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abstract
Genetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic 
neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The 
aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological 
hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal 
networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured 
and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are 
involved in β-pleated  aggregation resulting in formation of typical inclusions. The physiological function of 
α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, 
not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The 
effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative 
and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common 
mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein 
induces neurodegeneration remains elusive as its physiological function. Genome wide association studies 
demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of 
Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The 
neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. 
Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system 
atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, 
in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prion-
like induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. 
Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be 
targets for neuroprotection and disease-modifying therapy.

abbreviations

AD -  Alzheimer disease
ad -  autosomal-dominant
AGEP -  advanced glycation endproduct
ALP -  autophagy-lysosome pathway
ar -  autosomal-recessive
AS -  α-synuclein
Aβ -  β-amyloid
BS -  β-synuclein
CMA -  chaperone-mediated autophagy
CNS -  central nervous system
CSF -  cerebrospinal fluid
CSPα -  cystein string protein α
DA -  dopamine
DDLB -  diffuse dementia with Lewy bodies
DLB -  dementia with Lewy bodies
DNA -  desoxyribonucleic acid
Drp1 -  dynamic-related protein 1

ER -  endpoplasmic reticulum
f -  familial
Fe -  iron
GBA -  glucocerebrosidase
GCI -  glial cytoplasmic inclusions
GS -  γ-synuclein
GSK-3β -  glycogen-synthase kinase-3β
GWAS -  genome wide association studies
Hsp -  heat-shock protein
iLBD -  incidental Lewy body disease
IMM -  inner mitochondrial membrane
LB -  Lewy body
LN -  Lewy neurite
LRRK2 -  leucine-rich repeat kinase 2
LVB/AD -  Lewy body variant of Alzheimer 

disease
MAPK -  mitogen-activating protein kinase
MAPT -  tau protein gene
MBP -  myelin basic protein

MPTP -  1 - m e t h y l - 4 - p h e n y l - 1 , 2 , 3 , 6 -
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mRNA -  messenger ribonucleic acid
MSA -  multiple system atrophy
MSA-C -  multiple system atrophy with 

predominant cerebellar ataxia
MSA-P -  multiple system atrophy with 

predominant parkinsonism
mtRNA -  mitochondrial ribonucleic acid
NAC -  non-amyloidogenic core
NCI -  neuronal cytoplasmic inclusion
nDNA -  nuclear DNA
NMR -  nuclear magnetic resonance
NSF -  N-ethylmaleimide-sensitive fusion 

protein
OMM -  outer mitochondrial membrane
OPCA -  olivopontocerebellar atrophy
OS -  oxidative stress
p -  phosphorylated
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PD -  Parkinson disease
PDD -  Parkinson disease-dementia
PK -  proteinase K
ROS -  reactive oxygen species
s -  sporadic
Ser -  serin
SN -  substantia nigra
SNARE -  soluble N-ethylmaleimide-sensitive 

fusion protein (NSF) attachment 
protein receptor

SNCA -  α-synuclein gene
SNCB -  β-synuclein gene
SNCG -  γ-synuclein gene
SND -  striato-nigral degeneration
Syn -  synuclein
tg -  transgenic
TH -  tyrosine hydroxylase
TNF -  tumor necrosis factor
TPPP -  tubulin-polymerization-promoting 

protein
tTG -   tissue transglutaminase
Ub -  ubiquitin
UBA -  ubiquitin-associated
UCHL1 -  ubiquitin carboxy-terminal hydrolase L1
UPP -  ubiquitin-proteasome pathway
UPR -  unfolded protein response
UPS -  ubiquitin-proteasomal system
WT -  wild type

1. introduction

α-Synuclein (AS) is implicated in the 
pathogenesis of Parkinson’s disease (PD), 
dementia with Lewy bodies (DLB), and 
multiple system atrophy (MSA) [1-4]. PD is 
one of the most frequent neurodegenerative 
disorders, a progressive multisystem disease 
with variegated neurological and non-motor 
symptoms [5]. It is featured by degeneration 
of the dopaminergic nigrostriatal system, 
responsible for the core motor deficits 
[6], and multifocal involvement of the 
central, peripheral and autonomic nervous 
system and other organs, with widespread 
occurrence of presynaptic, intracytoplasmic, 
axonal, and dendritic depositions of fibrillary 
hyperphosphorylated AS protein that forms 
amyloid-like inclusions in selected neuronal 
populations [7-9]. Abnormal aggregates of 
AS occur in 3 major types of inclusions in 
a number of disorders that are collectively 

known as α-synucleinopathies [10,11]: (1) 
as intracellular and intraneuritic AS deposits 
(Lewy bodies /LB/ and Lewy neurites /LN/ in 
PD and DLB [3], (2) glial cytoplasmic inclusions 
(GCI) or Papp-Lantos bodies predominantly 
affecting oligodendroglia in MSA [12,13], 
and (3) in giant axonal swellings (spheroids) 
in these and other rare diseases [14-16] (see 
Table 1). These inclusions are widely accepted 
as diagnostic morphological hallmarks 
of α-synucleinopathies [17,18], although 
AS aggregates also affect both astroglia 
and microglia in PD, DLB and MSA [19,20]. 
Conversion of AS from soluble monomers to 
aggregated, insoluble forms is the key event in 
the pathogenesis of α-synucleinopathies. The 
question whether LBs and other AS aggregates 
are harmful or cytoprotective currently remains 
unresolved. Despite all aggregating AS protein 
in multiple systems, the solubility [21,22] and 
location of the protein varies between disorders 
along with neuronal populations affected 
[23]. The main clinical phenotypes of PD are 
related to diffuse progression of pathology and 
involvement of multiple neuronal networks 
and organs (see [9]), which has been suggested 
to result from a prion-like spreading of AS 
inducing its transmission and propagation of 
the disease [24-28]. In dementia syndromes 
variable clinical features are due to different 
pathologies (Parkinson disease-dementia /
PDD/, pure DLB, and DLB with Alzheimer-like 
pathology or LB variant of Alzheimer disease /
LBV/AD); their differentiation may be difficult. 
MSA was originally viewed as 3 different clinical 
phenotypes (Shy-Drager syndrome, striatonigral 
degeneration/SND or MSA-P, and sporadic 
olivopontocerebellar atrophy /sOPCA or 
MSA-C) due to different anatomical distribution 
of the pathological lesions associated with AS-
positive glial inclusions [29,30]. The etiology 
of synucleinopathies seems to be complex, 
with variable contributions of both genetic 
and environmental risk factors, but in most 
cases, nongenetic factors play a role probably 
in interaction with susceptibility genes [31-34], 
although familial components may indicate 
genetic factors [35,36]. The recognition of 
the heterogeneity within synucleinopathies 
– as in other neurodegenerative disorders 
– is important for the classification of their 

phenotypes [37,38], probably related to genetic 
and environmental factors, as a basis for further 
therapy options. 

2. The synuclein protein family

AS is an illustrative member of the rapidly 
growing family of natively unfolded proteins 
that lack a typical secondary structure [14,39]. 
The synucleins are small (127-140 amino acids) 
natively soluble unfolded proteins, which 
are highly charged and have low hydropathy 
[40,41]. The family includes AS, a 140 residue 
neuronal protein encoded by the 6-exon 
SNCA (PARK1) gene (OMIM 163890) coded 
on chromosome 4q.21 [42,43], β-synuclein 

1. Invariable forms (consistent occurrence of αSyn)

Sporadic Parkinson disease

Familial PD (αSyn-, PARKIN mutations)

Incidental Lewy body disease (preclinical PD)

REM sleep behaviour disorder (RSD)

Parkinson disease and dementia (PDD)

Dementia with Lewy bodies “pure” form (no or 
little AD-pathology), LB variant of AD (LBV/AD)

Pure autonomic failure

Lewy body dysphagia

Multiple system atrophy

Pantothenate kinase-associated 
neurodegeneration (Hallervorden-Spatz syndrome)

2. Variable forms (inconsistent occurrence of αSyn)

Alzheimer disease (sporadic, familial)

Aging brain (with/without dementia)

Down syndrome

Frontotemporal lobe degeneration

Pick disease

Amyotrophic lateral sclerosis

Guamanian ALS-dementia complex

Progressive supranuclear palsy

Other tauopathies

Subacute sclerosing panencephalitis

Ataxia telangiectasia

Meige syndrome

Gerstmann-Sträussler-Scheinker disease

Gaucher disease

Traumatic brain lesions

Table 1.  α-Synucleinopathies.
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(BS) and γ-synuclein (GS) [14], encoded by 
other distinct genes (chromosome 5 and 10, 
respectively [3,44]), that share significant 
sequences at the amino acid level [45]. A 
typical structural feature of synucleins (Syn) 
is the presence of a repetetive, degenerative 
amino acid motif KTKEGV throughout the first 
87 residues and acidic stretches within the 
C-terminal region [46]. AS is characterized by 6 
repeat sequences predicted to form 5 helices 
on the N-terminal half [41,47-49] and an acidic, 
glutamate-rich C-terminal region (Figure  1). 
Alternative SNCA splicing gives rise to 3 major 
isoforms (AS 140, 126, and 112) [51]. Human 
AS was originally described as the precursor 
protein for the non-amyloid component 
(NAPC) in Alzheimer disease (AD) amyloid 
plaques [52,53]. SNCA has 2 paralogous 
genes named SNCB (OMIM 602569) and SNCG 
(OMIM 602998), with which it shares a highly-
conserved N-terminal domain [54], while BS 
lacks many amino acid residues in the NAC 
region [41]. GS, initially described as breast 
cancer associated protein 1 (BCSG1 [55]), 
is smaller than AS and BS protein due to a 
shorter C-terminal region, but contains much 
of the NAC region [41]. The most prominent 
feature of AS is the hydrophobic NAC domain, 
lacking in the other Syn proteins, which seems 
to be important for AS to form aggregates 
or fibrillary structures present in LB disease, 
MSA, etc [56]. Thus, apparently only human 
AS is pathogenetically associated with PD 
and related disorders [45]. While two studies 
suggested that AS occurs physiologically 

as a helically folded tetramer that resists 
aggregation [57,58], others showed that 
it predominantly exists as a disordered 
monomer [59]. Preformed fibrils generated 
from full-length and truncated recumbinant 
AS enter neurons, via endocytosis, and 
promote recruitment of soluble endogenous 
AS into insoluble deposits [60].

