’s disease. They relied 
on the use of ES cell lines, and more recently 
on the demonstration that iPSCs can also be 
used to this end [34-36]. In general, while 
these studies have demonstrated some partial 
functional recovery following transplantation, 
some reported overgrowth of the transplants 
[34]. These observations raised important and 
long-lasting safety concerns, and emphasized 
the need to develop methods to purify hPSC-
derived neurons from reminiscent PSCs prior to 
their transplantation [37]. 

The study of Kriks et al. suggests that 
efficient and homogenous hPSC differentiation 
might be sufficient to eliminate the need 
for this purification step. Their study indeed 
shows a more complete and homogenous 
differentiation of PSCs when using more 
complex differentiation protocols, with 
minimal Nestin or Ki67 (i.e. proliferating) 
progenitors remaining both in vitro as well as in 
the grafts in vivo. Furthermore, their systematic 
gene expression analysis allowed the authors 
to optimize the timing of engraftment, which 
was determined by expression of Nurr1, a 
postmitotic marker and downstream target 
of Neurog2 previously used to identify 
transplantable dopamine precursors [38]. 
With this approach, they did not detect any 
graft overgrowth after transplantation in 3 
animal models. The incidence of teratoma 
formation following hPSC transplantation 
into rodents being related to the degree of 
immunosuppression [39], graft overgrowth 
after autologous cell transplantation in humans 
remains a major concern [40]. In respect to this, 
it is noteworthy that the authors did not detect 
graft overgrowth in a mouse strain particularly 
sensitive to xenograft overgrowth.  

While these observations illustrate the need 
for efficient and homogenous differentiation 

of hPSCs prior to grafting, they also highlight 
important considerations on the timing of hPSC 
transplantation for their optimal integration 
within the host tissue. Both the anatomical and 
functional analysis made in this study support 
the optimal integration of the transplanted 
neurons. In rodent as well as primate hosts, 
a halo of TH-positive fibers was observed 
around the graft questioning the well-known 
“inhibitory nature” of the adult CNS for axonal 
outgrowth. Impressive graft integration has 
been previously reported for embryonic 
cortical neurons in the cortex of neonatal 
[41,42] and adult animals [43]. In the later study, 
transplanted embryonic cortical neurons were 
capable to differentiate in projecting pyramidal 
cells that extended long-distance projections 
in the mature host brain to appropriate cortical 
and subcortical targets. This normal integration 
was only observed for homotopic neurons, 
as embryonic neurons from the visual cortex 
failed to correctly integrate [43], and was 
proposed to explain the functional recovery 
observed in previous studies where similar 
strategies were employed [44]. These striking 
observations suggest that early PSC-derived 
neurons express receptors that allow them 
to recognize molecular cues still maintained 
in the adult brain or re-expressed following 
lesion. At the same time, they suggest that the 
same neurons do not yet express the receptors 
or signaling machinery necessary to respond to 
growth inhibitory molecules of the adult CNS 
[45]. 

Altogether, these observations imply the 
existence of a narrow window of opportunity 
for optimal grafting of PSCs that has not been 
systematically studied so far. 

Potential relevance for 
endogenous adult nsc research?

Although PSC research has greatly benefited 
from advances made in developmental 
neurosciences (see above), it might in turn 
instruct future research aimed at recruiting 
endogenous neural stem cells (NSC) for 
brain repair. Establishment of efficient PSC-
differentiation protocols identifies the 
minimal signals necessary for neuroectoderm 
induction and neuronal subtype specification 
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in conditions where cells are isolated from their 
environment. Although it is unlikely that these 
protocols will be directly compatible with the 
more complex in vivo situation, it is tempting 
to speculate that this research will inspire the 
development of strategies aimed at recruiting 
endogenous adult NSC to sites of neuronal loss. 

Although some studies have shown that 
NSC can be recruited into the denervated 
striatum in rodent models of Parkinson’s 
disease, their subsequent differentiation 
in therapeutically relevant DA neurons has 

not been realized [46,47]. These findings 
suggest that the appropriate instructive 
signals are absent in the adult forebrain 
that would be necessary to promote the 
required specification and maturation of 
neuroblasts recruited to the site of injury. 
Small molecules activating specific signaling 
pathways such as those used in PSC studies 
might be relevant to test in this context. 
Thus, recent research identified Shh as a 
potent ventralizing factor in the adult murine 
lateral ventricle [48]. Interestingly, ectopic 

activation of the Shh signaling pathway in 
dorsal NSC leads to differentiation of their 
progeny to deep granule interneurons and 
calbindin-positive periglomerular cells, a fate 
normally acquired by ventral NSC [48,49]. 
Thus these observations suggest that some 
levels of plasticity exist for endogenous 
NSC, rendering them capable of acquiring 
alternative fates. Future studies aiming 
at “activating” such plastic potential of 
endogenous NSC will likely be guided by PSC 
research.
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