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THE ROLE OF a-SYNUCLEIN
IN NEURODEGENERATION
- AN UPDATE Kurt A. Jellinger*

Abstract Institute of Clinical Neurobiology
Genetic, neuropathological and biochemical evidence implicates a-synuclein, a 140 amino acid presynaptic Kenyongasse 18, A-1070 Vienna, Austria
neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The
aggregated protein inclusions mainly containing aberrant a-synuclein are widely accepted as morphological
hallmarks of a-synucleinopathies, but their composition and location vary between disorders along with neuronal
networks affected. a-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured
and a-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are
involved in B-pleated aggregation resulting in formation of typical inclusions. The physiological function of
a-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric,
not fully fibrillar a-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The
effects of aberrant a-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative
and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common
mechanism in the pathogenesis of neuronal degeneration in a-synucleinopathies. However, how a-synuclein
induces neurodegeneration remains elusive as its physiological function. Genome wide association studies
demonstrated the important role for genetic variants of the SNCA gene encoding a-synuclein in the etiology of
Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function.The
neuropathology of synucleinopathies and the role of a-synuclein as a potential biomarker are briefly summarized.
Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system
atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence,
in addition to synergistic interactions of a-synuclein with various pathogenic proteins, suggests that prion-
like induction and seeding of a-synuclein could lead to the spread of the pathology and disease progression.
Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of a-synuclein might be
targets for neuroprotection and disease-modifying therapy.
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PD - Parkinson disease

PDD - Parkinson disease-dementia

PK - proteinase K

ROS - reactive oxygen species

s - sporadic

Ser - serin

SN - substantia nigra

SNARE - soluble N-ethylmaleimide-sensitive

fusion protein (NSF) attachment
protein receptor

SNCA - a-synuclein gene

SNCB - B-synuclein gene

SNCG  -y-synuclein gene

SND - striato-nigral degeneration

Syn - synuclein

tg - transgenic

TH - tyrosine hydroxylase

TNF - tumor necrosis factor
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protein

tTG - tissue transglutaminase

Ub - ubiquitin

UBA - ubiquitin-associated

UCHL1  -ubiquitin carboxy-terminal hydrolase L1

UPP - ubiquitin-proteasome pathway

UPR - unfolded protein response
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1. Introduction

a-Synuclein  (AS) is implicated in the
pathogenesis of Parkinson’s disease (PD),
dementia with Lewy bodies (DLB), and

multiple system atrophy (MSA) [1-4]. PD is
one of the most frequent neurodegenerative
disorders, a progressive multisystem disease
with variegated neurological and non-motor
symptoms [5]. It is featured by degeneration

of the dopaminergic nigrostriatal system,
responsible for the core motor deficits
[6], and multifocal involvement of the

central, peripheral and autonomic nervous
system and other organs, with widespread
occurrence of presynaptic, intracytoplasmic,
axonal, and dendritic depositions of fibrillary
hyperphosphorylated AS protein that forms
amyloid-like inclusions in selected neuronal
populations [7-9]. Abnormal aggregates of
AS occur in 3 major types of inclusions in
a number of disorders that are collectively

known as a-synucleinopathies [10,11]: (1)
as intracellular and intraneuritic AS deposits
(Lewy bodies /LB/ and Lewy neurites /LN/ in
PD and DLB [3], (2) glial cytoplasmic inclusions
(GCl) or Papp-Lantos bodies predominantly
in MSA [12,13],
and (3) in giant axonal swellings (spheroids)

affecting oligodendroglia

in these and other rare diseases [14-16] (see
Table 1). These inclusions are widely accepted
as diagnostic  morphological  hallmarks
[17,18],
AS aggregates also affect both astroglia
and microglia in PD, DLB and MSA [19,20].

Conversion of AS from soluble monomers to

of a-synucleinopathies although

aggregated, insoluble forms is the key event in
the pathogenesis of a-synucleinopathies. The
question whether LBs and other AS aggregates
are harmful or cytoprotective currently remains
unresolved. Despite all aggregating AS protein
in multiple systems, the solubility [21,22] and
location of the protein varies between disorders
along with neuronal populations affected
[23]. The main clinical phenotypes of PD are
related to diffuse progression of pathology and
involvement of multiple neuronal networks
and organs (see [9]), which has been suggested
to result from a prion-like spreading of AS
inducing its transmission and propagation of
the disease [24-28]. In dementia syndromes
variable clinical features are due to different
pathologies (Parkinson disease-dementia /
PDD/, pure DLB, and DLB with Alzheimer-like
pathology or LB variant of Alzheimer disease /
LBV/AD); their differentiation may be difficult.
MSA was originally viewed as 3 different clinical
phenotypes(Shy-Dragersyndrome, striatonigral
degeneration/SND or MSA-P, and sporadic
olivopontocerebellar atrophy /sOPCA or
MSA-C) due to different anatomical distribution
of the pathological lesions associated with AS-
positive glial inclusions [29,30]. The etiology
of synucleinopathies seems to be complex,
with variable contributions of both genetic
and environmental risk factors, but in most
cases, nongenetic factors play a role probably
in interaction with susceptibility genes [31-34],
although familial components may indicate
genetic factors [35,36]. The recognition of
the heterogeneity within synucleinopathies
- as in other neurodegenerative disorders
- is important for the classification of their
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phenotypes [37,38], probably related to genetic
and environmental factors, as a basis for further
therapy options.

2.The synuclein protein family

AS is an illustrative member of the rapidly
growing family of natively unfolded proteins
that lack a typical secondary structure [14,39].
The synucleins are small (127-140 amino acids)
natively soluble unfolded proteins, which
are highly charged and have low hydropathy
[40,41]. The family includes AS, a 140 residue
neuronal protein encoded by the 6-exon
SNCA (PARK1) gene (OMIM 163890) coded
on chromosome 4q.21 [42,43], B-synuclein

Table 1. a-Synucleinopathies.

1. Invariable forms (consistent occurrence of aSyn)

Sporadic Parkinson disease

Familial PD (aSyn-, PARKIN mutations)
Incidental Lewy body disease (preclinical PD)
REM sleep behaviour disorder (RSD)

Parkinson disease and dementia (PDD)

Dementia with Lewy bodies “pure”form (no or
little AD-pathology), LB variant of AD (LBV/AD)

Pure autonomic failure

Lewy body dysphagia

Multiple system atrophy

Pantothenate kinase-associated

neurodegeneration (Hallervorden-Spatz syndrome)
2. Variable forms (inconsistent occurrence of aSyn)

Alzheimer disease (sporadic, familial)

Aging brain (with/without dementia)

Down syndrome

Frontotemporal lobe degeneration

Pick disease

Amyotrophic lateral sclerosis

Guamanian ALS-dementia complex

Progressive supranuclear palsy

Other tauopathies

Subacute sclerosing panencephalitis

Ataxia telangiectasia

Meige syndrome

Gerstmann-Straussler-Scheinker disease

Gaucher disease

Traumatic brain lesions




(BS) and y-synuclein (GS) [14], encoded by
other distinct genes (chromosome 5 and 10,
respectively [3,44]), that share significant
sequences at the amino acid level [45]. A
typical structural feature of synucleins (Syn)
is the presence of a repetetive, degenerative
amino acid motif KTKEGV throughout the first
87 residues and acidic stretches within the
C-terminal region [46]. AS is characterized by 6
repeat sequences predicted to form 5 helices
on the N-terminal half [41,47-49] and an acidic,
glutamate-rich C-terminal region (Figure 1).
Alternative SNCA splicing gives rise to 3 major
isoforms (AS 140, 126, and 112) [51]. Human
AS was originally described as the precursor
protein for the non-amyloid component
(NAPC) in Alzheimer disease (AD) amyloid
plaques [52,53]. SNCA has 2 paralogous
genes named SNCB (OMIM 602569) and SNCG
(OMIM 602998), with which it shares a highly-
conserved N-terminal domain [54], while BS
lacks many amino acid residues in the NAC
region [41]. GS, initially described as breast
(55D,
is smaller than AS and BS protein due to a

cancer associated protein 1 (BCSG1

shorter C-terminal region, but contains much
of the NAC region [41]. The most prominent
feature of AS is the hydrophobic NAC domain,
lacking in the other Syn proteins, which seems
to be important for AS to form aggregates
or fibrillary structures present in LB disease,
MSA, etc [56]. Thus, apparently only human
AS is pathogenetically associated with PD
and related disorders [45]. While two studies
suggested that AS occurs physiologically

as a helically folded tetramer that resists
[57,58],
it predominantly exists as a disordered

aggregation others showed that
monomer [59]. Preformed fibrils generated
from full-length and truncated recumbinant
AS enter
promote recruitment of soluble endogenous
AS into insoluble deposits [60].

neurons, via endocytosis, and

3. Structure, regulation and

function of a-synuclein

3.1. Structure of a-synuclein

The structure of AS contains 3 main modular
protein domains: (1) a highly conserved amino
acid lipid binding a-helix (residues 1-60); (2)
a non-amyloidogenic core (NAC) domain
(residue 61-95), hydrophobic/
amyloidogenic part of the molecule and
the building block of AS aggregates [56,61],
responsible for the conformational change

the central

from random coil to B-sheet (protofibril and
fibril formation) [62], with critical residues for
its aggregation or fibrillation (residues 66-74)
[56]; (3) a variable carboxy terminal acidic tail
(residues 95-140) that appears critical for the
chaperone-like activity of AS [63] (Figure 1).
The carboxy-terminus inhibits B-sheet and
fibril formation [62,64]. AS contains several
phosphorylation sites for protein kinases [54].
Over half of the molecule (amino acids 7-87) is
composed of 7 motifs with a KTKEGV sequence,
which are part of 11-residue repeats forming
5 amphipathic helices on the amino-terminal

(a) Amphipathic region NAC domain Acidic tail
5 — . . =~ 3
Exon 2 Exon 3 Exon 4 Exon 5 Exon6
(b) Amphipathic region NAC domain Acidic tail
N-terminal — —~ - C-termina
KTKEGV hydrophobic negative charge &
i Rallaidpb ———= o
z = g
A L

1 |

A \ :
61 l 95

Ser129
Tyr125

Aggregation

Figure 1. Schematic representation of human a-synuclein, depicting (a) SNCA mRNA and (b) protein domains

(modified after [50]).
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half responsible for its lipid affinity [14,54,63],
although this has recently been debated
[17]; helix 5 is responsible for protein-protein
interactions [65]. While the hydrophobic NAC
region remains dynamically disordered, the
SL1 binding mode (residues 3-2) is prone to
intermolecular interactions which progress
toward oligomers and fibrils [66].

The predominant physiological species
of AS are a helically folded tetramer or a
disordered monomer with a low propensity
to aggregate into fibrils [57-59,67]. It is
potentially prone to misfold and has a strong
tendency to self-aggregate in vivo [68],
resulting in toxicity [69]. Wild-type (WT) AS is
monomeric and intrinsically/natively unfolded
at low concentration but adopts an a-helical
conformation when bound to membranes
[70,71]. ASis anintrinsically disordered protein
but a very dynamic molecule that can adopt
different conformational states depending
[72,73]. The
helical membrane-bound AS forms a partially-

on conditions and cofactors

folded stage that is the key intermediate in
aggregation and fibrillation; it provides the
seeds responsible for accelerated deposition
of the less aggregation prone and disordered
free cytosolic form [44,74,75]. Upon binding
to membranes or synaptic vesicles it assumes
[49].
misfolding of AS occurs on membranes [76].

an o-helical structure Folding and
The misfolded isoform of the protein may
lose the ability to bind membranes after the
translation and accumulates as free AS in the
cell.

Fibrils generated in vivo from AS show
similar features characteristic of amyloid fibrils
and include an antiparallel B-sheet structure
[62,77]. Recent nuclear magnetic resonance
(NMR) studies of full-length AS fibrils showed
that the core extends with a repeated structural
motif, thus disagreeing with their previously
proposed fold [78]. The secondary structure
of AS is determined by its environment and
implies that the conformation of endogenous
AS depends upon whether it is cytoplasmic or
membran-bound [79]. Rapid exchange of AS
between bound and unbound states provides
mechanisms to ensure that stable cellular
structures remain dynamic and susceptible to
regulation.
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3.2. Localization and regulation of
a-synuclein

In normal brain, AS is predominantly expressed
in CNS neurons, especially in the neocortex,
hippocampus,  striatum, thalamus, and
cerebellum, where it is localized in the cytosol
and at presynaptic terminals [3,80,81]. From
there it is to be delivered to the neuronal
perikarya by axonal transport. Recently, AS
has been observed in neuronal mitochondria
in different brain regions [82,83]. AS was also
found in olfactory receptor neurons and the
olfactory epithelium [84], and at low levels in
skeletal muscle, cells of the neuromuscular
junction [85,86], and oligodendrocytes [87]. It
is localized outside of the nervous system in
multiple organs suggesting that its function
is not only exclusive to the brain and related
diseases, but may also be associated with non-
neurological disorders. BS is expressed in brain,
spinal cord [88] and astrocytes [89], but heavily
in cells of the peripheral nervous system [86] and
in retina [54]. GS or persyn occurs in cell bodies
and axons of sensory neurons, sympathetic
neurons and in brain [90]. GS overexpression
can induce a neurodegenerative phenotype in
mice [91].