3.  Structure, regulation and 
function of α-synuclein

3.1. Structure of α-synuclein
The structure of AS contains 3 main modular 
protein domains: (1) a highly conserved amino 
acid lipid binding α-helix (residues 1-60); (2) 
a non-amyloidogenic core (NAC) domain 
(residue 61-95), the central hydrophobic/
amyloidogenic part of the molecule and 
the building block of AS aggregates [56,61], 
responsible for the conformational change 
from random coil to β-sheet (protofibril and 
fibril formation) [62], with critical residues for 
its aggregation or fibrillation (residues 66-74) 
[56]; (3) a variable carboxy terminal acidic tail 
(residues 95-140) that appears critical for the 
chaperone-like activity of AS [63] (Figure  1). 
The carboxy-terminus inhibits β-sheet and 
fibril formation [62,64]. AS contains several 
phosphorylation sites for protein kinases [54]. 
Over half of the molecule (amino acids 7-87) is 
composed of 7 motifs with a KTKEGV sequence, 
which are part of 11-residue repeats forming 
5 amphipathic helices on the amino-terminal 

half responsible for its lipid affinity [14,54,63], 
although this has recently been debated 
[17]; helix 5 is responsible for protein-protein 
interactions [65]. While the hydrophobic NAC 
region remains dynamically disordered, the 
SL1 binding mode (residues 3-2) is prone to 
intermolecular interactions which progress 
toward oligomers and fibrils [66].

The predominant physiological species 
of AS are a helically folded tetramer or a 
disordered monomer with a low propensity 
to aggregate into fibrils [57-59,67]. It is 
potentially prone to misfold and has a strong 
tendency to self-aggregate in vivo [68], 
resulting in toxicity [69]. Wild-type (WT) AS is 
monomeric and intrinsically/natively unfolded 
at low concentration but adopts an α-helical 
conformation when bound to membranes 
[70,71]. AS is an intrinsically disordered protein 
but a very dynamic molecule that can adopt 
different conformational states depending 
on conditions and cofactors [72,73]. The 
helical membrane-bound AS forms a partially-
folded stage that is the key intermediate in 
aggregation and fibrillation; it provides the 
seeds responsible for accelerated deposition 
of the less aggregation prone and disordered 
free cytosolic form [44,74,75]. Upon binding 
to membranes or synaptic vesicles it assumes 
an α-helical structure [49]. Folding and 
misfolding of AS occurs on membranes [76]. 
The misfolded isoform of the protein may 
lose the ability to bind membranes after the 
translation and accumulates as free AS in the 
cell.

Fibrils generated in vivo from AS show 
similar features characteristic of amyloid fibrils 
and include an antiparallel β-sheet structure 
[62,77]. Recent nuclear magnetic resonance 
(NMR) studies of full-length AS fibrils showed 
that the core extends with a repeated structural 
motif, thus disagreeing with their previously 
proposed fold [78]. The secondary structure 
of AS is determined by its environment and 
implies that the conformation of endogenous 
AS depends upon whether it is cytoplasmic or 
membran-bound [79]. Rapid exchange of AS 
between bound and unbound states provides 
mechanisms to ensure that stable cellular 
structures remain dynamic and susceptible to 
regulation.Figure 1.  Schematic representation of human α-synuclein, depicting (a) SNCA mRNA and (b) protein domains 

(modified after [50]).
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3.2.  Localization and regulation of 
α-synuclein

In normal brain, AS is predominantly expressed 
in CNS neurons, especially in the neocortex, 
hippocampus, striatum, thalamus, and 
cerebellum, where it is localized in the cytosol 
and at presynaptic terminals [3,80,81]. From 
there it is to be delivered to the neuronal 
perikarya by axonal transport. Recently, AS 
has been observed in neuronal mitochondria 
in different brain regions [82,83]. AS was also 
found in olfactory receptor neurons and the 
olfactory epithelium [84], and at low levels in 
skeletal muscle, cells of the neuromuscular 
junction [85,86], and oligodendrocytes [87]. It 
is localized outside of the nervous system in 
multiple organs suggesting that its function 
is not only exclusive to the brain and related 
diseases, but may also be associated with non-
neurological disorders. BS is expressed in brain, 
spinal cord [88] and astrocytes [89], but heavily 
in cells of the peripheral nervous system [86] and 
in retina [54]. GS or persyn occurs in cell bodies 
and axons of sensory neurons, sympathetic 
neurons and in brain [90]. GS overexpression 
can induce a neurodegenerative phenotype in 
mice [91]. 

AS has been reported to be restricted to axon 
terminals [92-95], which led to the acceptance 
that it was a cytoplasmic, presynaptic protein 
[79]. However, it was also detected in the 
perikarya within several brainstem structures 
[56]. AS/Syn-1 expression occurs in human and 
rat brain somata, dendrites, and glia [96-98] 
that are susceptible to cellular AS aggregation 
(see [19,20]. Endogenous AS is normally 
distributed in both cytosolic and membrane-
bound forms, contradicting the assertion that is 
is exclusively a cytoplasmic protein. Expression 
and aggregation of both soluble and lipid-
associated forms were found in wild type (WT) 
and mutant transgenic (tg) mouse brain [99]. 

Levels of AS are regulated by a balance of 
synthesis, degradation, and secretion. The 
ubiquitin-proteasomal system (UPS) and the 
autophagy-lysosome pathway (ALP) are the 
two major control systems postmitotic neurons 
use to maintain intracellular proteostasis 
[100-102]. Proteasomal dysfunction results in 
the accumulation of SUMOylated AS; these 
post-translational modifications contribute to 

inclusion formation [103], while sumoylation of 
AS promotes protein solubilization and suggests 
that deficits in sumolysation may contribute to 
AS aggregation [104]. Cathepsin D expression 
level affects AS processing, aggregation and 
toxicity in vivo [105]. AS aggregates may be 
fragile and lack the cohesion characteristics of 
the insoluble cellular inclusions formed in vivo, 
while in other conditions, they are insoluble 
[79]. Membrane-bound α-helical AS does not 
contribute to aggregation/fibrillization [106], 
while soluble folding intermediates may be 
essential for its aggregation by a cascade 
comprising initially soluble oligomers, then 
insoluble oligomers, and finally fibrils present 
in inclusions [67,107-109]. 

Two pathogenic mechanisms have been 
suggested to induce, accelerate and/or 
aggrevate protein aggregation (Figure  2): 
(1.) β-sheet conformation by itself further 
promotes or accelerates aggregation of AS.  (2.) 
Increased iron levels either directly or via iron-
increased levels of oxidative stress (OS) catalyze 
the conversion of α-helical AS conformation 
into β-pleated conformation, which is found 
in LBs and GCIs [108,110-112]. On the other 
hand, metal-catalyzed oxidation of AS inhibits 
formation of filaments with increased formation 
of β-sheet rich oligomers or protofibrils [113]. 
Advanced glycation endproducts (AGEP) and 
iron interact with AS aggregation [114,115], 
which is further promoted by increased 
calcium [116]. Hsp90 modulates assembly of 
AS in an ATP-dependent manner by restricting 
conformational fluctuations [117].

The mechanism that causes post-translational 
changes of AS includes phosphorylation at 
residue serin (Ser)129 by kinases [118-121] 

(promoting fibril formation in vitro [122]), 
C-terminal truncation and ubiquitination [123], 
being a common feature in synucleinopathies 
[124]. In a mouse model overexpressing AS 
enhanced phosphatase activity reduced the 
phosphorylation and aggregation of AS [125], 
but the mechanisms for degradation of pAS 
are unclear. The ubiquitin (Ub)-independent 
proteasome pathway or a Ub-dependent 
pathway after dephosphorylation have both 
been implicated [126].

The association of AS with membranes 
affects bilayer structure, stability, and fibril 
formation [127]. Membrane-bound AS can 
aggregate spontaneously [128], but it does 
not require membranes to form protofibrils 
and fibrils [129], and α-helical conformation 
correlates inversely with fibril formation 
[106]. Membrane binding may, therefore, 
prevent AS self-association [130]. Regulation 
of AS by activity and the relationship between 
membrane binding and aggregation have 
been summarized recently [51,131,132].

Overexpression of wild type (WT) AS 
lacking the central hydrophobic non-amyloid 
component domain in Drosophila melanogaster 
abolishes the aggregation and mitigates 
its neurotoxic effects [133]. However, the 
observation of aggregated AS by and of itself 
does not prove that aggregation is important; 
all available date prove that deposition of AS 
occurs, not that it is causal [134].

The mechanism of AS degradation remains 
unclear. Some suggest that monomeric AS 
can be degraded by the Ub-proteasome 
pathway (UPP) [135,136], while others found 
that only a small portion of soluble-cell-
derived intermediates as oligomers, not 

Figure 2.  Pathogenic mechanisms to induce α-synuclein aggregation.
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including monomeric AS, is targeted to the 
26S proteasome for degradation [137]. By 
contrast, total AS concentrations increase 
after lysosomal inhibition [136,138-140]. 
There are distinct roles in vivo for the UPS and 
the ALP in the degradation of AS [141,142] 
and two separate lysosomal pathways – 
chaperone-mediated autophagy (CMA) and 
macroautophagy or the endosomal-lysosomal 
system - may be the initiating factors in AS 
degradation [136,143,144]. Dysregulation of 
the autophagy pathway has been observed in 
the brains of PD patients and in animal models 
of PD [145]. Macroautophagy itself is blocked 
by AS via Rab1a dysregulation [146]. WT AS 
but not mutant forms, is degraded by CMA 
[138,140,147], whereas all forms are degraded 
by macroautophagy [136,147].

3.3. General functions of a-synuclein
The physiological function of AS is incompletely 
understood. However, general consensus is that 
it is a multifunctional protein implied in many 
cellular processes that coordinates nuclear and 
synaptic events, neuronal plasticity [88,95,148-
150], modulation of synaptic transmission, 
vesicle fusion and recycling, synaptic integrity, 
neuronal differentiation and regeneration 
[151]. It interacts with presynaptic membranes 
and regulates synaptic vesicle pools [95,152], 
while others found no effect of overexpressed 
AS on synaptic efficacy [153]. AS has functions 
on lipid metabolism, signal transduction, 
axonal transport of synaptic vesicles [73], 
microtubule and membrane and regulation of 
endoplasmic reticulum (ER) and Golgi vesicle 
trafficking [45,154].

Of note is that knock-out mouse models of 
AS have no overt phenotype, suggesting that 
AS is not required for neuronal development 
and/or that compensatory pathways exist 
[155]. However, absence of AS is associated 
with striatal dopamine (DA)-dependent 
dysfunction [88,149,156], reduction in 
the reserve pool of synaptic vesicles, and 
defective mobilization of DA and glutamate 
[157]. AS is involved in vesicle and membrane 
trafficing, presynaptic DA recruitment [158], 
and neurotransmitter release [88,159-163], 
and in Golgi apparatus influencing protein 
traffic [164], but appears not necessary for 

synaptic development [41]. AS associates with 
mitochondrial membranes [165], phospholipid 
membranes [47,80,106,166-170], and co-
localizes with synaptophysin, which suggests 
regulation of synaptic vesicle formation [149]. 
A recent study of Syn triple knock-out (TKO) 
mice demonstrated the fundamental role 
of AS in the control of presynaptic terminal 
size and synaptic structure. Complete loss of 
synucleins causes alterations in DA handling 
by presynaptic terminals, decreased chaperone 
activity, and age-dependent neuronal 
dysfunction [171-173]. Soluble overexpression 
of AS in mice impaired neurotransmitter 
release via defective synaptic vesicle recycling, 
in the absence of overt toxicity [160], and 
overexpression of AS, due to loss of synapsin, 
is involved in vesicle mobilization. AS further 
has a physiological role in ligand-stimulating 
receptor endocytosis and vesicle recycling 
[79,174]. Increased levels of WT or mutant AS 
could impair protein clearance, which could 
lead to further accumulation of the protein, 
ultimately leading to protein misfolding, toxic 
oligomers, aggregate formation, and cell death 
[175].

Mounting evidence indicates a protective 
role of AS at the synapse, where it has a non-
classical chaperone activity by the carboxy-
terminal region, facilitating the assembly of 
the soluble N-ethylmaleimide-sensitive fusion 
protein (NSF) attachment protein receptor 
(SNARE) complex important for folding and 
re-folding of synaptic proteins [151,153,176-
179]. AS interacts with cystein string protein 
α (CSPα), also known as heat shock protein 
(Hsp) 40, a presynaptic molecular chaperone, 
which contributes to maintaining the integrity 
of synaptic nerve terminals, vesicle integrity, 
vesicle recycling, and neurotransmitter release 
[180,181]. Tg expression of AS has been shown 
to abolish the lethal phenotype in mice created 
by deletion of CSPα, manifesting in widespread 
age-dependent neurodegeneration [151], 
providing support for a protective role of 
CSPα against AS toxicity, misfolding and 
aggregation. This might protect against 
synaptic degeneration [160] that may precede 
overt PD-related pathology. AS has antioxidant 
function, and is a negative regulator for DA 
synthesis [50,159,171,182,183] by affecting the 

activity of its key enzyme, tyrosin hydroxylase 
(TH) [184]. Many other functions have 
been attributed to AS, including inhibition 
of phospholipase D 2 and of autophagy, 
participation in OS production, ubiquitination, 
nitration, glycolysation, phosphorylation, 
etc [132,163,185-187]. AS redistributes 
neuromelanin lipid in the SN in PD [188], 
it associates with many proteins [41] and 
regulates the activity of several enzymes, e.g. 
mitogen-activating protein kinases (MAPKs 
[189]). The GATA transcription factor of SCA 
directly regulates its transcription in lock-step 
with the rate limiting enzymes of heme-iron 
metabolism [190], but its actual role remains 
elusive [191,192].

3.4. The role of α-synuclein mutations 
The most direct and compelling evidence for 
a functional role of AS in the pathogenesis of 
synucleinopathies is the causal relationship 
between genetic mutations and disease, and 
gene expression profiling of SN DA neurons 
gave further insight into PD pathology 
[193-196]. Approximately 7% of all PD cases 
result from a monogenic cause [35,197,198]. 
In PD, mutations in AS or multiplication 
of the SNCA gene encoding AS, result in a 
phenotype of cellular inclusions, cell death, 
and brain dysfunctions, and familial (f ) PD 
mutations influence AS assembly [199,200]. 
So far, 18 PARK loci have been described, 
and 10 genes have been linked to PD 
[35,196,198,201-206] (Figure  3): Autosomal-
dominant (ad) parkinsonism is caused by the 
genes encoding AS or LRRK2 (leucine-rich 
repeat kinase 2, dardarin/PARK 8), clinically 
comparable to sporadic (s) PD [207-209], 
but with variable neuropathology [210,211], 
suggesting an upstream role of LRRK2 in 
protein aggregation [212]. Mutations in the 
LRRK2 gene, being the most common form 
of fPD in the world, cause impairment of 
protein degradation pathways, in particular 
autophagy, which can lead to accumulation of 
AS and unbiquitinated proteins, accumulation 
of oxidized proteins, inflammatory response, 
and increased apoptosis [213] (Figure  4). 
While the distribution of AS levels in the 
cytosolic or membrane fractions is similar 
between the G2019S (the most prevalent 
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LRRK2 mutation) and sPD cases, there are 
differences in the biochemical properties 
of aggregated AS in G2019S-linked PD [214]. 
Parkin enconding ubiquitin carboxy-terminal 
hydrolase L1 (UCHL1) that ubiquitinates proteins 
to regulate a variety of cellular processes, linked 
to chromosome 6q25.2-27, causes autosomal-
recessive (ar) juvenile parkinsonism (arJP) [215], 
most cases showing no LBs [216]. Its mutations 
account for about 50% of EOPD cases [217] and 
are the second-most common known cause of 
PD [218]. They cause loss of E3 Ub ligase activity, 
resulting in impaired ubiquitination of substrate 
proteins [219], but how mutant parkin induces 
pathology in fPD is not exactly known. Late 
onset PD and healthy controls revealed similar 
frequencies of genetic variants [220]. Loss-of-
function mutations in the nuclear-encoded 
mitochondrial gene PINK1 (phosphatase and 
tensin homologue/PTEN-induced kinase 1) 
(PARK8), are associated with LB pathology 
[221,222]. DJ-1 (PARK7) or ATP13A2 (PARK9), 
and PARK2, which encodes E ubiquitin in the 
UPS [223] disrupting this ligase activity and 
mitochondrial function [224-226], lead to arPD, 
but also to sPD [198]. The characteristics and 
molecular biology of PARK1-18 and of other 
genes associated with PD have recently been 
summarized [196,204].

DJ-1 was identified as a causative gene 
in arEOPD in a Dutch and an Italian family 
[227]. DJ-1 is a multifunctional redox-sensitive 
protein serving as a molecular chaperone 
[228], a transport regulator [229,230], and 
protecting cells against OS [231,232], thus 
leading to suppression of apoptosis [233]. 
DJ-1 downregulation enhances cell death 
by OS, ER stress, and proteasome inhibition 
[234], while the localization of DJ-1 to 
mitochondria is associated with protective 
actions against some mitochondrial poisons 
[235]. Exogenously applied DJ-1 was shown 
to localize to mitochondria, the cytosol, 
nucleus, and microsomes [227,231,232], while 
endogenous DJ-1, locating to presynaptic 
terminals of striatal axons and dendrites [236], 
revealed interaction with membranes of 
cultured cells [237]. Furthermore, DJ-1 partly 
colocalizes with the synaptic marker Rab3A at 
synaptic terminals, which suggests interaction 
with membrane trafficking [238]. These and 

Figure 3.  Etiology of PD. Sporadic PD is a complex multifactorial disorder with variable contribution of 
environmental factors and genetic susceptibility. Mutations of various genes are associated with 
autosomal-dominant or autosomal-recessive parkinsonism. PARK 16-18: inheritance unknown.