AS has been reported to be restricted to axon
terminals [92-95], which led to the acceptance
that it was a cytoplasmic, presynaptic protein
[79]. However, it was also detected in the
perikarya within several brainstem structures
[56]. AS/Syn-1 expression occurs in human and
rat brain somata, dendrites, and glia [96-98]
that are susceptible to cellular AS aggregation
[19,20].
distributed in both cytosolic and membrane-

(see Endogenous AS is normally
bound forms, contradicting the assertion that is
is exclusively a cytoplasmic protein. Expression
and aggregation of both soluble and lipid-
associated forms were found in wild type (WT)
and mutant transgenic (tg) mouse brain [99].
Levels of AS are regulated by a balance of
synthesis, degradation, and secretion. The
ubiquitin-proteasomal system (UPS) and the
autophagy-lysosome pathway (ALP) are the
two major control systems postmitotic neurons
use to maintain intracellular proteostasis
[100-102]. Proteasomal dysfunction results in
the accumulation of SUMOylated AS; these

post-translational modifications contribute to

inclusion formation [103], while sumoylation of
AS promotes proteinsolubilizationand suggests
that deficits in sumolysation may contribute to
AS aggregation [104]. Cathepsin D expression
level affects AS processing, aggregation and
toxicity in vivo [105]. AS aggregates may be
fragile and lack the cohesion characteristics of
the insoluble cellular inclusions formed in vivo,
while in other conditions, they are insoluble
[79]. Membrane-bound a-helical AS does not
contribute to aggregation/fibrillization [106],
while soluble folding intermediates may be
essential for its aggregation by a cascade
comprising initially soluble oligomers, then
insoluble oligomers, and finally fibrils present
in inclusions [67,107-109].

Two pathogenic mechanisms have been
suggested to induce, accelerate and/or
aggrevate protein aggregation (Figure 2):
1.) B-sheet conformation by itself further
promotes or accelerates aggregation of AS. (2.)
Increased iron levels either directly or via iron-
increased levels of oxidative stress (OS) catalyze
the conversion of a-helical AS conformation
into B-pleated conformation, which is found
in LBs and GCls [108,110-112]. On the other
hand, metal-catalyzed oxidation of AS inhibits
formation of filaments with increased formation
of B-sheet rich oligomers or protofibrils [113].
Advanced glycation endproducts (AGEP) and
iron interact with AS aggregation [114,115],
which
calcium [116]. Hsp90 modulates assembly of

is further promoted by increased

AS in an ATP-dependent manner by restricting
conformational fluctuations [117].
Themechanismthatcauses post-translational
changes of AS includes phosphorylation at
residue serin (Ser)129 by kinases [118-121]

ROS

a-helix ===» p-sheet =
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(promoting fibril formation in vitro [122]),
C-terminal truncation and ubiquitination [123],
being a common feature in synucleinopathies
[124]. In a mouse model overexpressing AS
enhanced phosphatase activity reduced the
phosphorylation and aggregation of AS [125],
but the mechanisms for degradation of pAS
are unclear. The ubiquitin (Ub)-independent
proteasome pathway or a Ub-dependent
pathway after dephosphorylation have both
been implicated [126].

The association of AS with membranes
affects bilayer structure, stability, and fibril
formation [127]. Membrane-bound AS can
aggregate spontaneously [128], but it does
not require membranes to form protofibrils
and fibrils [129], and a-helical conformation
correlates formation
[106].
prevent AS self-association [130]. Regulation

inversely with fibril
Membrane binding may, therefore,

of AS by activity and the relationship between
membrane binding and aggregation have
been summarized recently [51,131,132].

Overexpression of wild type (WT) AS
lacking the central hydrophobic non-amyloid
component domain in Drosophila melanogaster
abolishes the aggregation and mitigates
its neurotoxic effects [133]. However, the
observation of aggregated AS by and of itself
does not prove that aggregation is important;
all available date prove that deposition of AS
occurs, not that it is causal [134].

The mechanism of AS degradation remains
unclear. Some suggest that monomeric AS
can be degraded by the Ub-proteasome
pathway (UPP) [135,136], while others found
that only a small portion of soluble-cell-
intermediates  as

derived oligomers, not

B-sheet

a-synuclein
aggregatlon

ORIt

Figure 2. Pathogenic mechanisms to induce a-synuclein aggregation.




including monomeric AS, is targeted to the
26S proteasome for degradation [137]. By
AS concentrations increase
inhibition [136,138-140].
There are distinct roles in vivo for the UPS and
the ALP in the degradation of AS [141,142]

and two separate lysosomal

contrast, total

after lysosomal

pathways -
chaperone-mediated autophagy (CMA) and
macroautophagy or the endosomal-lysosomal
system - may be the initiating factors in AS
degradation [136,143,144]. Dysregulation of
the autophagy pathway has been observed in
the brains of PD patients and in animal models
of PD [145]. Macroautophagy itself is blocked
by AS via Rabla dysregulation [146]. WT AS
but not mutant forms, is degraded by CMA
[138,140,147], whereas all forms are degraded
by macroautophagy [136,147].

3.3. General functions of a-synuclein
The physiological function of AS isincompletely
understood. However, general consensus is that
it is a multifunctional protein implied in many
cellular processes that coordinates nuclear and
synaptic events, neuronal plasticity [88,95,148-
150], modulation of synaptic transmission,
vesicle fusion and recycling, synaptic integrity,
neuronal differentiation and regeneration
[151]. It interacts with presynaptic membranes
and regulates synaptic vesicle pools [95,152],
while others found no effect of overexpressed
AS on synaptic efficacy [153]. AS has functions
on lipid metabolism, signal transduction,
axonal transport of synaptic vesicles [73],
microtubule and membrane and regulation of
endoplasmic reticulum (ER) and Golgi vesicle
trafficking [45,154].

Of note is that knock-out mouse models of
AS have no overt phenotype, suggesting that
AS is not required for neuronal development
and/or that compensatory pathways exist
[155]. However, absence of AS is associated
with (DA)-dependent
dysfunction reduction in

striatal dopamine
[88,149,156],
the reserve pool of synaptic vesicles, and
defective mobilization of DA and glutamate
[157]. AS is involved in vesicle and membrane
trafficing, presynaptic DA recruitment [158],
[88,159-163],

and in Golgi apparatus influencing protein

and neurotransmitter release

traffic [164], but appears not necessary for

synaptic development [41]. AS associates with
mitochondrial membranes [165], phospholipid
[47,80,106,166-170],
localizes with synaptophysin, which suggests

membranes and co-
regulation of synaptic vesicle formation [149].
A recent study of Syn triple knock-out (TKO)
mice demonstrated the fundamental role
of AS in the control of presynaptic terminal
size and synaptic structure. Complete loss of
synucleins causes alterations in DA handling
by presynaptic terminals, decreased chaperone
activity, and age-dependent neuronal
dysfunction [171-173]. Soluble overexpression
of AS in mice impaired neurotransmitter
release via defective synaptic vesicle recycling,
in the absence of overt toxicity [160], and
overexpression of AS, due to loss of synapsin,
is involved in vesicle mobilization. AS further
has a physiological role in ligand-stimulating
receptor endocytosis and vesicle recycling
[79,174]. Increased levels of WT or mutant AS
could impair protein clearance, which could
lead to further accumulation of the protein,
ultimately leading to protein misfolding, toxic
oligomers, aggregate formation, and cell death
[175].

Mounting evidence indicates a protective
role of AS at the synapse, where it has a non-
classical chaperone activity by the carboxy-
terminal region, facilitating the assembly of
the soluble N-ethylmaleimide-sensitive fusion
protein (NSF) attachment protein receptor
(SNARE) complex important for folding and
re-folding of synaptic proteins [151,153,176-
179]. AS interacts with cystein string protein
a (CSPa), also known as heat shock protein
(Hsp) 40, a presynaptic molecular chaperone,
which contributes to maintaining the integrity
of synaptic nerve terminals, vesicle integrity,
vesicle recycling, and neurotransmitter release
[180,181]. Tg expression of AS has been shown
to abolish the lethal phenotype in mice created
by deletion of CSPa, manifesting in widespread
[151],
providing support for a protective role of

age-dependent  neurodegeneration
CSPa against AS toxicity, misfolding and
This
synaptic degeneration [160] that may precede

aggregation. might protect against
overt PD-related pathology. AS has antioxidant
function, and is a negative regulator for DA

synthesis [50,159,171,182,183] by affecting the
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activity of its key enzyme, tyrosin hydroxylase
(TH) [184].
been attributed to AS, including inhibition

Many other functions have
of phospholipase D 2 and of autophagy,
participation in OS production, ubiquitination,
nitration,  glycolysation,  phosphorylation,
etc [132,163,185-187]. AS
neuromelanin lipid in the SN in PD [188],

redistributes

it associates with many proteins [41] and
regulates the activity of several enzymes, e.g.
mitogen-activating protein kinases (MAPKs
[189]). The GATA transcription factor of SCA
directly regulates its transcription in lock-step
with the rate limiting enzymes of heme-iron
metabolism [190], but its actual role remains
elusive [191,192].

3.4.The role of a-synuclein mutations
The most direct and compelling evidence for
a functional role of AS in the pathogenesis of
synucleinopathies is the causal relationship
between genetic mutations and disease, and
gene expression profiling of SN DA neurons
gave further insight into PD pathology
[193-196]. Approximately 7% of all PD cases
result from a monogenic cause [35,197,198].
In PD, mutations in AS or multiplication
of the SNCA gene encoding AS, result in a
phenotype of cellular inclusions, cell death,
and brain dysfunctions, and familial (f) PD
mutations influence AS assembly [199,200].
So far, 18 PARK loci have been described,
and 10 genes have been linked to PD
[35,196,198,201-206] (Figure 3): Autosomal-
dominant (ad) parkinsonism is caused by the
genes encoding AS or LRRK2 (leucine-rich
repeat kinase 2, dardarin/PARK 8), clinically
comparable to sporadic (s) PD [207-209],
but with variable neuropathology [210,211],
suggesting an upstream role of LRRK2 in
protein aggregation [212]. Mutations in the
LRRK2 gene, being the most common form
of fPD in the world, cause impairment of
protein degradation pathways, in particular
autophagy, which can lead to accumulation of
AS and unbiquitinated proteins, accumulation
of oxidized proteins, inflammatory response,
and increased apoptosis [213] (Figure 4).
While the distribution of AS levels in the
cytosolic or membrane fractions is similar
between the G2019S (the most prevalent
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LRRK2 mutation) and sPD cases, there are
differences in the biochemical properties
of aggregated AS in G2019S-linked PD [214].
Parkin enconding ubiquitin carboxy-terminal
hydrolase L1 (UCHL1) that ubiquitinates proteins
to regulate a variety of cellular processes, linked
to chromosome 6q25.2-27, causes autosomal-
recessive (ar) juvenile parkinsonism (arJP) [215],
most cases showing no LBs [216]. Its mutations
account for about 50% of EOPD cases [217] and
are the second-most common known cause of
PD [218]. They cause loss of E3 Ub ligase activity,
resulting in impaired ubiquitination of substrate
proteins [219], but how mutant parkin induces
pathology in fPD is not exactly known. Late
onset PD and healthy controls revealed similar
frequencies of genetic variants [220]. Loss-of-
function mutations in the nuclear-encoded
mitochondrial gene PINK1 (phosphatase and
tensin  homologue/PTEN-induced kinase 1)
(PARKS8), are associated with LB pathology
[221,222]. DJ-1 (PARK7) or ATP13A2 (PARK9),
and PARK2, which encodes E ubiquitin in the
UPS [223] disrupting this ligase activity and
mitochondrial function [224-226], lead to arPD,
but also to sPD [198]. The characteristics and
molecular biology of PARK1-18 and of other
genes associated with PD have recently been
summarized [196,204].