Figure 4.  Common pathways underlying PD pathogenesis. Schematic impairment by α-synuclein and gene 
mutations enhancing α-synuclein misfolding, fibril formation an Golgi fractionation; impairing 
proteasome and mitochondrial functions, altering vesicle traffic and translation (modified after 
[31,193,196]). 

other findings confirm an association between 
DJ-1 and synaptic vesicles, contributing to the 
pathogenesis of PARK7-linked PD (Figure 4).

Two of the PARK genes, Parkin and PINK 1, 
play a pivotal role in the removal of damaged 
mitochondrial organelles via mitophagy 

[239-241]. Parkin mediating different chains 
of ubiquitination [242,243] results in loss 
of ubiquitination causing accumulation of 
misfolded proteins [244], and plays a role in 
maintaining mitochondrial homeostasis [245]. 
It improves mitochondrial dysfunction, alters 
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the intrinsic threshold for cytochrome c release, 
regulates their remodelling, promotes their 
autophagy and DNA repair [224,240,246-248]. 
PINK1, that resides at the OMM [186,249] and 
is also present in the cytosol [250], modulates 
mitochondrial morphogenesis, distribution, and 
dynamics and attenuates ROS production in 
SN DAergic cells [251-254] (Figure  4). However, 
the mechanism by which PINK1 or parkin 
confers neuroprotection is not clear [255]. Both 
causes of arPD induce mitophagy or defective 
oxidative phosphorylation [256,257], and 
GTPase dynamic-related protein (Drp1) is one 
of the targets of Parkin [258], while PINK1 is 
involved in mitochondrial trafficking by forming 
a multiprotein complex with the GTPase Miro 
and the adaptive protein milton [259]. Parkin, 
as an Ub ligase, picks up the Miro protein from 
the mitochondrial membrane that is going 
to be degraded by the proteasome, which 
explains the arrested mitochondrial mobility 
observed in PINK1 cells, and could avoid fusion 
with other mitochondria or release of reactive 
oxygen species. Thus, these two PD-related 
mutations are associated with alterations of 
mitochondrial mobility [260]. A functional 
interplay of PINK1 and parkin suggests that 
both act in a common pathway with parkin 
acting downstream of and modulated by PINK1 
[260-263], causing similar mitochondrial 
defects with decrease in ATP production and 
bioenergetic deficiency [256,264-268]. Depletion 
of PINK1 affects mitochondrial metabolism, 
calcium homeostasis and energy metabolism 
[269]. The fascinating interplay of Parkin, PINK1, 
Drp1 and mitochondrial dysfunction has been 
discussed recently [34,270].

LRRK2, which has kinase activity, and AS have 
a synergistic activity on cytoskeletal elements 
– phosphorylation by LRRK2 or β-tubulin [271], 
binding of AS to β-tubulin, and its co-localisation 
with microtubules – suggesting a common 
microtubule-polymerizing action [45,272]. 
Although regulation of mitochondrial function 
by the PINK1/parkin pathway [273] and the 
role of LRRK2 mutations associated with PD in 
mitochondrial dysfunction are not definitely 
understood, association of a small fraction of 
LRRK2 with mitochondria suggests its role in 
mediating mitochondrial functions [226,274] 
and LRRK2 protein expression correlates highly 

with its mRNA expression [275]. These findings 
suggest that LRRK2-induced neurodegeneration 
in PD brain may, at least in part, be mediated 
by enhanced tubulin phosphorylation, in the 
presence of microtubule-associated proteins 
[271]. Furthermore, LRRK2 interacts with several 
presynaptic proteins [276], and its depletion 
affects the mobility and transportation of 
vesicles, vesicle dynamics in the synaptic bouton, 
and their redistribution in pre-synaptic pools. 
PD-linked LRRK2 is expressed in circulating  
and tissue immune cells, which may also be 
relevant to the susceptibility of developing 
PD or its progression [201]. Widespread 
expression of LRRK2 in human brain, particularly 
in brainstem, suggests its association with 
early-stage AS pathology in PD [277]. The 
exact biological function of LRRK2 remains 
largely unclear and how its mutations lead to 
neurodegeneration is not known, but protein 
modifications from altered phosphorylation 
could lead to misfolding and aggregation of 
the target protein [278]. Therefore, increasing 
evidence indicates that protein products of 
genes mutated in PD have a role in regulating 
protein stability, such as AS (proteasome) 
Parkin (F3 ligase), DJ1 (redox sensor) and PINK1 
(protein stabilizing), implicating protein quality 
control and the UPR as key functions in fPD and 
sPD [27,279]. Several responsible genes for fPD 
have been found to interact with various cellular 
systems for homeostasis, such as mitochondrial 
maintenance (PINK1, DJ-1), synaptic homeostasis 
(AS), ALP (AS, parkin, PINK1), axonal transport 
(LRRK2), and UPS (AS, parkin, DJ-1, UCHL1). 
Suppression of UCHL1 activity has recently 
been shown to have differential effects on AS in 
neurons [279a].

Three single point mutations in AS were found 
to be associated with EOPD: Ala53Thr (A53T), 
identified in a large Italian family (Contursi) [280] 
and in Greek kindreds [281-284], showing both 
AS and tau pathology [285], The A53T mutation 
was also found in diffuse DLB (DDLB) [286,287], 
while the relevance of DJ-1 mutation for DLB 
is not known. Ala30Pro (A30P), in a German 
kindred [288], shows similarities to PD but more 
severe pathology [289], and E46K or Glu46Lys 
reported in a Spanish family with autosomal-
dominant parkinsonism, dementia, and visual 
hallucinations with widespread LB pathology, 

referred to as DLB [290]. These mutations have 
different effects on the amyloidogenicity and 
vesicle-binding activity of AS. Both A53T and 
E46K mutations cause increased phospholipid 
binding, increased aggregation from the partially 
folded intermediate and not the monomeric 
state [109]. They further cause assembly into 
filaments [291], or pore-like activity of AS 
[292], whereas mutant (A53T) AS results in 
greater neuronal permeability, providing a 
molecular explanation for the process of AS 
oligomerization in the membrane, and supports 
the role of formation of pore-like structures 
in the pathogenesis of neurodegeneration in 
PD [293]. A53T and E46K mutations, located in 
rigid β-strands of the WT fibrils, are associated 
with structural perturbations of AS [78]. A53T 
and A30P mutants share similar membrane 
interactions, but show different lipid binding 
involved in disruption of membrane sequence 
maintenance [294] and increased propensity 
to self-aggregate to form oligomeric species 
and LB-like fibrils in vitro compared with WT 
AS [77]. The effect of these mutations on the 
fragmentation, conformation, and association 
of AS in the presence of the 20S proteasome 
suggest that 20S mediated truncation of AS 
may play a role in both familial (f ) and sporadic 
(s) PD [295]. Tg A53T mice develop a movement 
disorder with AS inclusions and loss of DAergic 
terminals, due to mitochondrial (mt) DNA 
damage [296] and mitochondrial autophagy 
[297], whereas double tg mice, also expressing 
BS, presented a milder phenoype [298]. The 
subcellular distribution of AS mutations, A30P 
and A53T, is influenced by its phosphorylation at 
Ser-129 [299], and acclerates neurodegeneration 
in a rat model of PD [300]. PARK4, another 
dominantly inherited form of fPD, is caused 
by duplication or triplication of parkin in the 
UPS [223], resulting in the production of large 
amounts of WT AS.

Intriguingly, duplication and triplication 
of the locus as well als point mutations cause 
fEOPD with severe dementia (see [31]). Short 
chromosomal duplications or trisomies 
containing the SNCA gene, plus short flanking 
regions on chromosome 4, were discovered 
in patients with PD or DLB [44,301,302], 
indicating that 50% of the expression of AS is 
sufficient to cause disease. Therefore, subtle 
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alterations in expression levels are sufficient 
to cause a wide spectrum of disease, and as 
AS dosage increases, the likelihood of more 
widespread pathology augments. Increased 
accumulation of AS is also seen in LRRK2 and 
glucocerebrosidase (GBA) mutations, the two 
most common genetic causes of both fPD and 
sPD [303-306], whereas knockout of LRRK2 was 
protective [307]. Genome wide association 
studies (GWAS) have shown that SNCA is also 
linked to sPD [308-310], and indicate a possible 
link to MSA [4], but suggest population-specific 
heterogeneity of these diseases [309]. A meta-
analysis revealed 10 gene sets with previously 
unknown association with PD that pinpoint 
defects in mitochondrial electron transport, 
glucose utilization and sensing, that occur early 
in disease pathogenesis, while genes controlling 
bioenergetics are underexpressed [311]. A 
GWAS study identified candidate gene regions 
for PD in an Ashkenazi Jewish population that 
are implicated in neuronal signalling and the 
DA pathway [312]. A recent meta-analysis of 
the PD GWAS consortium identified a novel 
PD susceptibility locus, RIT2, replicated several 
previously identified loci, and identified more 
than one risk allele within SNCA and GBA [313].

The single-prolin AS mutant A56P and the 
triple-prolin mutant A30P/A56P/A76P (TP) 
showed reduced propensity to form proteinase 
K (PK)-resistant aggregates, confirming the 
characterization of the mutants as prefibrillar 
AS variants [314]. However, only the AS species 
with increased aggregating propensities, 
human WT and A30P, triggered degeneration 
of nigral DAergic neurons, suggesting that 
fibril formation of AS promotes the progressive 
neuronal degeneration [314]. Expansion of 
Rep1, a polymorphic mixed-dinucleotide 
repeat in the SNAC promoter region that 
increases expression in both animal models 
[315] and humans [316], is associated with 
elevated risk of sPD [317,318], while short 
Rep1 genotype is associated with reduced PD 
risk [319-324], but the effect of SNCA variants 
on the predisposition of PD is independent of 
Rep1 [325]. Variants of all 3 members of the Syn 
family, particularly SA and SG, affect the risk 
of developing DLBD [326], and detection of a 
gene for familial DLB in 2q35.q36 emphasized 
its genetic heterogeneity [327,328].