DJ-1 was identified as a causative gene
in arEOPD in a Dutch and an ltalian family
[227]. DJ-1 is a multifunctional redox-sensitive
protein serving as a molecular chaperone
[228],
protecting cells against OS [231,232],

and
thus
leading to suppression of apoptosis [233].
DJ-1 death
by OS, ER stress, and proteasome inhibition
[234], while the
mitochondria is associated with protective

a transport regulator [229,230],

downregulation enhances cell

localization of DJ-1 to

actions against some mitochondrial poisons
[235]. Exogenously applied DJ-1 was shown
the cytosol,
nucleus, and microsomes [227,231,232], while

to localize to mitochondria,
endogenous DJ-1, locating to presynaptic
terminals of striatal axons and dendrites [236],
revealed interaction with membranes of
cultured cells [237]. Furthermore, DJ-1 partly
colocalizes with the synaptic marker Rab3A at
synaptic terminals, which suggests interaction

with membrane trafficking [238]. These and

other findings confirm an association between
DJ-1 and synaptic vesicles, contributing to the
pathogenesis of PARK7-linked PD (Figure 4).
Two of the PARK genes, Parkin and PINK 1,
play a pivotal role in the removal of damaged
mitochondrial

organelles via mitophagy
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[239-241].
of ubiquitination

Parkin mediating different chains
[242,243]
of ubiquitination causing accumulation of

results in loss
misfolded proteins [244], and plays a role in
maintaining mitochondrial homeostasis [245].
It improves mitochondrial dysfunction, alters

Parkinson disease

Sporadic

Environmental Genetic
factors factors
Polymorphisms
Toxins in gene encoding
* MPTP *LRRKs
* rotenone * ci-synuclein
* paraquat (SCNA)
* others « tau (MAP)

Familial
Autosomal Autosomal
dominant recessive
Mutations Mutations
in gene encoding  in gene encoding
* g-synuclein (PARK1/4) |« Parkin
+ LRRK2 (PARKS) * PINK1 (PARKS)
* PARK3 « DJ-1 (PARKT)
*GBA + ATP13A2 (PARKY)
+ UCH-L1 (PARK5) * PARKS (UCHL1)
* Omi/HirA2 (PARK13) * PRKN (PARK2)
* PLA2G6 (PARK14)
+ FBX07 (PARK15)

Figure 3. Etiology of PD. Sporadic PD is a complex multifactorial disorder with variable contribution of
environmental factors and genetic susceptibility. Mutations of various genes are associated with
autosomal-dominant or autosomal-recessive parkinsonism. PARK 16-18: inheritance unknown.
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the intrinsic threshold for cytochrome c release,
regulates their remodelling, promotes their
autophagy and DNA repair [224,240,246-248].
PINK1, that resides at the OMM [186,249] and
is also present in the cytosol [250], modulates
mitochondrial morphogenesis, distribution, and
dynamics and attenuates ROS production in
SN DAergic cells [251-254] (Figure 4). However,
the mechanism by which PINK1 or parkin
confers neuroprotection is not clear [255]. Both
causes of arPD induce mitophagy or defective
[256,257],
GTPase dynamic-related protein (Drp1) is one
of the targets of Parkin [258], while PINK1 is
involved in mitochondrial trafficking by forming

oxidative phosphorylation and

a multiprotein complex with the GTPase Miro
and the adaptive protein milton [259]. Parkin,
as an Ub ligase, picks up the Miro protein from
the mitochondrial membrane that is going
to be degraded by the proteasome, which
explains the arrested mitochondrial mobility
observed in PINK1 cells, and could avoid fusion
with other mitochondria or release of reactive
oxygen species. Thus, these two PD-related
mutations are associated with alterations of
mobility [260]. A functional
interplay of PINK1 and parkin suggests that

mitochondrial

both act in a common pathway with parkin
acting downstream of and modulated by PINK1
[260-263],
defects with decrease in ATP production and
bioenergetic deficiency [256,264-268]. Depletion
of PINK1 affects mitochondrial metabolism,

causing similar  mitochondrial

calcium homeostasis and energy metabolism
[269]. The fascinating interplay of Parkin, PINK1,
Drp1 and mitochondrial dysfunction has been
discussed recently [34,270].

LRRK2, which has kinase activity, and AS have
a synergistic activity on cytoskeletal elements
- phosphorylation by LRRK2 or B-tubulin [271],
binding of AS to -tubulin, and its co-localisation
with microtubules - suggesting a common
[45,272].
Although regulation of mitochondrial function
by the PINK1/parkin pathway [273] and the
role of LRRK2 mutations associated with PD in

microtubule-polymerizing  action

mitochondrial dysfunction are not definitely
understood, association of a small fraction of
LRRK2 with mitochondria suggests its role in
mediating mitochondrial functions [226,274]
and LRRK2 protein expression correlates highly

with its mRNA expression [275]. These findings
suggest that LRRK2-induced neurodegeneration
in PD brain may, at least in part, be mediated
by enhanced tubulin phosphorylation, in the
presence of microtubule-associated proteins
[271]. Furthermore, LRRK2 interacts with several
presynaptic proteins [276], and its depletion
affects the mobility and transportation of
vesicles, vesicle dynamics in the synaptic bouton,
and their redistribution in pre-synaptic pools.
PD-linked LRRK2 is expressed in circulating
and tissue immune cells, which may also be
relevant to the susceptibility of developing
PD or [201]. Widespread
expression of LRRK2 in human brain, particularly

its progression

in brainstem, suggests its association with
early-stage AS pathology in PD [277]. The
exact biological function of LRRK2 remains
largely unclear and how its mutations lead to
neurodegeneration is not known, but protein
modifications from altered phosphorylation
could lead to misfolding and aggregation of
the target protein [278]. Therefore, increasing
evidence indicates that protein products of
genes mutated in PD have a role in regulating
protein stability, such as AS (proteasome)
Parkin (F3 ligase), DJ1 (redox sensor) and PINK1
(protein stabilizing), implicating protein quality
control and the UPR as key functions in fPD and
sPD [27,279]. Several responsible genes for fPD
have been found to interact with various cellular
systems for homeostasis, such as mitochondrial
maintenance (PINK1, DJ-1), synaptic homeostasis
(AS), ALP (AS, parkin, PINK1), axonal transport
(LRRK2), and UPS (AS, parkin, DJ-1, UCHL1).
Suppression of UCHL1 activity has recently
been shown to have differential effects on AS in
neurons [279a].

Three single point mutations in AS were found
to be associated with EOPD: Ala53Thr (A53T),
identified in a large Italian family (Contursi) [280]
and in Greek kindreds [281-284], showing both
AS and tau pathology [285], The A53T mutation
was also found in diffuse DLB (DDLB) [286,287],
while the relevance of DJ-1 mutation for DLB
is not known. Ala30Pro (A30P), in a German
kindred [288], shows similarities to PD but more
severe pathology [289], and E46K or Glu46Lys
reported in a Spanish family with autosomal-
dominant parkinsonism, dementia, and visual
hallucinations with widespread LB pathology,
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referred to as DLB [290]. These mutations have
different effects on the amyloidogenicity and
vesicle-binding activity of AS. Both A53T and
E46K mutations cause increased phospholipid
binding, increased aggregation from the partially
folded intermediate and not the monomeric
state [109]. They further cause assembly into
filaments [291], or pore-like activity of AS
[292], whereas mutant (A53T) AS results in
greater neuronal permeability, providing a
molecular explanation for the process of AS
oligomerization in the membrane, and supports
the role of formation of pore-like structures
in the pathogenesis of neurodegeneration in
PD [293]. A53T and E46K mutations, located in
rigid B-strands of the WT fibrils, are associated
with structural perturbations of AS [78]. A53T
and A30P mutants share similar membrane
interactions, but show different lipid binding
involved in disruption of membrane sequence
maintenance [294] and increased propensity
to self-aggregate to form oligomeric species
and LB-like fibrils in vitro compared with WT
AS [77]. The effect of these mutations on the
fragmentation, conformation, and association
of AS in the presence of the 20S proteasome
suggest that 20S mediated truncation of AS
may play a role in both familial (f) and sporadic
(s) PD [295]. Tg A53T mice develop a movement
disorder with AS inclusions and loss of DAergic
(mt) DNA
damage [296] and mitochondrial autophagy

terminals, due to mitochondrial

[297], whereas double tg mice, also expressing
BS, presented a milder phenoype [298]. The
subcellular distribution of AS mutations, A30P
and A53T, is influenced by its phosphorylation at
Ser-129[299], and acclerates neurodegeneration
in a rat model of PD [300]. PARK4, another
dominantly inherited form of fPD, is caused
by duplication or triplication of parkin in the
UPS [223], resulting in the production of large
amounts of WT AS.

Intriguingly, duplication and triplication
of the locus as well als point mutations cause
fEOPD with severe dementia (see [31]). Short
chromosomal  duplications or  trisomies
containing the SNCA gene, plus short flanking
regions on chromosome 4, were discovered
in patients with PD or DLB [44,301,302],
indicating that 50% of the expression of AS is

sufficient to cause disease. Therefore, subtle
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alterations in expression levels are sufficient
to cause a wide spectrum of disease, and as
AS dosage increases, the likelihood of more
widespread pathology augments. Increased
accumulation of AS is also seen in LRRK2 and
glucocerebrosidase (GBA) mutations, the two
most common genetic causes of both fPD and
sPD [303-306], whereas knockout of LRRK2 was
protective [307]. Genome wide association
studies (GWAS) have shown that SNCA is also
linked to sPD [308-310], and indicate a possible
link to MSA [4], but suggest population-specific
heterogeneity of these diseases [309]. A meta-
analysis revealed 10 gene sets with previously
unknown association with PD that pinpoint
defects in mitochondrial electron transport,
glucose utilization and sensing, that occur early
in disease pathogenesis, while genes controlling
[311]. A
GWAS study identified candidate gene regions

bioenergetics are underexpressed

for PD in an Ashkenazi Jewish population that
are implicated in neuronal signalling and the
DA pathway [312]. A recent meta-analysis of
the PD GWAS consortium identified a novel
PD susceptibility locus, RIT2, replicated several
previously identified loci, and identified more
than one risk allele within SNCA and GBA [313].
The single-prolin AS mutant A56P and the
triple-prolin mutant A30P/A56P/A76P (TP)
showed reduced propensity to form proteinase
K (PK)-resistant aggregates, confirming the
characterization of the mutants as prefibrillar
AS variants [314]. However, only the AS species
with
human WT and A30P, triggered degeneration

increased aggregating propensities,
of nigral DAergic neurons, suggesting that
fibril formation of AS promotes the progressive
neuronal degeneration [314]. Expansion of
Rep1, a polymorphic mixed-dinucleotide
repeat in the SNAC promoter region that
increases expression in both animal models
[315] and humans [316], is associated with
elevated risk of sPD [317,318], while short
Rep1 genotype is associated with reduced PD
risk [319-324], but the effect of SNCA variants
on the predisposition of PD is independent of
Rep1 [325]. Variants of all 3 members of the Syn
family, particularly SA and SG, affect the risk
of developing DLBD [326], and detection of a
gene for familial DLB in 2935.q36 emphasized
its genetic heterogeneity [327,328].

MSA has so
far been lagging behind that of related

Genetic research into
neurodegenerative diseases, such as PD, but
recent studies suggest that genetic factors have
arole in this disease [329]. To date the majority
of genetic studies in MSA have screened
candidate genes for coding mutations,
including SNCA, MAPT, and other PD genes,
but more recently, some association studies
screening for common genetic variants in MSA
have been reported, and a GWAS is currently in
progress (see [330].

4. a-Synuclein and
neurodegeneration

The current theory of the origin of PD places
it in a large category of neurodegenerative

disorders caused by protein misfolding,

summarized as “protein misfolding diseases”
[10,39,331].

in neurodegeneration can be

or “proteinopathies” Proteins
implicated
neither refolded by chaperones to their normal
configuration nor degraded by proteasomes,
leading to their abnormal turnover, elevated
concentration, aggregation, and accumulation
of insoluble protein deposits [141,142]. Protein
folding and refolding are both mediated by a
network of molecules, called chaperones and
co-chaperones that are also associated with the
UPS and ALP pathways that remove irreversibly
misfolded proteins [101,102]. The degradation
of proteins and other cellular components by
the ALP and UPS plays a vital role in maintaining
the structural and functional integrity of
neurons, while inhibition of the ALP leads to
aberrant autophagy and ultimately cell death
[101,332]. Molecular chaperones have a central
role in maintaining protein homeostasisin order
to prevent or modulate neurodegeneration,
and by diminishing AS neurotoxicity play
a neuroprotective role [333]. Inhibition of
CMA leads to increased aggregation of high-
molecular-weight and detergent-insoluble AS
species in neuronal cells [140], while enhanced
CMA-dependent degradation of AS occurs
under conditons of stress induced by an
excess of AS [334]. Expression of substances
regulating CMA, might be reduced in PD brains
[147], supporting the notion that dysfunctional
CMA, together with functional impairment of
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the proteasome [335,336], is implicated in PD
pathogenesis.

Afactor that could drive the aggregation and
neurotoxic effect of AS is the total concentration
of the protein as suggested by human genetic
multiplication studies [32]. High concentrations
of normal AS may cause cytotoxity, which
suggests a shift in equilibrium between normal
and misfolded conformations and increased
rate of oligomerization of the misfolded
protein. Extracellular AS can be detected in
human and mouse brain [337]. Whether total
AS concentrations are increased in PD brains
is unclear and contradictory data have been
reported. Although membrane-associated
AS is increased in the SN [338], normal levels
in the cytosolic fraction and no correlations
between AS and nigral LB intensity have been
found [339]. No widespread extranigral AS
accumulation in PD, as suggested by most

[340-342],
sophisticated

immunohistochemical  reports

has been confirmed by
neurochemical methods demonstrating only
mildly increased high-molecular-weight AS
in putamen [339,343]. This suggests that AS
pathology revealed by immunohistochemistry
might not be caused by AS accumulation but
rather by conformational changes. Different
mono- and polyclonal antibodies that bind
specificallyto AShave been described[344-353].
Recently, a monoclonal anti-AS antibody (5GA)
was described that distinguishes pathological
from non-diseased AS, probably due to a
better accessibility during the conformational
changes of the protein [354].

Expression of pAS in the brain is very low
under normal conditions and is undetectable
by immunohistochemical methods, but is
increased in PD, DLB and AD with LB pathology
[355]. It is the most prominent species of AS
isolated from postmortem brains with LB
disease [118]. PD shows a significant increase
in soluble and lipid-associated pAS over the
disease course, with progressive decrease of
soluble nonphosphorylated AS, becoming
[22]. These
findings are in contrast to the robust increase

increasingly  phosphorylated

of AS levels in vulnerable regions in MSA, where
the protein accumulates predominantly within
glial cells [356]. Increases in pAS have been
suggested to promote neurotoxicity, oligomer
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formation, formation of LB pathology, and
reduce the ability to regulate TH [273,357-
361]. Studies about concentrations of SNCA
messenger (M)RNA in PD brains have been
inconclusive, but increased expression of
AS mRNA [315,316,362]
is a triggering factor for PD pathogenesis.

suggests that it

Collectively, genetic and  pathological
observations indicate that PD can be associated
with factors that could account for an increased
production or impaired clearance of misfolded
proteins; a vicious circle could develop whereby
an increase in unwanted proteins could
overwhelm and impair the UPS/lysosomal
clearance systems, which could lead to further
protein accumulation, and to proteolytic stress,
with formation of toxic oligomers, interference
with critical cell processes, and cell death [27]
(Figure 4).

The the

pathophysiology of AS in vivo raised several

compelling  reports  on
speculations as to how aberrant activity of
this protein might lead to neurodegeneration
in PD and other synucleinopathies. A key
question, in light of the suggested function
for LB formation, namely to provide a cellular
protective response against misfolded or
abnormal proteins, is whether an aberrant
chaperone activity of AS could interfere with
synaptic integrity. Moreover, it is not certain
that the AS aggregation is the primary cause or
an epiphenomenon in the pathogenic process
of AS-related diseases.

Proteomic studies of cellular and animal
that

mitochondrial dysfunctions, abnormal protein

models have not only confirmed
aggregation, OS, and impaired bioenergetics
are the main contributors to PD [8,34,363-
3711. better
the features that make selective neuronal
populations vulnerable in PD [364,371-373],

the role of inflammation, and other factors

However, characterization of

in neurodegeneration [374-376], are clearly
needed.

4.1. Neurotoxicity of a-synclein and
the oligomer hypothesis

The relation of AS behavior to toxicity is

the

expression levels of AS are critical for toxicity,

complicated by several conditions:

and phosphomimic S129D/E AS variants may

have different biophysical properties compared
to the phosphorylated WT protein [377]. These
facts raise some caveats about comparison
of properties of AS and its concentration-
dependent behaviors, e.g. aggregation and
toxicity [134].

Mutant AS protein
abnormal configuration easier than its WT

tends to acquire
counterpart. AS, especially in PD-associated
mutants, forms pore-like annular and tubular
protofibrils [378], while BS inhibits formation
of AS protofibrils [379]. The tendency of A30P
to accumulate as oligomers instead of mature
fibrils suggested that AS may have a similar
toxic mechanism as intermediates of other
proteins, such as $-amyloid (AB), tau protein,
prions and polyglutamine peptides [380-386]
(Figure 5). The “toxic oligomer hypothesis”
[387-389] gained support by a study in model
systems of PD with increased neurotoxicity by
over-expression of AS variants that exhibited
increased propensity to form oligomeric,
prefibrillar  structures and  decreased
propensities to form fibrillar aggregates [390].
While the normal physiological role of AS
appears to be dependent on its interaction
with membrane lipids, the pathogenic AS
mutants are particularly prone to formation
of such oligomers and AS mutations cause
increased levels of protofibrils possibly being

the more toxic form of the protein [77]. A toxic
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conformation of AS as the consequence of
abnormal membrane interaction, alteration in
vesicle traffic, involvement of mitochondria,
or lysosomal membranes could promote
neurodegeneration [391]. This may be a result
of the toxic action of substances produced
during early phases, i.e. soluble oligomers and
protofibrillar derivatives of misfolded proteins
[392-394]. Accumulation of misfolded AS in the
ERis the main event leading to the induction of
the ER stress-related unfolded protein response
(UPR) that is activated in nigral DAergic
neurons in PD and in experimental models of
PD [395,396], induced by oligomeric species
of AS, and is important for the manifestations
of a-synucleinopathies in vivo [397]. In PD, the
cause is a high level of misfolded AS molecules,
which subsequently leads to formation of
neurotoxic intermediates, i.e. oligomers and
probably small soluble complexes of AS with
other proteins [398] (Figure 6). Involvement
of ER stress with activation of the UPR has
also been observed in early stages of MSA,
thus playing a pivotal role in the pathology of
this synucleinopathy [399]. Which particular
species of AS are toxic has been debated.
Some evidence favored fully fibrillar or the
intermediate  soluble oligomeric species
[77,400], but cytotoxicity can occur without
aggregated AS [401]. Recent studies indicate

that early oligomeric forms and not the final
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Figure 5. Cascade of neurotoxic effects of protein oligomeresleading to neuronal dysfunction/neurodegeneration;
illustrated by the suggested relationship between AP and a-synuclein oligomers.
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protein aggregates are responsible for its
toxicity [387,402]. WT BS has been suggested
to protect against AS toxicity based on in vitro
(inhibition and fibril formation) [110] and
in vivo (reduced aggregation and LB formation)
evidence [403]. Small intermediates/soluble
oligomers in the aggregation process might
lead to synaptic dysfunction, and neuronal
death, whereas large, insoluble deposits
might function as reservoir of the bioactive
oligomers [404]. The polymerization of AS
from unstructured monomer to mature
amyloid fibrils rich in B-sheets is a multistep
process that proceeds through the formation
of altered-sized oligomers and polymeres
[67]. Pre-fibrillar AS variants with impaired
[B-structure increase neurotoxicity in PD models
[390]. In PD brain, tissue transglutaminase
(tTG) induced crosslinks have been identified
in AS monomers, oligomers, and aggregates,
suggesting an interaction between AS and tTG
[405], while Hsp 70 modulates extracellular AS
oligomers and rescues trans-synaptic toxicity
[406]. Ferric iron may catalyse the formation of
AS oligomers [407-409], and exposure of AS to
oxidative agents also induces formation of high-
order oligomers [410]. Missense mutations of
SNCA, e.g. A30P, increase oligomerization of AS,
but not fibril formation [77,411].

Spheroidal oligomers contain a significant
amount of a-helical structure, which decreases
in protofilaments, while B-sheet structure
content of AS increases from spheroid
oligomers, through protofibrils, to fibrils [412].
Methods to detect morphologically distinct
oligomeric forms of AS have been described
[413]. Elevated levels of soluble AS oligomers
were found in post-mortem extracts of PD
[414] and DLB brains [415,416]. Loss of DAergic
nigral cells in animals with AS variants that form
oligomers (E57K, E35K) showed that these are
toxic in vivo and might disrupt membranes
[417]. DA and its metabolites inhibit the
conversion of protofibrils to fibrils and may
[418].
Intervention in the early part of the aggregation

promote protofibril accumulation
pathway by prevention of oligomer formation
or increased clearance may be neuroprotective
[419,420].

Oligomeric species can be isolated from cells
[139,421,422], from human [423] and mouse

brain [424], particulary found in membrane-
enriched fractions [128,414]. While small-sized
oligomers are not resistent to K protease (KP)
digestion [425], the generation of both soluble
oligomers and aggregates consisting at least
partly of fibrillar AS resistent to PK digestion
[381,426] is required for the induction of
degeneration of nigral neurons. Fibrillar and
profibrillar AS variants also cause divergent
axonal lesions, exemplifying that they induce
neurotoxicity by various means [314].

The DA AS
modifications, and the association of AS with

pathogenic AS mutants,

polyunsaturated lipids favor the formation
of protofibrils by inhibiting the manufacture
of larger, less reactive aggregates [72,414],
which may produce the LBs [427]. If DA
synaptic vesicles in SN neurons are damaged
by pathological interaction with AS, a vicious
circle of dysregulated cytosolic DA and further
damage to targeting DA neurons could ensue
[162]. The UPS renders mutated or damaged
proteins less toxic than their soluble forms [428],
which suggests that the ubiquitinated proteins
in LBs may be a manifestation of a cytoprotective
response designed to eliminated damaged
cellular components and to delay the onset of
neuronal degeneration [10,429-432].

Although direct in vivo data supporting
the “toxic oligomeric AS hypothesis” are
still limited and most of the evidence is
circumstantial, studies in cultured cells support
this notion [112,189,401,433-438], but others
demonstrated a lack of association between
intracellular oligomers and toxicity [439-444].
Nevertheless, several different mechanisms,
including proteasomal inhibition, effects on
signal transduction pathways, mitochondrial
alterations, increased levels of free radicals,
membrane clustering of DA transporter

resulting in increased DA uptake, and
others, have been reported as mechanisms
associated with excess of WT or mutant AS
[189,436,445-450] (Figure 4). The reasons for
the discrepancies about the toxic effects of AS
are not clear, but may be influenced by a variety

of factors [69,450].

4.2. Mitochondrial involvement in PD
Mitochondrial alterations are an important part
of the multifactorial pathogenic process of PD
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[34,255,365,451-462]. Beyond ATP generation,
mitochondria are involved in a number of
critical pathways, including regulation of the
electron transport chain, calcium homeostasis
[463-466],
dynamics, microtubule-dependent
trafficc, ALP [467], programmed cell death
[468], or [469]. Mitochondrial
dysfunction triggers increased free tubulin,

mitochondrial morphology,

cellular

apoptosis

which destabilizes the microtubule network
and promotes AS oligomerization [424].
Misfolded AS accumulates within both the
inner (IMM) [338] and the outer mitochondrial
membrane (OMM), and can induce dysfunction
and fragmentation of mitochondria [470],
causing energy depletion [471,472], which is
relevant given the importance of mitochondria
in maintaining neuronal viability [473,474].
Overexpression of AS impairs mitochondrial
complex | function, decreasing respiration
and increasing free radical production
[82,338,472,475,476] or complex IV activity
[296]. Complex-| is inhibited in DA-neurons
by systemic administration of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)
[477], probably linked to mtDNA defects
[478]. but its activity is not impaired in
other neurodegenerative diseases [479]. AS
apparently caninteract with complex-l, resulting
in its reduced mitochondrial activity, increased
free radical production, and mitophagy [475].
Impaired complex-I mitochondrial biogenesis
has been found in PD frontal cortex [480]. AS
may bind to mitochondrial membranes leading
to mitochondrial fragmentation followed by
loss of mitochondrial transmembrane potential
and neuronal death [225,472]. This, however,
would not account for the direct effects of AS
on complex-l [338]. Mitochondrial metabolic
control of microtubules dynamic impairs the
autophagic pathway in PD [481].

Structural changes of mitochondriaoccurring
with even low overexpression of AS or other
misfolded proteins, and in the virtual absence
in other intracellular

that
dysfunction, and direct effects on the OMM

of structural defects

organelles, indicate mitochondrial
are caused by the exposure to these toxic
factors [470,472]. A specific interaction of AS
and COX, the key enzyme of the mitochondrial

respiratory chain, suggests that AS aggregation




contributes to mitochondrial dysfunction
[296,365]. Which AS species cause these effects
are not clear. Its inhibitory effect on membrane
fusion may represent an intrinsic property of
the monomeric protein. By contrast, an in vitro
assay suggests that small oligomers are the
cause [472]. A change in synaptic physiology,
brought on by AS and other pathologic
proteins, evokes homeostatic shifts in the
ratio of mobile to stationary mitochondria,
coordination of this relation being critical to
ensure optimal neuronal function [482].

The effects of AS on mitochondria could
be related to those on other intracellular
constituents such as interactions with (pre)
synaptic vesicles, the lysosomal membrane or
the ER-Golgi apparatus [1]. They further may
lead to release of oxidative species , which
may in turn lead to secondary induction of
AS, oligomerization, and aggregation and,
therefore, create a vicious cycle [483].

Reduction of cerebral mitochondrial
metabolism was seen in early PD, but whether
mitochondrial dysfunction is a primary or
secondary event, or part of a multifactorial
[452].
Much evidence suggests involvement of AS

process remains to be elucidated
and mitochondrial dysfunction, in particular
oxidative damage to both nuclear (n) DNA and
mitochondrial (mt) DNA, protein misfolding,
abnormal  autophagy, and respiratory
chain deficits in the pathogenesis of PD
[226,254,484] (Figure 6), but to what extent
dysregulated mitochondria dysfunction and
turnover contribute to the pathogenesis of
sPD remains to be elucidated [485]. A close
relationship between mitochondrial function
and autophagy/mitophagy which is crucial for
degradation of surplus or injured mitochondria
is beneficial to orchestrate numerous metabolic
pathways in the cell. Defects in one of these
elements could simultaneously impair the
other, resulting in risk increments for various

human diseases [486].

4.3. Lysosomal
and autophagy;
glucocerebrosidase
Overexpression of AS impairs macroautophagy,

dysfunction
role  of

a main route for clearance of aggregate-

prone intracytoplasmic proteins, whereas

AS depletion enhances this pathway [146].
Increases in macroautophagy lead to decreases
in AS load and improvements of neuronal
function [136,487], while its inhibition protects
against toxic effects of AS. This indicates that
macroautophagy can be harmful rather than
protective [488,489]. Aberrant AS can bind to
the membranes of lysosomes, inhibiting CMA
[138,187,490], lysosomal function [445,446],
and the proteasome [137,335,336,436,445-
447,491]. of AS
diminished, and further lysosomal damage

Degradation becomes

occurs, but whether accumulation of AS
precedes the impairment of autophagic
pathways or vice versa is unclear [1]. For a
critical evaluation of the role of ALP and UPS in
PD see [147,428,492,493].