Genetic research into MSA has so 
far been lagging behind that of related 
neurodegenerative diseases, such as PD, but 
recent studies suggest that genetic factors have 
a role in this disease [329]. To date the majority 
of genetic studies in MSA have screened 
candidate genes for coding mutations, 
including SNCA, MAPT, and other PD genes, 
but more recently, some association studies 
screening for common genetic variants in MSA 
have been reported, and a GWAS is currently in 
progress (see [330].

4.  α-Synuclein and 
neurodegeneration

The current theory of the origin of PD places 
it in a large category of neurodegenerative 
disorders caused by protein misfolding, 
summarized as “protein misfolding diseases” 
or “proteinopathies” [10,39,331]. Proteins 
implicated in neurodegeneration can be 
neither refolded by chaperones to their normal 
configuration nor degraded by proteasomes, 
leading to their abnormal turnover, elevated 
concentration, aggregation, and accumulation 
of insoluble protein deposits [141,142]. Protein 
folding and refolding are both mediated by a 
network of molecules, called chaperones and 
co-chaperones that are also associated with the 
UPS and ALP pathways that remove irreversibly 
misfolded proteins [101,102]. The degradation 
of proteins and other cellular components by 
the ALP and UPS plays a vital role in maintaining 
the structural and functional integrity of 
neurons, while inhibition of the ALP leads to 
aberrant autophagy and ultimately cell death 
[101,332]. Molecular chaperones have a central 
role in maintaining protein homeostasis in order 
to prevent or modulate neurodegeneration, 
and by diminishing AS neurotoxicity play 
a neuroprotective role [333]. Inhibition of 
CMA leads to increased aggregation of high-
molecular-weight and detergent-insoluble AS 
species in neuronal cells [140], while enhanced 
CMA-dependent degradation of AS occurs 
under conditons of stress induced by an 
excess of AS [334]. Expression of substances 
regulating CMA, might be reduced in PD brains 
[147], supporting the notion that dysfunctional 
CMA, together with functional impairment of 

the proteasome [335,336], is implicated in PD 
pathogenesis.

A factor that could drive the aggregation and 
neurotoxic effect of AS is the total concentration 
of the protein as suggested by human genetic 
multiplication studies [32]. High concentrations 
of normal AS may cause cytotoxity, which 
suggests a shift in equilibrium between normal 
and misfolded conformations and increased 
rate of oligomerization of the misfolded 
protein. Extracellular AS can be detected in 
human and mouse brain [337]. Whether total 
AS concentrations are increased in PD brains 
is unclear and contradictory data have been 
reported. Although membrane-associated 
AS is increased in the SN [338], normal levels 
in the cytosolic fraction and no correlations 
between AS and nigral LB intensity have been 
found [339]. No widespread extranigral AS 
accumulation in PD, as suggested by most 
immunohistochemical reports [340-342],
has been confirmed by sophisticated 
neurochemical methods demonstrating only 
mildly increased high-molecular-weight AS 
in putamen [339,343]. This suggests that AS 
pathology revealed by immunohistochemistry 
might not be caused by AS accumulation but 
rather by conformational changes. Different 
mono- and polyclonal antibodies that bind 
specifically to AS have been described [344-353].
Recently, a monoclonal anti-AS antibody (5GA) 
was described that distinguishes pathological 
from non-diseased AS, probably due to a 
better accessibility during the conformational 
changes of the protein [354].

Expression of pAS in the brain is very low 
under normal conditions and is undetectable 
by immunohistochemical methods, but is 
increased in PD, DLB and AD with LB pathology 
[355]. It is the most prominent species of AS 
isolated from postmortem brains with LB 
disease [118]. PD shows a significant increase 
in soluble and lipid-associated pAS over the 
disease course, with progressive decrease of 
soluble nonphosphorylated AS, becoming 
increasingly phosphorylated [22]. These 
findings are in contrast to the robust increase 
of AS levels in vulnerable regions in MSA, where 
the protein accumulates predominantly within 
glial cells [356]. Increases in pAS have been 
suggested to promote neurotoxicity, oligomer 
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formation, formation of LB pathology, and 
reduce the ability to regulate TH [273,357-
361]. Studies about concentrations of SNCA 
messenger (m)RNA in PD brains have been 
inconclusive, but increased expression of 
AS mRNA [315,316,362] suggests that it 
is a triggering factor for PD pathogenesis. 
Collectively, genetic and pathological 
observations indicate that PD can be associated 
with factors that could account for an increased 
production or impaired clearance of misfolded 
proteins; a vicious circle could develop whereby 
an increase in unwanted proteins could 
overwhelm and impair the UPS/lysosomal 
clearance systems, which could lead to further 
protein accumulation, and to proteolytic stress, 
with formation of toxic oligomers, interference 
with critical cell processes, and cell death [27] 
(Figure 4).

The compelling reports on the 
pathophysiology of AS in vivo raised several 
speculations as to how aberrant activity of 
this protein might lead to neurodegeneration 
in PD and other synucleinopathies. A key 
question, in light of the suggested function 
for LB formation, namely to provide a cellular 
protective response against misfolded or 
abnormal proteins, is whether an aberrant 
chaperone activity of AS could interfere with 
synaptic integrity. Moreover, it is not certain 
that the AS aggregation is the primary cause or 
an epiphenomenon in the pathogenic process 
of AS-related diseases.

Proteomic studies of cellular and animal 
models have not only confirmed that 
mitochondrial dysfunctions, abnormal protein 
aggregation, OS, and impaired bioenergetics 
are the main contributors to PD [8,34,363-
371]. However, better characterization of 
the features that make selective neuronal 
populations vulnerable in PD [364,371-373], 
the role of inflammation, and other factors 
in neurodegeneration [374-376], are clearly 
needed.

4.1.  Neurotoxicity of α-synclein and 
the oligomer hypothesis

The relation of AS behavior to toxicity is 
complicated by several conditions: the 
expression levels of AS are critical for toxicity, 
and phosphomimic S129D/E AS variants may 

have different biophysical properties compared 
to the phosphorylated WT protein [377]. These 
facts raise some caveats about comparison 
of properties of AS and its concentration-
dependent behaviors, e.g. aggregation and 
toxicity [134].

Mutant AS protein tends to acquire 
abnormal configuration easier than its WT 
counterpart. AS, especially in PD-associated 
mutants, forms pore-like annular and tubular 
protofibrils [378], while BS  inhibits formation 
of AS protofibrils [379]. The tendency of A30P 
to accumulate as oligomers instead of mature 
fibrils suggested that AS may have a similar 
toxic mechanism as intermediates of other 
proteins, such as β-amyloid (Aβ), tau protein, 
prions and polyglutamine peptides [380-386] 
(Figure  5). The “toxic oligomer hypothesis” 
[387-389] gained support by a study in model 
systems of PD with increased neurotoxicity by 
over-expression of AS variants that exhibited 
increased propensity to form oligomeric, 
prefibrillar structures and decreased 
propensities to form fibrillar aggregates [390].

While the normal physiological role of AS 
appears to be dependent on its interaction 
with membrane lipids, the pathogenic AS 
mutants are particularly prone to formation 
of such oligomers and AS mutations cause 
increased levels of protofibrils possibly being 
the more toxic form of the protein [77]. A toxic 

conformation of AS as the consequence of 
abnormal membrane interaction, alteration in 
vesicle traffic, involvement of mitochondria, 
or lysosomal membranes could promote 
neurodegeneration [391]. This may be a result 
of the toxic action of substances produced 
during early phases, i.e. soluble oligomers and 
protofibrillar derivatives of misfolded proteins 
[392-394]. Accumulation of misfolded AS in the 
ER is the main event leading to the induction of 
the ER stress-related unfolded protein response 
(UPR) that is activated in nigral DAergic 
neurons in PD and in experimental models of 
PD [395,396], induced by oligomeric species 
of AS, and is important for the manifestations 
of α-synucleinopathies in vivo [397]. In PD, the 
cause is a high level of misfolded AS molecules, 
which subsequently leads to formation of 
neurotoxic intermediates, i.e. oligomers and 
probably small soluble complexes of AS with 
other proteins [398] (Figure  6). Involvement 
of ER stress with activation of the UPR has 
also been observed in early stages of MSA, 
thus playing a pivotal role in the pathology of 
this synucleinopathy [399]. Which particular 
species of AS are toxic has been debated. 
Some evidence favored fully fibrillar or the 
intermediate soluble oligomeric species 
[77,400], but cytotoxicity can occur without 
aggregated AS [401]. Recent studies indicate 
that early oligomeric forms and not the final 

Figure 5.  Cascade of neurotoxic effects of protein oligomeres leading to neuronal dysfunction/neurodegeneration; 
illustrated by the suggested relationship between Aβ and α-synuclein oligomers.
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protein aggregates are responsible for its 
toxicity [387,402]. WT BS has been suggested 
to protect against AS toxicity based on in vitro 
(inhibition and fibril formation) [110] and 
in vivo (reduced aggregation and LB formation) 
evidence [403]. Small intermediates/soluble 
oligomers in the aggregation process might 
lead to synaptic dysfunction, and neuronal 
death, whereas large, insoluble deposits 
might function as reservoir of the bioactive 
oligomers [404]. The polymerization of AS 
from unstructured monomer to mature 
amyloid fibrils rich in β-sheets is a multistep 
process that proceeds through the formation 
of altered-sized oligomers and polymeres 
[67]. Pre-fibrillar AS variants with impaired 
β-structure increase neurotoxicity in PD models 
[390]. In PD brain, tissue transglutaminase 
(tTG) induced crosslinks have been identified 
in AS monomers, oligomers, and aggregates, 
suggesting an interaction between AS and tTG 
[405], while Hsp 70 modulates extracellular AS 
oligomers and rescues trans-synaptic toxicity 
[406]. Ferric iron may catalyse the formation of 
AS oligomers [407-409], and exposure of AS to 
oxidative agents also induces formation of high-
order oligomers [410]. Missense mutations of 
SNCA, e.g. A30P, increase oligomerization of AS, 
but not fibril formation [77,411].