Mutations of the GBA (glucocerebrosidase)
located on chromosome 1921 [494] (which
encodes cerebrosidases) suggest alink between
PD and other synucleinopathies, including DLB
with Gaucher disease [306,495-501] through
a toxic loss of functions and overexpression
of such mutants promoting AS accumulation,
whereas inhibition of glucocerebrosides had
no effect on AS levels [502]. There are also
genetic and pathological links between PD and
the lysosomal disorder Sanfilippo syndrome
[503]. GBA mutations — more than 28 of which
are presently recognized [504] - are the most
frequent genetic risk factor for PD [505,506],
particularlyinfPD[507],and glucocerebrosidase
is present in AS inclusions in LB disorders [494].
Downregulation of its activity led to decreased
lysosomal protein degradation, subsequent
AS accumulation and dependent neurotoxic
effects in human neurons and models,
while accumulation of glucosylceramide in
Gaucher disease owing to GBA dysfunction
stabilized oligomeric intermediates of AS,
further increasing its pathogenic effects. GBA
alterations might secondarily overwhelm
the ability of UPS to remove accumulated AS,
promoting aggregation and neurotoxicity
inhibits the
intracellular trafficing and normal lysosomal
activity of WT GBA, which leads to decline

in its activity, forming a pathogenic positive

[508]. Overexpression of AS

feedback loop [497]. Recent genetic studies
suggest that mutations in the GBA gene not
only increase the risk of both PD and DLB but
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also influence the course of PD with respect
to the appearance of dementia [509]. Whether
mutant GBA leads to an increased risk of PD and
DLB through gain or loss of functions, or both,
is not clear, but recent demonstration of the
relevanve of lysosomal proteolytic dysfunction
in PD [140,492,497,501] could provide insight
into the link between altered macroautophagy,
GBA, and synucleinopathies.

4.4. Oxidation and nitrative injuries

In PD, many biochemical changes indicating
compromised  antioxidant  systems are
suggested to underlie cellular vulnerability
to progressive OS, which generates excessive
reactive oxygen species (ROS) or free radicals
in SN with subsequent cell damage [510-512].
Overexpression of human WT or mutant
AS elevates the aggregation of intracellular
ROS [513,514], and increases cytotoxicity of
DA oxidative products [435]. Truncation of
AS and OS have been linked to increased
[401,515-518]

enhance sensitivity to oxidative and nitrative

AS aggregation that can
stressors, although it can also be protective
in some situations [519,520]. Nitration of AS,
signifying the presence of reactive nitrogene
species, is a major signature of PD and other
synucleinopathies [521].

Increase of iron in the SN with a shift of Fe
(I): Fe(lll) of 2:1 compared to 1:2 in controls
can promote DA synthesis with accompanying
increased generation of reactive metabolites
[522-524]. AS increases cellular ferrireductase
activity and iron/Fe(ll) levels in DAergic cells
leading to their selective loss in PD [525]. This
suggests that iron and AS act in concert for
disease propagation. Protein misfolding in
sPD has been associated with ROS formed as
products of O, reduction by combination of DA
and Fe [526]. Both glutathione and glutathione
peroxidase activity are decreased in SN and
incidental LB disease (iLBD/preclinical PD),
preceding both complex | and DA loss [527].
Peroxynitrite, formed by reduced superoxide
dismutase (SOD), induces aggregation of AS
in situ, and nitrated AS is found in the core of LBs
[512]. Cross-linking of AS by AGEs may reflect
early disease-specific changes, accelerating
inclusion body formation [528]. Formation of
AS protofibrils is stimulated by translational
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modifications that occur under conditions
of OS, while its aggreation is inhibited by
antiéxidants and proteins with chaperone
activity [529]. These findings in human PD and
models indicate a multicomponent process in
its pathogenesis, and cell death pathways are
caused by many interacting factors [530,531]
(see Figures 4 and 6).

4.5. a-Synuclein and neuroinflammation
AS can trigger inflammation and activation
of microglia [532,533],
toxic factors or by phagocytosing cells, and

which, by releasing

degrading AS more avidly than neurons or
astrocytes [534], may form a selfperpetuating
[535-537].
Overexpression of mutant AS modulates

cycle for neurodegeneration

microglia cells releasing pro-inflammatory
cytokines, nitric oxide, complements, elevated
levels of arachidonic acid metabolizing
enzymes, reactive species. and OS, excessive
levels of ROS triggering more inflammation
[538,539]. This supports the notion that WT
and A30T AS have an important role in the
initiation and maintenance of inflammation in
PD, through activation of a pro-inflammatory
response in microglia [540,541]; this differs
depending on the type of AS (WT/A53T) and/or
whether AS expression results in cell death or
not. Upregulation of inflammatory mediators
and microglia-mediated neuroinflammation
has been hypothesized to play an important
role in the pathogenesis of PD [374,542-544].
This inflammatory response may occur after
neuronal death, but it is also possible that AS
is released via exocytosis [534] or even that
cleaved portions are presented via antigene
presentation, which could lead to a vicious
cycle of inflammatory response, release of
(modified) AS, and further inflammation.

In PD, SN cell degeneration is associated with
astroglial reaction and HMC class Il positive
microglia that may be both inducing factors
or sequelae of neuronal death [545-547], while
oligodendroglia does not seem to play a role in
promoting inflammation, although they may
be damaged by it [533]. Although a specific
receptor for AS binding to microglia is still
unknown, these cells can take up extracellular
AS [540,548,549], which in turn triggers the
release of immune modulatory mediators.
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Figure 6. Role of a-synuclein (AS) in neurodegeneration in PD. Neurotoxic oligomers of a-synuclein are the
key factors of neurodegeneration. One potential mechanism leading to neuronal death is invasion of
a-tubulin oligomers which affects the dynamics of microtubules (modified after [398]).

Parkin deficiency increases vulnerability to
inflammation-related
[550],
inflammation and degeneration in the rat SN

nigral  degeneration

while human neuromelanin induces

[551]. Microglial activation and corresponding
DAergic terminal loss in early PD support the
notion that neuroinflammatory responses
by intrinsic microglia contribute to the
progressive degeneration in PD [552]. Part of
the specific vulnerability of the SN could be a
consequence of h-TNFa hypomethylation [553],
overexpression of which induces apoptosis. On

the other hand, microglia may be affected by

the disease process and may therefore not be
able of exerting neuroprotective function, such
as glutathion peroxidase expression [554]. A
critical review about how neuroinflammation
may contribute the prion-like behavior of AS
and progression of neurodegeneration in PD
was given recently [555].

5.a-Synuclein  and

interactions

protein

Despite clinical, genetic, and neuropathological

differences, there is considerable overlap




between  synucleinopathies and  other

protein-misfolding diseases. Inclusions

characteristic of these disorders suggest

interactions  of  pathological  proteins
engaging common downstream pathways
[8,10,13,368-370,432,556]. The co-occurrence
of both AS and tau or other proteins in
[557-

between

various neurodegenerative disorders
559] highlights the
these misfolded proteins, which may be co-

interface

aggregated in the same brain or even in the
same region or in the same cell in human
brain [560-562] and tg mice [563]. Interaction
with tubulin suggests that AS could be
a microtubule-associated protein  similar
[272,564].
physiological correlations between tau and

to tau Recent studies revealed
AS and a stimulatory effect of accumulated
AS (promoted by OS) on tau phosphorylation
by glycogen-synthase kinase-3f (GSK-3f)
[565-567], while Hsp70 may suppress AS-
mediated tau phosphorylation in early stages
of disease [568]. PD-associated risk factors,
e.g. environmental toxins and AS mutation,
may promote tau phosphorylation, causing
microtubule instability, which leads to neuronal
loss in PD brain [569]. Independent and joint
effects of the SNCA and MAPT (tau) genes in
PD have been described [570,571], and the
MAPT H1 haplotype has been reported to be
a risk factor for PD [572], while it reduces the
severity of AD pathology [573]. Polymorphisms
between SNCA and MAPT interact to influence
the rate of progression of PD, which is more
prominent in the early stages of the disease
[574]. Recent GWAS show that polymorphism
in the MAPT and SNCA genes confers a 25.6%
increased risk factor for PD [308,571,575].

Whereas AS can spontaneously polymerize
into amyloidogenic fibrils in vitro, tau
polymerization requires an inducing agent,
e.g. AS seeds [121].

Cellular, various tg and other experimental
PD models provided new insight in the
hyperphosphorylation of tau [566,569,576-
580]. They suggest that oxidatively modified
AS is degraded by the proteasome and
plays a pro-aggretatory role for tau [581],
and that AS is an in vivo regulator for tau
262
deposition of both proteins [582]. Oxidatively

phosphorylation at Ser leading to

modified AS degraded by the proteasome
further promotes the recruitment of tau to
protein inclusions in oligodendroglial cells in
synucleinopathies [581]. E46K modification of
AS may induce tau inclusions both direct and
indirect mechanisms being involved in the
formation of protein inclusions [583]. On the
other hand, tau enhances AS aggregation and
toxicity and disrupts AS inclusion formation
in cellular models [584]. Recent postmortem
studies showed increased accumulation of
p-tau in the striata of PD patients and in the
A53T mutant mouse model [343,577], related
to increased activity of GSK-3B [566,579].
This is stimulated by AS that associates with
the actin cytoskeleton [585] and by GSK-3(3
[568]. DA D1 receptor activation induces tau
phosphorylation via cyclin-dependent kinase
5 (cdk5) and GSK-3p signalling pathways [586].
MPTP  models
postmortem striata is hyperphosphorylated
at the same sites (Ser 202,262, and 396/404)
as in AD [343]. However, tauopathy in PD

Tau in and human

striata is restricted to DAergic neurons,
whereas degeneration of the frontal cortex,
associated with increased AS deposits,
because of reduced proteasomal activity
is not associated with tauopathy [343]. In
the AS overexpressing mouse model of
PD, tauopathy, along with microtubule

destabilization, exists primarily in the
brainstem and striatum, the two brain regions
expressing high levels of AS and undergoing
the most severe degeneration in human PD.
Thus, tauopathy in PD may have a restricted
pattern of distribution [578], which differs
from its generalized affection in AD.

There is a strong interaction between AS,
tau and B-amyloid (AB), particularly in their
oligomeric forms, which might synergistically
promote their mutual aggreation et vice versa
[68,165,582,5871.
dissimilar

Cross-seeding  beween
that B-sheet
structures has been described, for example

proteins share
for tau and AS [588]. In vivo interactions
between AS and tau are supported by
genetic studies that link MAPT gene, which
encodes tau, with increased risk for sPD
[309,589,590], and in fPD, fibrillation of AS
and tau is caused by the A53T mutation [588].
Tau phosphorylation was found in synapse-
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enriched fractions of frontal cortex in PD and
AD [355] and in brainstem of AS mice [591]
and EO familial DLB shows extensive tau
pathology [592]. Other links between AS and
tau are suggested by the co-localization of
both proteins in neurofibrillary tangles (NFT)
and LBs, especially in neuronal populations
vulnerable for both aggregates [560,593-
596], and in GCls and NCls in MSA [597,598].
DLB-3xtg-AD mice exhibing accelerated
formation of AS and LB-like inclusions in
the cortex and enhanced increase of p-tau
deposits in hippocampus and neocortex
provide further evidence that tau and AS
interact in vivo to promote accumulations
for each other and accelerate cognitive
dysfunction, although accumulation of AS
alone can disrupt cognition [599].

Other studies have suggested that A is
more likely to promote the desposition of AS
than tau [600], and AP is known to initiate
hyperphosphorylation of tau [601]. Cortical
AS load is associated with AB plaque burden
in a subset of PD patients [602]. A peptides
enhance AS accumulation and neuronal deficit
in a tg mouse model [603], and AS-induced
synapse damage is enhanced by AB-42 [604],
while LB formation may be triggered, at least
in part, by AD pathology [562].