Spheroidal oligomers contain a significant 
amount of α-helical structure, which decreases 
in protofilaments, while β-sheet structure 
content of AS increases from spheroid 
oligomers, through protofibrils, to fibrils [412]. 
Methods to detect morphologically distinct 
oligomeric forms of AS have been described 
[413]. Elevated levels of soluble AS oligomers 
were found in post-mortem extracts of PD 
[414] and DLB brains [415,416]. Loss of DAergic 
nigral cells in animals with AS variants that form 
oligomers (E57K, E35K) showed that these are 
toxic in vivo and might disrupt membranes 
[417]. DA and its metabolites inhibit the 
conversion of protofibrils to fibrils and may 
promote protofibril accumulation [418]. 
Intervention in the early part of the aggregation 
pathway by prevention of oligomer formation 
or increased clearance may be neuroprotective 
[419,420].

Oligomeric species can be isolated from cells 
[139,421,422], from human [423] and mouse 

brain [424], particulary found in membrane-
enriched fractions [128,414]. While small-sized 
oligomers are not resistent to K protease (KP) 
digestion [425], the generation of both soluble 
oligomers and aggregates consisting at least 
partly of fibrillar AS resistent to PK digestion 
[381,426] is required for the induction of 
degeneration of nigral neurons. Fibrillar and 
profibrillar AS variants also cause divergent 
axonal lesions, exemplifying that they induce 
neurotoxicity by various means [314].

The pathogenic AS mutants, DA AS 
modifications, and the association of AS with 
polyunsaturated lipids favor the formation 
of protofibrils by inhibiting the manufacture 
of larger, less reactive aggregates [72,414], 
which may produce the LBs [427]. If DA 
synaptic vesicles in SN neurons are damaged 
by pathological interaction with AS, a vicious 
circle of dysregulated cytosolic DA and further 
damage to targeting DA neurons could ensue 
[162]. The UPS renders mutated or damaged 
proteins less toxic than their soluble forms [428], 
which suggests that the ubiquitinated proteins 
in LBs may be a manifestation of a cytoprotective 
response designed to eliminated damaged 
cellular components and to delay the onset of 
neuronal degeneration [10,429-432].

Although direct in vivo data supporting 
the “toxic oligomeric AS hypothesis” are 
still limited and most of the evidence is 
circumstantial, studies in cultured cells support 
this notion [112,189,401,433-438], but others 
demonstrated a lack of association between 
intracellular oligomers and toxicity [439-444]. 
Nevertheless, several different mechanisms, 
including proteasomal inhibition, effects on 
signal transduction pathways, mitochondrial 
alterations, increased levels of free radicals, 
membrane clustering of DA transporter 
resulting in increased DA uptake, and 
others, have been reported as mechanisms 
associated with excess of WT or mutant AS 
[189,436,445-450] (Figure  4). The reasons for 
the discrepancies about the toxic effects of AS 
are not clear, but may be influenced by a variety 
of factors [69,450].

4.2. Mitochondrial involvement in PD
Mitochondrial alterations are an important part 
of the multifactorial pathogenic process of PD 

[34,255,365,451-462]. Beyond ATP generation, 
mitochondria are involved in a number of 
critical pathways, including regulation of the 
electron transport chain, calcium homeostasis 
[463-466], mitochondrial morphology, 
dynamics, microtubule-dependent cellular 
traffic, ALP [467], programmed cell death 
[468], or apoptosis [469]. Mitochondrial 
dysfunction triggers increased free tubulin, 
which destabilizes the microtubule network 
and promotes AS oligomerization [424]. 
Misfolded AS accumulates within both the 
inner (IMM) [338] and the outer mitochondrial 
membrane (OMM), and can induce dysfunction 
and fragmentation of mitochondria [470], 
causing energy depletion [471,472], which is 
relevant given the importance of mitochondria 
in maintaining neuronal viability [473,474]. 
Overexpression of AS impairs mitochondrial 
complex I function, decreasing respiration 
and increasing free radical production 
[82,338,472,475,476] or complex IV activity 
[296]. Complex-I is inhibited in DA-neurons 
by systemic administration of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
[477], probably linked to mtDNA defects 
[478]. but its activity is not impaired in 
other neurodegenerative diseases [479]. AS 
apparently can interact with complex-I, resulting 
in its reduced mitochondrial activity, increased 
free radical production, and mitophagy [475]. 
Impaired complex-I mitochondrial biogenesis 
has been found in PD frontal cortex [480]. AS 
may bind to mitochondrial membranes leading 
to mitochondrial fragmentation followed by 
loss of mitochondrial transmembrane potential 
and neuronal death [225,472]. This, however, 
would not account for the direct effects of AS 
on complex-I [338]. Mitochondrial metabolic 
control of microtubules dynamic impairs the 
autophagic pathway in PD [481].

Structural changes of mitochondria occurring 
with even low overexpression of AS or other 
misfolded proteins, and in the virtual absence 
of structural defects in other intracellular 
organelles, indicate that mitochondrial 
dysfunction, and direct effects on the OMM 
are caused by the exposure to these toxic 
factors [470,472]. A specific interaction of AS 
and COX, the key enzyme of the mitochondrial 
respiratory chain, suggests that AS aggregation 
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contributes to mitochondrial dysfunction 
[296,365]. Which AS species cause these effects 
are not clear. Its inhibitory effect on membrane 
fusion may represent an intrinsic property of 
the monomeric protein. By contrast, an in vitro 
assay suggests that small oligomers are the 
cause [472]. A change in synaptic physiology, 
brought on by AS and other pathologic 
proteins, evokes homeostatic shifts in the 
ratio of mobile to stationary mitochondria, 
coordination of this relation being critical to 
ensure optimal neuronal function [482].

The effects of AS on mitochondria could 
be related to those on other intracellular 
constituents such as interactions with (pre)
synaptic vesicles, the lysosomal membrane or 
the ER-Golgi apparatus [1]. They further may 
lead to release of oxidative species , which 
may in turn lead to secondary induction of 
AS, oligomerization, and aggregation and, 
therefore, create a vicious cycle [483].

Reduction of cerebral mitochondrial 
metabolism was seen in early PD, but whether 
mitochondrial dysfunction is a primary or 
secondary event, or part of a multifactorial 
process remains to be elucidated [452]. 
Much evidence suggests involvement of AS 
and mitochondrial dysfunction, in particular 
oxidative damage to both nuclear (n) DNA and 
mitochondrial (mt) DNA, protein misfolding, 
abnormal autophagy, and respiratory 
chain deficits in the pathogenesis of PD 
[226,254,484] (Figure  6), but to what extent 
dysregulated mitochondria dysfunction and 
turnover contribute to the pathogenesis of 
sPD remains to be elucidated [485]. A close 
relationship between mitochondrial function 
and autophagy/mitophagy which is crucial for 
degradation of surplus or injured mitochondria 
is beneficial to orchestrate numerous metabolic 
pathways in the cell. Defects in one of these 
elements could simultaneously impair the 
other, resulting in risk increments for various 
human diseases [486].

4.3.  Lysosomal dysfunction 
and autophagy; role of 
glucocerebrosidase

Overexpression of AS impairs macroautophagy, 
a main route for clearance of aggregate-
prone intracytoplasmic proteins, whereas 

AS depletion enhances this pathway [146]. 
Increases in macroautophagy lead to decreases 
in AS load and improvements of neuronal 
function [136,487], while its inhibition protects 
against toxic effects of AS. This indicates that 
macroautophagy can be harmful rather than 
protective [488,489]. Aberrant AS can bind to 
the membranes of lysosomes, inhibiting CMA 
[138,187,490], lysosomal function [445,446], 
and the proteasome [137,335,336,436,445-
447,491]. Degradation of AS becomes 
diminished, and further lysosomal damage 
occurs, but whether accumulation of AS 
precedes the impairment of autophagic 
pathways or vice versa is unclear [1]. For a 
critical evaluation of the role of ALP and UPS in 
PD see [147,428,492,493].