PD and AD could be linked by progressive
accumulation of p-tau, GSK-3B, and AS
[10,343,432,577], while activation of caspase
and caspase-cleft A-tau may represent a
common way of intracellular accumulation of
both AS and tau, promoted by A deposition,
and unifying the pathology of AD and LB
disease [605]. This suggests a complex
continuum  characterized by variable
amounts of pathogenic proteins [606,607]
generated by the same stimulus probable
depending on genetic backgrounds and
environmental factors. Despite documented
co-localisation of AS and tau in LBs [593],
and AP and tau in synaptosomes [607], the
basic mechanisms (regional differences
in proteasomal and GSK-3f activities, OS
in the presence of AS deposits etc) of the
synergistic effects of AS, p-tau, AB, and other
proteins, suggesting a dualism or triad of
amyloidogenic neurodegeneration remain
to be elucidated (f. rev. see [9,370]).
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6. a-Syunclein spread and
disease propagation

Mounting evidence implicates that templated
corruption of disease-specific proteins and
their promotion may be a mechanism of
disease propagation in neurodegenerative
disorders by transneuronal spread through
neural networks [608]. The concept that AS
lesions ramify within the CNS by a seeding-like
process is supported by the observation that
fetal DA transplants in the striatum in a subset
of PD patients surviving more than 5 years may
develop AS-positive LBs [609-611]. These data
imply for a host-to-graft propagation, and a
neuron-to-neuron (interneuron) transmission
or transsynaptic spread of AS appears
important for the propagation of the disease.
Similar accumulation of AS occurs in stem cells
transplanted to tg mice [612]. Development of
LBs in transplanted DAergic neurons has been
suggested to develop similar to that in the
host SN [613], but it could not be determined
whether the LB-like inclusions were formed by
the spread of AS fibrils, or due to some other
toxic effect of the neighbouring diseased
neurons [60]. Since the transplants were derived
from multiple, genetically unrelated sponsors,
it seems likely that the inclusions were a
consequence of factors inherent in the PD brain.

The effects of LBs in the grafted neurons are
unclear, as their presence does not necessarily
mean functional impairment. Oligomers of AS
can recruite and aggregate AS endogenously
expressed by cortical neurons, and this effect
increases with time and with concentration
of applied oligomers [614]. Secreted AS can
recruit endogenous AS in the recipient cells,
act as a permissive template and promote
misfolding of small aggregates [615]. Some of
the uptake of AS from the extracellular space
appears to occur via endocytosis, although
additional mechanisms might also contribute
[26,548]. It is probable to trigger the formation
of LB-like aggregates in cultured cells, when
arteficial methods, bypassing physiological
uptake mechanisms, are used [609,612]. This is
supported by the observation that neural grafts
placed into tg mice expressing human AS take
up the human protein and form AS-positive
aggregates [26,616,617]. AS fibrillation starts in

vitro with soluble oligomers forming a nucleus,
but once the nucleus forms, aggregates form
rapidly [618]. Therefore, permissive templating
may be efficient and less dependent on the
concentration of the protein than of the initial
misfolding, which would explain the variable
age of onset of the disease.

Preformed fibrils generated from full-
lenght and truncated recombinant AS were
shown to enter primary hippocampal neurons,
probably by endocytosis [26,548], and promote
recruitment of soluble endogenous AS into
insoluble LBs and LNs, perhaps via a controlled
type of diffusion or specialised binding
[137,548]. Endogenous AS was sufficient to
form these aggregates, and overexpression of
WT or mutant AS was not required. Aggregates
of the disease isoform build up, and propagate
between cells leading to disease progression.

Secreted forms of AS might be biologically
important because of the potential for causing
paracrine effects on neighboring cells; they
lessen the viability of recipient neuronal cells in
culture models, in a concentration-dependent
fashion [137], and this effect is largely mediated
[614].
AS could also trigger a neuroinflammatory

by oligomeric species Extracellular
response through microglial activation binding
to integrin a-M receptors [619,620]. By contrast,
astrocytes internalise AS via endocytosis in an
attempt to clear potentially toxic conformations
of the protein [548,621]. Excessive uptake of AS
could also lead to inflammatory response and
might account for astroglial pathology [1,19].
Likewise, aberrant tau has been proposed to be
secreted from cells via exosomal release early in
the AD disease process [622], and trans-synaptic
spread of tau pathology is seen in vivo [626].
Prions are composed solely of PrP*, which
is an aberrantly folded form of the naturally
occurring cellular protein PrP<. Prion toxicity is
suggested by neither PrPc nor PrPSc but via a
toxic intermediate, generation of which requires
local availibility of PrPC. If a similar mechanism
might work in synucleopathies, the implications
of increasing SNCA expression becomes clear:
time to onset of diseases is shorter [31]. The
fundamental event in the biology of prion
diseases is a conformational transition in PrP¢
to the disease-causing isoform PrP% [623].
PrP¢, which has an a-helix-rich conformation, is
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refolded into PrP*, with a high -sheet content.
Its accumulation can trigger further misfolding
of PrP* through a “prion conformer’, ultimately
leading to its polymerization into amyloid
that coalesc into toxic oligomers causing
neurodegeneration. These events could be
mirrored by the behavior of AS, which exists in
an a-rich conformation when associated with
membranes, but under pathological conditions
form a B-rich protein that is prone to assemble
into fibrils, and is associated with neuropatholoy
[387,624].

In vivo approaches in cell culture could
not discriminate between a “prion-like”
corruptive templating mechanism - host-
derived- translocated AS inducing its
misfolding generated in the graft, versus
simple translocation of the aggregated protein
from the host to the graft, as in cell culture all
mechanisms needed for prion-like behavior
of misfolded AS appear possible [26,616,617].
Recent studies showed that prion infection
promotes accumulation of AS in aged human
AS tg mice [625]. This might suggest that AS
pathology could be induced in cells and spread
by a “prion-like” mechanism transmitting the
conformationally altered AS [24,25,28]. There is
also direct evidence that, as in prion diseases,
aggregated AS proteins can be transmitted
from affected nerve cells to healthy, unaffected
DA neurons, thereby potentially triggering
the neurodegenerative process [27]. Although
the mechanism of spread remains uncertain,
there is evidence that prions can be conveyed
between neurons by transsynaptic transport.
Thus, the propagation of AS lesions by cell-
to-cell passage appears to be similar as that
in other neurodegenerative disorders (see
[9,626]). Early sites of Lewy pathology in PD are
the olfactory bulb and enteric plexuses, lending
support to the “dual hit” hypothesis suggesting
that pathogenic AS may reach the brain via
a consecutive network of projection neurons
[627,628].

7. Neuropathology of
synucleinopathies

7.1. Parkinson’s disease
In sPD,
considerable neuronal loss not only in the

the essential neuropathology is




DAergic SN but in many other parts of the
CNS, peripheral and autonomic nervous
system and other visceral organs, associated
with AS-positive Lewy pathology throughout
these systems (for rev. see [8,9,37,38,368-
370,629,630]. The recently improved but still
provisional criteria for PD require these two key
features - neuronal loss in the SN compacta
[372]. Standardized

methods for the assessment of these changes

and Lewy pathology

by use of a semiquantiatitive grading system

and immunohistological methods for the
detection of Lewy pathology have been
[37,38,372,630].

have confirmed the multiorgan distribution

proposed Recent studies
AS and Lewy pathologies, with negative
involvement of the muscular-skeletal system
and sciatic nerve [7,9,631,632]. The LC and
cholinergic pedunculopontine/laterodorsal
tegmental nucleus (PPN/LDT) are vulnerable
to AS pathology in LB disease associated with

significant neuronal loss [28,633].

7.1.1. Formation and development of
AS/Lewy pathology

Biochemical increase of AS phosphorylated at

Ser 19 precedes histopathology of LB diseases

[634]

formation of LBs and dystrophic neurites (LN)

and AS aggregation precedes the

[123,635],butdoesnotnecessarily correlate with
LB pathology [19,429-431,636]. The formation
of axonal AS deposits and “pale bodies” [637]
preceds the development of LBs in affected
neurons. Loosely packed AS filaments as earliest
or premature “pale neurites” are initiated at
axon collaterals and extend centripetally into
proximal segments [638]. The early intraaxonal
aggregation of AS could damage the parental
neurons by interfering with axonal transport
[639,640], but the presence or absence of
abnormal immunostaining for AS cannot be
interpreted as evidence that the cell suffers
or is free of dysfunction.related to abnormal
[9,641]. Reduced TH
immunoreactivity in neurons may represent

protein  deposition
a cytoprotective mechanism [642], but it can
also be preserved in neurons with early AS
accumulation [641].

LBs occur in 2 types. Classic LBs are spherical
cytoplasmic intraneuronal inclusions, 8-30um
in diameter with a hyaline eosinophilic

bands,
narrow pale-stained halo. They may occur as

core, concentric lamellar and a
single or multiple inclusions (Figure 7A,B).
Ultrastructurally, they are non-membrane-
structures
7-20nm

with
electron-dense granule material and vesicular

bound, granulofilamentous

composed of radially arranged,

intermediate  filaments  associated
structures, with the core showing densely
packed filaments and dense granular material
and the periphery having radially arranged
10 nm filaments [643] (Figure 7C). Cortical LBs
- eosinophilic, rounded, angular, or reniform
structures without halo - are poorly organized
with a felt-like arrangement composed of 7-27
nm wide filaments, mostly devoid of a central
core [644].

Antibodies that preferentially
N-terminal epitopes (Syn 505, 506, and 514)
detect AS, consistent with the conformational

recognize

changes associated with its polymerization
into amyloid fibrils [352]. AS adopts an altered
3-dimensional structure and undergoes
N-terminal ubiquitination but the mechanisms
of its aggregation that may serve as a nidus
for LB formation in vivo have no yet been
elucidated. Both classic and cortical LBs
share immunochemical and biochemical
characteristics, the major components being
AS, Ub, phosphorylated neurofilamens and
many other substances (Table 2). Recent
studies revealed cell-specific sequestration
(CAT)

TH within LBs, suggesting that LBs may

of choline acetyltransferase and
disrupt cholinergic and catecholaminergic
neurotransmitter production by sequestration
of the rate-limiting enzymes for their synthesis
[648]. Recent demonstration of the autophagy
adapter protein NBR1, which interacts with
Ub via the Ub-associated (UBA) domain for
degradation of ubiquitinated substrates in a
way similar to p62 [649], suggests that NBR1
is involved in the formation of cytoplasmic
inclusions in a-synucleinopathies [650]. AS can
be recovered from purified LBs from PD and
DLB brain [651], and recumbinant AS tends to
form LB-like fibrillar structures in vitro [652].
Co-localization of AS, synphilin and parkin
within LBs suggests that parkin plays a role in
post-translational modification of AS, which
results in changes in protein size, structure-
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enhancing fibrillation and formation of LBs
[11]. Proteomic analysis of cortical LBs revealed
296 proteins related to multiple or unknown
functions. In brainstem LBs, 90 proteins
were identified [595], whereas another study
identified 1263 proteins in SN [653]. A recent

proteomic analysis of post mortem locus

Table 2. Major biochemical components of Lewy
bodies (modified from [8]).

a-Synuclein (major component)
a-B-crystallin

Ubiquitin

Phosphorylated neurofilament proteins
Synaptophysin

Chromogranin A

Synphylin

Synphylin-1

y-Tubulin

P25a (tubulin-binding protein)
Parkin

Pael-R (parkin-associated endothelin receptor-like
receptors)

Calbindin

Torsin A

Gelsolin-related amyloid

Amyloid B-peptide (AB)

Amyloid precursor protein (APP)
Actin-like protein

Ubiquitin-pathway associated enzymes
a-B-crystallin

a-Microglobulin

Cu/Zn superoxide dismutase

Tau proteins (phosphorylated at Ser129)
MAP-1B / MAP1-LC3 [645]

MAP-2

MAP-5

MAP-9

Lipids

Calmodulin

Septin 4 (substrate for Parkin)

Tubulin

Tyrosine hydroxylase

14-3-3 protein

Redox-active iron

Cytochrome c

Advanced glycation end products (AGE)
Dorfin, an E3 ubiquitin kinase p62 protein
CyclinB

Redox-active iron

Vesicular monoamine transporter 2 (VMAT2)
LC3, GABARAP and GATE-16 (autophagosomal
proteins) [646]

Histone deacetylase 6 (aggresome-related
protein) [647]
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ceruleus tissue in 6 autopsy-confirmed PD
cases detected 2495 proteins, of which 87
were differentially expressed in locus ceruleus.
The majority was involved in mitochondrial
dysfunction,  OS,  protein misfolding,
cytoskeleton dysregulation and inflammation,
but some additional proteins involved in
calcium  homeostasis and  microtubular
transport were detected [654].

The formation of LBs runs through several
phases. Classic LBs show initial intraneuronal
appearance of dust-like AS particles related
to neuromelanin or lipofuscin, homogenous
deposition of AS and Ub in the center,
stepwise condensation to ubiquitinated
filamentous inclusion, and final degradation
to extraneuronal LBs after disappearance of
the involved neuron [123]. Cortical LBs show
diffuse AS and Ub labeling, while subcortical
LBs have a distinct, central Ub domain with AS
appearing in the periphery and ubiquitination
being the later event. Their development
in the

neuronal cytoplasm, stepwise accumulation

shows initial accumulation of AS
of dense filaments (Lewy neurites - Figure 7D),
spreading to dendrites, deformation of LBs, and
final degradation by astroglial processes [640].
LBs are accompanied by dystrophic neurites,
which according to recent 3-dimensional
studies may evolve into LBs, with Ub at the
core and neurofilaments at the outermost layer

[655].