Mutations of the GBA (glucocerebrosidase) 
located on chromosome 1q21 [494] (which 
encodes cerebrosidases) suggest a link between 
PD and other synucleinopathies, including DLB 
with Gaucher disease [306,495-501] through 
a toxic loss of functions and overexpression 
of such mutants promoting AS accumulation, 
whereas inhibition of glucocerebrosides had 
no effect on AS levels [502]. There are also 
genetic and pathological links between PD and 
the lysosomal disorder Sanfilippo syndrome 
[503]. GBA mutations – more than 28 of which 
are presently recognized [504] - are the most 
frequent genetic risk factor for PD [505,506], 
particularly in fPD [507], and glucocerebrosidase 
is present in AS inclusions in LB disorders [494]. 
Downregulation of its activity led to decreased 
lysosomal protein degradation, subsequent 
AS accumulation and dependent neurotoxic 
effects in human neurons and models, 
while accumulation of glucosylceramide in 
Gaucher disease owing to GBA dysfunction 
stabilized oligomeric intermediates of AS, 
further increasing its pathogenic effects. GBA 
alterations might secondarily overwhelm 
the ability of UPS to remove accumulated AS, 
promoting aggregation and neurotoxicity 
[508]. Overexpression of AS inhibits the 
intracellular trafficing and normal lysosomal 
activity of WT GBA, which leads to decline 
in its activity, forming a pathogenic positive 
feedback loop [497]. Recent genetic studies 
suggest that mutations in the GBA gene not 
only increase the risk of both PD and DLB but 

also influence the course of PD with respect 
to the appearance of dementia [509]. Whether 
mutant GBA leads to an increased risk of PD and 
DLB through gain or loss of functions, or both, 
is not clear, but recent demonstration of the 
relevanve of lysosomal proteolytic dysfunction 
in PD [140,492,497,501] could provide insight 
into the link between altered macroautophagy, 
GBA, and synucleinopathies. 

4.4. Oxidation and nitrative injuries
In PD, many biochemical changes indicating 
compromised antioxidant systems are 
suggested to underlie cellular vulnerability 
to progressive OS, which generates excessive 
reactive oxygen species (ROS) or free radicals 
in SN with subsequent cell damage [510-512].
Overexpression of human WT or mutant 
AS elevates the aggregation of intracellular 
ROS [513,514], and increases cytotoxicity of 
DA oxidative products [435]. Truncation of 
AS and OS have been linked to increased 
AS aggregation [401,515-518] that can 
enhance sensitivity to oxidative and nitrative 
stressors, although it can also be protective 
in some situations [519,520]. Nitration of AS, 
signifying the presence of reactive nitrogene 
species, is a major signature of PD and other 
synucleinopathies [521].

Increase of iron in the SN with a shift of Fe 
(II): Fe(III) of 2:1 compared to 1:2 in controls 
can promote DA synthesis with accompanying 
increased generation of reactive metabolites 
[522-524]. AS increases cellular ferrireductase 
activity and iron/Fe(II) levels in DAergic cells 
leading to their selective loss in PD [525]. This 
suggests that iron and AS act in concert for 
disease propagation. Protein misfolding in 
sPD has been associated with ROS formed as 
products of O2 reduction by combination of DA 
and Fe [526]. Both glutathione and glutathione 
peroxidase activity are decreased in SN and 
incidental LB disease (iLBD/preclinical PD), 
preceding both complex I and DA loss [527]. 
Peroxynitrite, formed by reduced superoxide 
dismutase (SOD), induces aggregation of AS 
in situ, and nitrated AS is found in the core of LBs 
[512]. Cross-linking of AS by AGEs may reflect 
early disease-specific changes, accelerating 
inclusion body formation [528]. Formation of 
AS protofibrils is stimulated by translational 
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modifications that occur under conditions 
of OS, while its aggreation is inhibited by 
antióxidants and proteins with chaperone 
activity [529]. These findings in human PD and 
models indicate a multicomponent process in 
its pathogenesis, and cell death pathways are 
caused by many interacting factors [530,531] 
(see Figures 4 and 6). 

4.5. α-Synuclein and neuroinflammation
AS can trigger inflammation and activation 
of microglia [532,533], which, by releasing 
toxic factors or by phagocytosing cells, and 
degrading AS more avidly than neurons or 
astrocytes [534], may form a selfperpetuating 
cycle for neurodegeneration [535-537]. 
Overexpression of mutant AS modulates 
microglia cells releasing pro-inflammatory 
cytokines, nitric oxide, complements, elevated 
levels of arachidonic acid metabolizing 
enzymes, reactive species. and OS, excessive 
levels of ROS triggering more inflammation 
[538,539]. This supports the notion that WT 
and A30T AS have an important role in the 
initiation and maintenance of inflammation in 
PD, through activation of a pro-inflammatory 
response in microglia [540,541]; this differs 
depending on the type of AS (WT/A53T) and/or 
whether AS expression results in cell death or 
not. Upregulation of inflammatory mediators 
and microglia-mediated neuroinflammation 
has been hypothesized to play an important 
role in the pathogenesis of PD [374,542-544]. 
This inflammatory response may occur after 
neuronal death, but it is also possible that AS 
is released via exocytosis [534] or even that 
cleaved portions are presented via antigene 
presentation, which could lead to a vicious 
cycle of inflammatory response, release of 
(modified) AS, and further inflammation. 

In PD, SN cell degeneration is associated with 
astroglial reaction and HMC class II positive 
microglia that may be both inducing factors 
or sequelae of neuronal death [545-547], while 
oligodendroglia does not seem to play a role in 
promoting inflammation, although they may 
be damaged by it [533]. Although a specific 
receptor for AS binding to microglia is still 
unknown, these cells can take up extracellular 
AS [540,548,549], which in turn triggers the 
release of immune modulatory mediators. 

Parkin deficiency increases vulnerability to 
inflammation-related nigral degeneration 
[550], while human neuromelanin induces 
inflammation and degeneration in the rat SN 
[551]. Microglial activation and corresponding 
DAergic terminal loss in early PD support the 
notion that neuroinflammatory responses 
by intrinsic microglia contribute to the 
progressive degeneration in PD [552]. Part of 
the specific vulnerability of the SN could be a 
consequence of h-TNFα hypomethylation [553], 
overexpression of which induces apoptosis. On 
the other hand, microglia may be affected by 

the disease process and may therefore not be 
able of exerting neuroprotective function, such 
as glutathion peroxidase expression [554]. A 
critical review about how neuroinflammation 
may contribute the prion-like behavior of AS 
and progression of neurodegeneration in PD 
was given recently [555].

5.  α-Synuclein and protein 
interactions

Despite clinical, genetic, and neuropathological 
differences, there is considerable overlap 

Figure 6.  Role of α-synuclein (AS) in neurodegeneration in PD. Neurotoxic oligomers of α-synuclein are the 
key factors of neurodegeneration. One potential mechanism leading to neuronal death is invasion of 
α-tubulin oligomers which affects the dynamics of microtubules (modified after [398]).
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between synucleinopathies and other 
protein-misfolding diseases. Inclusions 
characteristic of these disorders suggest 
interactions of pathological proteins 
engaging common downstream pathways 
[8,10,13,368-370,432,556]. The co-occurrence 
of both AS and tau or other proteins in 
various neurodegenerative disorders [557-
559] highlights the interface between 
these misfolded proteins, which may be co-
aggregated in the same brain or even in the 
same region or in the same cell in human 
brain [560-562] and tg mice [563]. Interaction 
with tubulin suggests that AS could be 
a microtubule-associated protein similar 
to tau [272,564]. Recent studies revealed 
physiological correlations between tau and 
AS and a stimulatory effect of accumulated 
AS (promoted by OS) on tau phosphorylation 
by glycogen-synthase kinase-3β (GSK-3β) 
[565-567], while Hsp70 may suppress AS-
mediated tau phosphorylation in early stages 
of disease [568]. PD-associated risk factors, 
e.g. environmental toxins and AS mutation, 
may promote tau phosphorylation, causing 
microtubule instability, which leads to neuronal 
loss in PD brain [569]. Independent and joint 
effects of the SNCA and MAPT (tau) genes in 
PD have been described [570,571], and the 
MAPT H1 haplotype has been reported to be 
a risk factor for PD [572], while it reduces the 
severity of AD pathology [573]. Polymorphisms 
between SNCA and MAPT interact to influence 
the rate of progression of PD, which is more 
prominent in the early stages of the disease 
[574]. Recent GWAS show that polymorphism 
in the MAPT and SNCA genes confers a 25.6% 
increased risk factor for PD [308,571,575].

Whereas AS can spontaneously polymerize 
into amyloidogenic fibrils in vitro, tau 
polymerization requires an inducing agent, 
e.g. AS seeds [121].

Cellular, various tg and other experimental 
PD models provided new insight in the 
hyperphosphorylation of tau [566,569,576-
580]. They suggest that oxidatively modified 
AS is degraded by the proteasome and 
plays a pro-aggretatory role for tau [581], 
and that AS is an in vivo regulator for tau 
phosphorylation at Ser 262 leading to 
deposition of both proteins [582]. Oxidatively 

modified AS degraded by the proteasome 
further promotes the recruitment of tau to 
protein inclusions in oligodendroglial cells in 
synucleinopathies [581]. E46K modification of 
AS may induce tau inclusions both direct and 
indirect mechanisms being involved in the 
formation of protein inclusions [583]. On the 
other hand, tau enhances AS aggregation and 
toxicity and disrupts AS inclusion formation 
in cellular models [584]. Recent postmortem 
studies showed increased accumulation of 
p-tau in the striata of PD patients and in the 
A53T mutant mouse model [343,577], related 
to increased activity of GSK-3β [566,579]. 
This is stimulated by AS that associates with 
the actin cytoskeleton [585] and by GSK-3β 
[568]. DA D1 receptor activation induces tau 
phosphorylation via cyclin-dependent kinase 
5 (cdk5) and GSK-3β signalling pathways [586].