7.1.2. Relationship between a-synuclein
and Lewy pathology
Based on semiquantitative assessment of LB
inclusions in a large autopsy series of PD, a
staging of the spread of Lewy pathology was
proposed to designate a predictable sequence
of lesions in the nervous system beginning in
the lower brainstem and anterior olfactory
nucleus with caudo-rostral progression to
the neocortex [340,656-658]. The validity of
this 6-staging scheme, which corresponds
roughly to the classification of LB disorders
into 3 phenotypes - brainstem predominant
limbic/transitional, and diffuse neocortical
[659] - has been a matter of vigorous debate
[7,430,636,660-663], since between 6.3 and
47% of all cases of autopsy-proven PD and 18%
of iLBD did not follow a caudo-rostral spread of
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Figure 7. (A) Lewy body in substantia nigra whose peripheral rim is stained with anti-AS x 300; (B) Multiple Lewy
bodies in nigral neuron; anti-AS x 1200; (C) Electron microscopy of nigral Lewy body showing a central
electron dense filamentous core with a loosely fibrillary rim (x 2500); (D) Dystrophic Lewy neurites in
the hippocampal C2/3 region, anti-AS x 150; (E) Multiple cortical Lewy bodies in frontal cortex in DLB;
double label immunohistochemistry (brown: AS, red: tau), x 200. AS = a-synuclein.

LB pathology [340,429,663-665]. Longitudinal
clinico-pathologic studies showed that 17-31%
of PD patients have a fast disease progression
[666,667].

A recently proposed unifying
for LB diseases correlates AS pathology

system

with nigrostriatal degeneration, cognitive
impairment, and motor dysfunctions [660].
Whereas the old classification left 45-50% of
individuals unclassified [668,669], all were now
classified into 1 of 4 stages (Figure 8). This is
supported by an increase of pAS restricted to
the olfactory bulb and brainstem in early stages
of LB pathology [634]. Progression through
these stages was accompanied by stepwise
deterioration of striatal TH concentration,
SN cell loss, and clinical scores. Significant
correlations between these measures and AS
pathology documented improvement of the
previous staging.

The duration and severity of motor

dysfunction in PD, the corresponding

decrease of DA transporter (DAT), and
vesicular monoamine transporter 2 (VMT2)
immunoreactivity in the striatum are inversely
correlated with the total AS burden and
neuronal loss in the SN [670-673], but not with
LB countsin the SN, which supports the concept
of synaptic dysfunction and/or impairment of
axonal transport [641]. Both neuron number
and densitie in SNc decrease with time [672].
About 15% of SN neurons contain LBs [674] and
may survive for 7.5 years (2% neuronal death
per year). AS alterations affect neurotransmitter
[88,159-161,675],

impaired assembly of SNARE complex [675].

release possibly through
This supports a dying back mechanism in
diseases with neuronal AS pathology in which
dysfunction starts at the synapse and leads
to axonal degeneration and AS accumulation
in LBs and LNs [631,676,677]. According to
this hypothesis, although AS aggregates may
be cytotoxic, LBs are markers of an ongoing
neuronal damage [678], or they might even




DLB, LBV/AD,
PD, PDD

lll. Brainstem & limbic

PD
DLB ?
iLBD Type 1

lla. Brainstem
predominant

ADLB
DLB?
iLBD Type 2

lIb. Limbic
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Figure 8. Scheme of the hypothetic progression pathways and stages of Lewy body (LB) disorders. The pathway
for Parkinson’s disease (PD) is suggested to proceed through stage lla (brainstem predominant), and
that for dementia with LBs (DLB) and Alzheimer’s disease (AD) with LBs probably passes through stage
llb. For incidental LB disease (iLBD), both pathways seem possible, whereas only PD/ PD dementia
(PDD), DLB, and the LB variant of AD (LBV/AD) progress to the neocortical stage [660].

be harmless end products of sequestration
of toxix molecules as a type of cell-protective
mechanism [8,10,369,370,432]. However, the
ultimate upstream mechanism responsible for
the regulation of the machinery that handles
toxic waste by segregating it into aggregates
(LBs) is still poorly understood.

A BAC mouse model, created with the most
frequent disease-causing human
(LRRK2  /R1441R),
features of human PD, showed no loss of

mutant
recapitulating  cardinal
mesencephalic DA neurons, but diminished DA
release and axonal pathology of nigrostriatal DA
projections [679]. According to recent studies,
overexpression of human AS in rat nigral
neurons leads to a deficiency in DA release
preceding outright neuron loss via decreased
presynaptic vesicle density, indicating that lack
of DA is due to axonal fiber loss [680].

These data
accumulation of small

demonstration  of
AS aggregates at
presynaptic terminals in human LB disease

and

and A53T AS tg mice [681-683] suggest that
AS related synaptic dysfunction or axon
degeneration, not nerve cell loss, may be the
primary determinant of progression of the
[682,683],
neurons is an epiphenomenon after the loss

neurodegeneration and loss of
of synapses, defining PD a “synaptopathy”.
This may allow to single out novel potential
therapeutic targets among the AS synaptic
partners for new treatment strategies in PD

[684].

7.2. Dementia with Lewy bodies and
Parkinson disease-dementia

DLB and PDD are considered part of a spectrum

PDD

implies PD with subsequently developing

associated with a-synucleinopathy.
dementia; DLB is a pregressive dementia
syndrome associated with several core clinical
neuropsychiatric features, considered to be
the second most common neurodegenerative
dementia syndrome in the elderly [685]. An
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IV. Neocortical

arbitrary cut-off is used: PD develops first
followed after more than 1 year by dementia,
the suggested diagnosis is PDD; if dementia
develops first or within 1 year of PD diagnosis,
then DLB is diagnosed. Distinction of the
clinical, pathological and biochemical findings
in both disorders may be difficult [9,686-689].
There is no “gold standard” for the pathological
diagnosis of DLB and PDD. Their hallmark is
AS pathology manifested as LBs or a variable
mixture of AS and AD pathologies, which
may interact synergistically [690-692]. Both
cortical and subcortical AS pathologies have
been suggested to be the main determinant
[693,694],
pathology to be more important, particularly

whereas others suggested AD
when the AB load may be similar to that in
AD [695]. The severity and extent of AS are
variable, and according to revised guidelines
are scored semiquantitatively in specific
brain areas [593,696-699]. AD pathology is a
consistent but not universal finding in both
disorders, differentiating two types of DLB: The
“common form” is characterized by abundant
neocortical senile plagues and NFTs in the
limbic cortex; while “pure DLB” shows minimal
AD lesions [700]. NFTs, being frequent in both
DLB and PDD, are often restricted to limbic
regions, whereas excessive tau pathology may
be absent [687]. Beween 10 and 50% of PDD
cases had enough AD lesions to attain the
pathological diagnosis of definite AD using
CERAD criteria [92,701-704], but PDD may
also develop in the absence of significant AD
pathology, related to higher Braak LB stages
[702]. Reduced cortical cholinergic innervation
in DLB and PDD is similar and lower than in AD
[705,706]. Synaptic loss is a consistent feature
in DLB and is of equal severity as in AD [707].
Despite many similarities between DLB
and PDD, several morphological differences
have been demonstrated, in particular higher
amyloid plaque load in striatum, usually absent
in non-demented PD [37,38,630,708], and
more severe AS load in hippocampal CA2/3
areas [429-431]. A recent study showed DLB
cases having more severe A load than PDD,
but no differences in neuritic Braak and AS
scores, while others found higher AP scores
in cortical and subcortical areas [692]. Other
differences between PDD and DLB are more
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marked nigral cell loss and postsynaptic
DA upregulation [709], and more severe
cholinergic deficit in temporal cortex in PDD
[710]. Both DLB and PDD are usually associated
with mild cerebrovascular lesions, except in
cases with severe AD pathology and cerebral
amyloid angiopathy [691], and recent studies
confirmed an inverse relationship between
cerebrovascular lesions and the severity of
LB pathology [711]. The role of microglia and
inflammatory pathology in DLB and PDD
is unresolved [687]. In conclusion, both DB
and PDD show heterogenous pathology
and neurochemistry, which depend on the
different patterns of pathology supporting
the hypothesis that these AS-related disorders
and AD share a common, underlying molecular
pathogenesis.

7.3. Multiple system atrophy
MSA s
progressive neurodegenerative disease of

a usually sporadic, adult-onset,
unknwon etiology, the morphologic hallmark
of which is the abnormal AS positive glial
cytoplasmicinclusions(GCl)inoligodendrocytes
[18] or Papp-Lantos bodies [712], see [13], and
rare neuronal cytoplasmic inclusions (NCls),
associated with systemic neuronal loss, gliosis,
myelin pallor, and axonal degeneration. The
clinical terms MSA-P and MSA-C classify cases
according to the predominant motor disorder
due to abnormalities in the striatonigral (SND)
(OPCQ)
[29,30]. Macroscopic changes are atrophy and

and olivopontocerebellar  systems
discoloration of putamen, depigmentation
of SN, and/or atrophy of cerebellum, middle
cerebellar peduncle, and pontine basis [330].
Histology shows neuronal loss and gliosis in
the striatonigral system, locus ceruleus, and
other regions, associated with widespread
occurrence of argyrophilic AS-positive GCls
(Figure 9A-C) and, less frequent, NCls (Figure 9D)
in gray and white matter. They are often related
to neuronal loss and disease duration [713-
716], although GCls are more widespread
[717]. A grading scheme of neuropathology,
based on semiquantiative assessment of
GCls and neuronal loss in essential brain
areas differentiated the various subtypes of
MSA showed considerable variations in the

morphological expression, but correlated well

with clinical deficiencies and disease duration
[718,719].

Ultrastructurally, GCls are composed of
randomly arranged tubules and filaments
with 20-40 nm diameter associated with
granular material [720]; showing AS in these
structures [721]. NCls show a meshwork of
18-28nm
diameter, similar to those of oligodendroglia

granule-associated filaments in
[722]. Involvement of the autonomous nervous
system leads to clinical autonomic disturbance
[717,723]. It was discussed whether myelin loss
in many networks is a primary event in MSA or
due to neuronal depletion [724].

Biochemical studies showed increased
insolubility of AS even in brain areas with
few GCls, indicating that AS aggregation
precedes the formation of inclusions [21,346].
Immunoblotting of brain extracts showed
19kDa species with higher molecular weight
bands, representing aggregated protein [346],
and a newly described specific antibody
(5GA) detects AS deposits with much higher
sensitivity [354]. GCls contain modified AS
nitrated and phosphorylated at Ser 129, which

has an enhanced ability to form fibrils, while
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nitration may indicate a role of oxidative
damage [122,521,725]. In addition to AS, GCls
and NClIs contain a large number of proteins,
oligodendroglial markers, myelin basic protein
(MBP), as well as p25a tubulin-polymerization-
promoting protein (TPPP) [726,727]; which
promotes AS phosphorylation [728] and shows
interaction with MBP (see [13,729]) (Table 3).
The generation of tg animal models of MSA
coupled with an increasing understanding of
the biochemical structure and function of AS
has highlighted the key pathological pathways
thought to underly the neurodegeneration
in MSA. OS and chronic inflammation [733],
reduced oligodendroglial trophic support,
and neuronal dysfunction associated with AS
inclusions (GCls) are suggested to contribute
to neurodegeneration. The effect of AS on
micro- and astroglia is currently a topic of
intense research in MSA and PD [19]. Increasing
that
dysfunction due to AS aggregation resulting

evidence suggests oligodendroglial
in abnormalities of myelination, degeneration
of the oligodendroglia-myalin-axon-neuron
complex leading to neuronal degeneration

may be important in MSA, supporting the
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Figure 9. (A-C) Glial cytoplasmic inclusions (GCls) in MSA: (A) in globus pallidus (Gallyas silver impregnation);
(B) in pontine basis (a-synuclein); (C) in frontal white matter, anti-ubiquitin. (D) Neuronal cytoplasmic
inclusion and neurites in pontine basis (a-synuclein) (GCls glial cytoplasmic inclusions). A-D x 4000.
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Table 3. List of protein constituents identified in glial cytoplasmic inclusions (GCls) from human multiple system  working model of MSA (Figure 10) as a primary

atrophy brain (modified from [729]). oligodendrogliopathy [729,734].

Recent reviews give insight into current
Constituents positively identified by routine immunohistochemistry knowledge about neuropathology,
a-Synuclein (MS+) (Syn 202, 205, 215 > SNL-4 > LB509 > Syn 208), (S129-P, S87-P) pathophysiology, genetics, and animal
a-Tubulin (MS+) models of MSA [330,735-737]. The genetical,
B-Tubulin (MS+) morphological, and pathogenic relations
14-3-3 protein (in subset of GCls) between PD and MSA are summarized in
Bcl-2 (MS+) Figure 11.

Carbonic anhydrase isoenzyme lla (MS+)

cdk-5 (cyclin-dependent kinase 5) (MS+) 8. Animal mOdeIS Of Parkinson's
Midkine® disease

Tau2 (reversible on exposure to detergent)
DARPP32

Dorfin

In an attempt to shade light on the
neurobiology of PD, numerous experimental

) models have been developed. They come
Heat shock proteins Hsc70 and Hsp70 (MS+) . k
from essentially 3 sources: pharmacological,
Isoform of 4-repeat tau protein (hypophosphorylated) (MS+) . X
e.g. reserpine, toxic e.g. MPTP [738], rotenone

DJ-1
and paraquat [739-742], and genetic. Despite
LRRK2 . .
the fact that numerous mutations causing
Rabs, Rabaptin-5 hereditary forms of PD have been identified
Parkin

in the last decade, current tg animal models
Mitogen-activated protein kinase (MAPK)

NEDD-8 (MS+)

do not adequately reproduce cardinal clinical
and neuropathologic features of the human

Other microtubule-associated proteins (MAPs): MAP-1A and -1B; MAP-2 isoform 1, and isoform 4 (all MS+) disease [99,743-747]. During the last years a
Phosphoinositide 3-kinase (P13K) (MS+) myriad of different models carrying mutations
p25a/TPPP (MS+) (tubulin polymerization-promoting protein) similar to those found in humans, in Drosophila
Septin-2,-3,-5,-6 and -9 melanogaster [748-7501, Caenorhabditis
Synphilin-1 elegans [492,751] and in mammalians [752]
Transferrin? have been developed to study the cellular
HtrA2/0Omi mechanisms impaired in this disease [746].
Ubiquitin (MS+) SUMO-1 (small ubiquitin modifier 1) Although some genetic models reproduced
Leu-7a the key features of PD, most of them induced
p62-co-localization with a-synuclein (inconsistent) DA neurodegeneration, but did not succeed
Metallothionein-Ill (MT-I1l) in reproducing both the broad pathology and

progressive degenerating process in human PD
[747,753,754].To date, viral PD models comprise
AS and LRRK2-based overexpression or mimic

Candidate proteins that have so far eluded detection by routine immunohistochemistry

Actin, y-1 and y-2 propeptides (MS+)
Amyloid-b precursor protein (MS+) parkin loss of function by overexpression of

B-Synuclein (Ms+) parkin substrates [755]. These viral and other

) recent genetic models models are hoped to
Cytokeratin

) provide valuable insights into PD mechanisms
Desmin

Glial fibrillary acidic protein (GFAP) (MS+)

Myelin basic protein (MBP)-3, -4, -5 (MS+)

in order to contribute to the development of
therapeutic targets.
Although the precise origin of AS in
Myelin oligodendrocyte glycoprotein (MOG), a- and B-isoforms (MS+) oligodendrocytes in MSA remains unknown,
Myosin (9 distinct isoforms) (MS+)

Neurofilaments (NF-3, NF-HC, NF-LC) (MS+)

its presence as a key pathological hallmark of
the disease in many tg animal models tried to
reproduce the human disorder [99,756,757].
These and other models provide evidence

Vimentin

MS+: polypeptides identified by mass spectrometry following affinity purification of glial cytoplasmic inclusion body
purification as described in [730-732] k .
» Known oligodendroglial markers of oligodegeneration as a result of human
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Figure 10. Summary of working model for oligodendroglia dysfunction in multiple system atrophy (MSA). (1) Normal oligodendroglia and myelin sheath; initial altered
function of p25a and myelin basic protein (MBP). (2) Accumulation of p25a within oligodendroglia. (3) Reduction of MBP and deposition of degraded MBP in
affected cell body. (4) Deposition of amorphous and fibrillary a-synuclein species within oligodendroglia, thereby forming glial cytoplasmic inclusions (GCls).
(5) Amorphous material (a-synuclein) of isolated GCls. (6, 7) Schematic of core fibril comprising two subfibrils and a strand of interconnected 3 to 6nm fibrils. (8)
Amorphous material deposited within neuropil. (9) Resultant glia degeneration and demyelination. (10) Resultant neurodegeneration. After [729].

AS overexpression in oligodendrocytes and Parkinson disease Multiple system atrophy

a secondary neurodegenerative process,

L. L ion of
although, due to several deviations from DERION &

aggregates

Presyn. terminals, axons, neurites (LN),
neurons (LB), dendrites, astroglia

Cligodendroglia (GCI), neurons (NCI),
axons, astroglia

human disease they are less than ideal as a
model for MSA [330,758]. However, continued
work with several models of MSA [759] and
human samples, and lessons from other
synucleinopathies, will shed new light on
the underlying pathogenic mechanisms and
increase the likelihood of developing disease-
modifying interventions.

9. a-Synuclein as a biomarker for
synucleinopathies

Numerous forms of AS can be released into
cerebrospinal fluid (CSF) and other biological
fluids of healthy subjects and patients with
neurodegenerative disorders [760] and is also
abundantly expressed in the hematopoetic
[190]. Full-length AS has
recovered from lumbar CSF in PD and DLB

system been
patients [731,761]. As a candidate biomarker
of synucleinopathies, namely PD and DLB,
AS determination in CSF [762] was hoped
to improve the clinical diagnostic accuracy.
Although AS is the main constitutent of LBs,
the detection of AS in body fluids of patients
with synucleinopathies has yielded promising
but inconsistent results [763,764,764a]. Similar
to divergent results on the plasma levels of
AS in PD [765-767], retrospective studies of
CSF provided inconclusive and contradictory
results [731,760,768-771]. pAS was detected in
PD samples, which was not the case for oligoAS
or oligo-pAS [772]. Confirming several studies

Content

AS, ubiquitin, parkin, synphilin-1, neurcfilament proteins, actin,
dorfin, MAPSs, tau, 14-3-3, P25a (others different)

Distribution / neurodegeneration

Multisystemic: central, peripheral and autonomic nervous system
mainly substantia nigra, striatum « soluble AS — mainly substantia nigra, striatum (MSA-P)

SN: AS density; neuron loss +

Correlations

AS —, GCI density —, neuron loss +

Synaptopathy - axonopathy
— neurocn degeneration

Primary lesions

Qligodendropathy — demyelination,
axonopathy — neuron loss

LBs, LNs, no GCls

Association

LBs + GCls (10-28%)

SNCA mutations in genetic PD

Genetics

SNCA mutation — MSA risk

Synopsis
Molecular/morphologic overlaps suggest a continuum of lesions rather than distinct entities with

similar mect of neurodeg

tion, but the etiology of both is poorly understood.

Figure 11. Major genetic, morphological and pathogenetic relations between Parkinson disease and multiple
system atrophy. AS: a-synuclein; LN: Lewy neurite; LB: Lewy body; GClI: glial cytoplasmic inclusions;
NCI: neuronal cytoplasmic inclusion; MSA-P: multiple system atrophy with predominant parkinsonism;

SNCA: a-synuclein gene.

showing relatively low CSF AS concentrations
in both PD and DLB [731,773-775], more
recent ones reported significantly lower AS
levels in PD [776,777] as well as in PD, DLB and
MSA than in AD [777-779]. While CSF levels
of AS oligomers were significantly increased
in PD patients against controls [298,416,780],
AD and progressive palsy
(PSP) [781], others were unanble to detect
oligomeric AS in CSF [776]. Recent work

supranuclear

detected alterations in AS phosphorylation
(Ser129) in the CSF of PD patients [782].
However, CSF AS alone did not provide
relevantinformation for PD diagnosis, showing
low specificity, but a better performance was
obtained with the total tau/AS ratio, giving
a sensitivity of 89% and specificity of 61%,
contributing to the determination of PD [7771].
A recent study reported different levels of
CSF biomarkers in different phenotypes of




PD, non-tremor-dominant (NT-PD) patients
showing significantly higher levels of CSF
tau and index tau/AP than early onset and
tremor-dominant PD and controls, but no
differences between NT-PD and AD [783].
These data were confirmed by personal
studies [9], corroborating the opinion that
CSF levels of tau may be a biomarker for the
presence and severity of neurodegeneration
[784,785], while others did not see such
biomarker changes [786-788]. Other recent
studies showed that CSF AS is currently
unsuitable to differentiate between PD and
atypical parkinsonism [789]. The source of PD-
linked AS in human CSF remains unknown, but
recent studies suggest that despite the higher
levels in peripheral blood products, neurons in
the CNS represent the principal source of AS
in human CSF [790]. Postmortem CSF levels
of oligomeric AS and pAS significantly raised
in MSA compared to other controls and other
synucleinopaties, but did not distinguish PD
and DLB from PSP or control groups [791]. CSF
AS levels did not differ significantly between
DLBand/orPDand AD [792], but AS levels were
reduced in DLB patients with long disease
duration or worse cognitive performance
[760,792]. DLB compared with PD, PDD, and
AD showed the lowest CSF levels of AB42 and,
when combined with CSF tau, differentiated
DLB from PD and PDD; but not from AD [788],
and PiB PET binding showed higher amyloid
loaden in DLB and AD than in PD, PDD and
[793,794].
showed increased CSF total (t)tau in both DLB
and AD [795], others found differences for
both t-tau and p-tau differentiating DLB from
AD [796], and levels of t-tau and p-taul81
were significantly increased in DLB [797].

controls While earlier studies

Recent studies suggested that combinations
of CSF measures may be able to differentiate
DLB from other dementias: AS reduction in
early DLB, a correlation between CSF-AS and
AB42 measures (characteristic for DLB only),
and total (t)-tau and p-tau 181, differentiating
AD from DLB [798,799]. Combined analysis of
CSF tau, AB42 and AB42/40 may differentiate
between AD, DLB and PDD [800], while the
differential association between amyloid
precursor proteins sAPPa and sAPPB with
AB and tau species between DLB and AD

suggests a relationship with their underlying
pathologies [801]. Combination of CSF
t-and p-tau, AB42, and MHGP (3-methoxy-
4-hydroxyphenyleneglycol)
between AD and DLB with a sensitivity of 95%
and a specificity of 90% [802]. In autopsy-

discriminated

confirmed cases of DLB and AD, p-tau 181
yielded only a sensitivity of 75%, and specificity
of 61%, with diagnostic accuracy of 73% [803].
According to recent studies, reduction of
dihydroxyphenylacetic acid was seen in both
early PD and MSA, separating recent onset PD
from controls with 100% sensitivity and 89%
specificity, but was of no value in differing PD
from MSA [804].

These
a differential

data
pattern

conflicting
CSF
synucleinopathies (and tauopathies) imply

indicating
between

the development of novel techniques to
specifically target and visualize AS and other
proteins in brain and biological fluids in order
to detect the complex interplay between
misfolded proteins in the brain during
these diseases. For a recent critical review
of molecular genetics and biomarkers in LB
related disorders (see [805]). The recently
described AS antibody 5GA, and a novel one-
step time-resolved Forster’s response energy
transfer (TR-FRET) immunoassay to quantify
distinct AS species in CSF [776], may offer new
perspectives for the development of in vivo
diagnostic assays for AS-related diseases in
body fluids. In general, longitudinal studies,
pathological confirmation of diagnosis,
and the combined approach may be the
most promising way for the identification of

(imaging and protein) biomarkers [806].
10. Conclusions and final remarks

AS is a small, soluble neuronal protein

with predominantly presynaptic location
in brain as well as in many other organs.
Its  physiological functions regulating
symaptic vesicle traffic, neuronal function,
neurotransmitter release, etc, are not fully
understood. In its physiological form, AS
occurs in both soluble and membrane-bound
form. Under pathological conditions, like due
to gene mutations and exogenous factors,

or both, AS undergoes post-tranlational
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changes and aggregation leading to
formation of deposits of insoluble proteins.
Intraneuronal and axonal deposits, LBs and
LNs, the histological hallmarks of LB disorders
(PD, DLB), and intracytoplamic deposits in
oligodendroglia (GCls) of MSA, are associated
with degeneration and loss of specific
neuronal populations and networks in these
disorders. They are sequelae of complicated
molecular changes due to mitochondrial
oxidative and

dysfunction, autophagy,

nitrative changes, disorders of calcium
homeostasis, neuroinflammation, and other
deleterious factors leading to energy deficit
and cell death. Neurotoxicity of AS, like of
other pathogenic proteins, is suggested to be
caused by soluble oligomers or intermediate
proteins and not by insoluble aggregates.
Whether LBs and other protein deposits
are detrimental or protective is a matter
of discussion; they may either be innocent
bystanders or represent an end stage of failed
cytoprotective elimination of toxic proteins
as a defense mechanism against the primary
process underlying nerve cell death [807,808].
The recent demonstration of presynaptic
deposition of ASin PD and DLB suggests them
to represent synaptopathies, while deposition
of AS in oligodendroglia in MSA inducing
demyelination and neuronal degeneration
of a

supports the working hypothesis

primary oligodendrogliopathy. Interaction
of AS with other pathological proteins may
explain the frequent overlap between various
proteinopathies, e.g. PD and DLB with AD.
“Prion-like” interneuronal seeding/spread
of pathological proteins is suggested an
important mechanism of disease propagation
[27]. Since most of the available models
do not exactly reproduce the molecular
and morphological key features of PD and
other synucleinopathies, new viral and/or
genetic models may provide deeper insights
into neurodegeneration in these disorders.
Although increasing evidence suggests that
AS is an interesting therapeutic target in PD
[809], future clinical trials need more exact
analysis of AS and other pathogenic proteins
excreted into body fluids by biomarkers that
reflect AS misfolding in the brain to enable

more accurate diagnosis of these disorders
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[810]. Early intervention into the aggregation
process by development of ligands that
can bind to misfolded proteins (eg, heat
shock proteins, clearing toxic oligomers,
stimulation of proteolysis, anti-prion drugs)
or modification of AS phosphorylation [811],
may allow detection of AS pathology even

surrogate markers of disease progression
would be important tools for clinical trials
aiming to achieve disease modification [812].
These developments and the development
of new targets or novel candidate drugs that
might be neuroprotective for PD and other
proteinopathies are major challenges of

Translational Neuroscience
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