Tau in MPTP models and human 
postmortem striata is hyperphosphorylated 
at the same sites (Ser 202,262, and 396/404) 
as in AD [343]. However, tauopathy in PD 
striata is restricted to DAergic neurons, 
whereas degeneration of the frontal cortex, 
associated with increased AS deposits, 
because of reduced proteasomal activity 
is not associated with tauopathy [343]. In 
the AS overexpressing mouse model of 
PD, tauopathy, along with microtubule 
destabilization, exists primarily in the 
brainstem and striatum, the two brain regions 
expressing high levels of AS and undergoing 
the most severe degeneration in human PD. 
Thus, tauopathy in PD may have a restricted 
pattern of distribution [578], which differs 
from its generalized affection in AD.

There is a strong interaction between AS, 
tau and β-amyloid (Aβ), particularly in their 
oligomeric forms, which might synergistically 
promote their mutual aggreation et vice versa 
[68,165,582,587]. Cross-seeding beween 
dissimilar proteins that share β-sheet 
structures has been described, for example 
for tau and AS [588]. In vivo interactions 
between AS and tau are supported by 
genetic studies that link MAPT gene, which 
encodes tau, with increased risk for sPD 
[309,589,590], and in fPD, fibrillation of AS 
and tau is caused by the A53T mutation [588]. 
Tau phosphorylation was found in synapse-

enriched fractions of frontal cortex in PD and 
AD [355] and in brainstem of AS mice [591] 
and EO familial DLB shows extensive tau 
pathology [592]. Other links between AS and 
tau are suggested by the co-localization of 
both proteins in neurofibrillary tangles (NFT) 
and LBs, especially in neuronal populations 
vulnerable for both aggregates [560,593-
596], and in GCIs and NCIs in MSA [597,598]. 
DLB-3xtg-AD mice exhibing accelerated 
formation of AS and LB-like inclusions in 
the cortex and enhanced increase of p-tau 
deposits in hippocampus and neocortex 
provide further evidence that tau and AS 
interact in vivo to promote accumulations 
for each other and accelerate cognitive 
dysfunction, although accumulation of AS 
alone can disrupt cognition [599].

Other studies have suggested that Aβ is 
more likely to promote the desposition of AS 
than tau [600], and Aβ is known to initiate 
hyperphosphorylation of tau [601]. Cortical 
AS load is associated with Aβ plaque burden 
in a subset of PD patients [602]. Aβ peptides 
enhance AS accumulation and neuronal deficit 
in a tg mouse model [603], and AS-induced 
synapse damage is enhanced by Aβ-42 [604], 
while LB formation may be triggered, at least 
in part, by AD pathology [562].

PD and AD could be linked by progressive 
accumulation of p-tau, GSK-3β, and AS 
[10,343,432,577], while activation of caspase 
and caspase-cleft Δ-tau may represent a 
common way of intracellular accumulation of 
both AS and tau, promoted by Aβ deposition, 
and unifying the pathology of AD and LB 
disease [605]. This suggests a complex 
continuum characterized by variable 
amounts of pathogenic proteins [606,607] 
generated by the same stimulus probable 
depending on genetic backgrounds and 
environmental factors. Despite documented 
co-localisation of AS and tau in LBs [593], 
and Aβ and tau in synaptosomes [607], the 
basic mechanisms (regional differences 
in proteasomal and GSK-3β activities, OS 
in the presence of AS deposits etc) of the 
synergistic effects of AS, p-tau, Aβ, and other 
proteins, suggesting a dualism or triad of 
amyloidogenic neurodegeneration remain 
to be elucidated (f. rev. see [9,370]).
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6.  a-Syunclein spread and 
disease propagation

Mounting evidence implicates that  templated 
corruption of disease-specific proteins and 
their promotion may be a mechanism of 
disease propagation in neurodegenerative 
disorders by transneuronal spread through 
neural networks [608]. The concept that AS 
lesions ramify within the CNS by a seeding-like 
process is supported by the observation that 
fetal DA transplants in the striatum in a subset 
of PD patients surviving more than 5 years may 
develop AS-positive LBs [609-611]. These data 
imply for a host-to-graft propagation, and a 
neuron-to-neuron (interneuron) transmission 
or transsynaptic spread of AS appears 
important for the propagation of the disease. 
Similar accumulation of AS occurs in stem cells 
transplanted to tg mice [612]. Development of 
LBs in transplanted DAergic neurons has been 
suggested to develop similar to that in the 
host SN [613], but it could not be determined 
whether the LB-like inclusions were formed by 
the spread of AS fibrils, or due to some other 
toxic effect of the neighbouring diseased 
neurons [60]. Since the transplants were derived 
from multiple, genetically unrelated sponsors, 
it seems likely that the inclusions were a 
consequence of factors inherent in the PD brain.

The effects of LBs in the grafted neurons are 
unclear, as their presence does not necessarily 
mean functional impairment. Oligomers of AS 
can recruite and aggregate AS endogenously 
expressed by cortical neurons, and this effect 
increases with time and with concentration 
of applied oligomers [614]. Secreted AS can 
recruit endogenous AS in the recipient cells, 
act as a permissive template and promote 
misfolding of small aggregates [615]. Some of 
the uptake of AS from the extracellular space 
appears to occur via endocytosis, although 
additional mechanisms might also contribute 
[26,548]. It is probable to trigger the formation 
of LB-like aggregates in cultured cells, when 
arteficial methods, bypassing physiological 
uptake mechanisms, are used [609,612]. This is 
supported by the observation that neural grafts 
placed into tg mice expressing human AS take 
up the human protein and form AS-positive 
aggregates [26,616,617]. AS fibrillation starts in 

vitro with soluble oligomers forming a nucleus, 
but once the nucleus forms, aggregates form 
rapidly [618]. Therefore, permissive templating 
may be efficient and less dependent on the 
concentration of the protein than of the initial 
misfolding, which would explain the variable 
age of onset of the disease.

Preformed fibrils generated from full-
lenght and truncated recombinant AS were 
shown to enter primary hippocampal neurons, 
probably by endocytosis [26,548], and promote 
recruitment of soluble endogenous AS into 
insoluble LBs and LNs, perhaps via a controlled 
type of diffusion or specialised binding 
[137,548]. Endogenous AS was sufficient to 
form these aggregates, and overexpression of 
WT or mutant AS was not required. Aggregates 
of the disease isoform build up, and propagate 
between cells leading to disease progression.

Secreted forms of AS might be biologically 
important because of the potential for causing 
paracrine effects on neighboring cells; they 
lessen the viability of recipient neuronal cells in 
culture models, in a concentration-dependent 
fashion [137], and this effect is largely mediated 
by oligomeric species [614]. Extracellular 
AS could also trigger a neuroinflammatory 
response through microglial activation binding 
to integrin α-M receptors [619,620]. By contrast, 
astrocytes internalise AS via endocytosis in an 
attempt to clear potentially toxic conformations 
of the protein [548,621]. Excessive uptake of AS 
could also lead to inflammatory response and 
might account for astroglial pathology [1,19]. 
Likewise, aberrant tau has been proposed to be 
secreted from cells via exosomal release early in 
the AD disease process [622], and trans-synaptic 
spread of tau pathology is seen in vivo [626].

Prions are composed solely of PrPSc, which 
is an aberrantly folded form of the naturally 
occurring cellular protein PrPC. Prion toxicity is 
suggested by neither PrPc nor PrPSc but via a 
toxic intermediate, generation of which requires 
local availibility of PrPC. If a similar mechanism 
might work in synucleopathies, the implications 
of increasing SNCA expression becomes clear: 
time to onset of diseases is shorter [31]. The 
fundamental event in the biology of prion 
diseases is a conformational transition in PrPC 
to the disease-causing isoform PrPSc [623]. 
PrPC, which has an α-helix-rich conformation, is 

refolded into PrPSc, with a high β-sheet content. 
Its accumulation can trigger further misfolding 
of PrPSc through a “prion conformer”, ultimately 
leading to its polymerization into amyloid 
that coalesc into toxic oligomers causing 
neurodegeneration. These events could be 
mirrored by the behavior of AS, which exists in 
an α-rich conformation when associated with 
membranes, but under pathological conditions 
form a β-rich protein that is prone to assemble 
into fibrils, and is associated with neuropatholoy 
[387,624].

In vivo approaches in cell culture could 
not discriminate between a “prion-like” 
corruptive templating mechanism – host-
derived- translocated AS inducing its 
misfolding generated in the graft, versus 
simple translocation of the aggregated protein 
from the host to the graft, as in cell culture all 
mechanisms needed for prion-like behavior 
of misfolded AS appear possible [26,616,617]. 
Recent studies showed that prion infection 
promotes accumulation of AS in aged human 
AS tg mice [625]. This might suggest that AS 
pathology could be induced in cells and spread 
by a “prion-like” mechanism transmitting the 
conformationally altered AS [24,25,28]. There is 
also direct evidence that, as in prion diseases, 
aggregated AS proteins can be transmitted 
from affected nerve cells to healthy, unaffected 
DA neurons, thereby potentially triggering 
the neurodegenerative process [27]. Although 
the mechanism of spread remains uncertain, 
there is evidence that prions can be conveyed 
between neurons by transsynaptic transport. 
Thus, the propagation of AS lesions by cell-
to-cell passage appears to be similar as that 
in other neurodegenerative disorders (see 
[9,626]). Early sites of Lewy pathology in PD are 
the olfactory bulb and enteric plexuses, lending 
support to the “dual hit” hypothesis suggesting 
that pathogenic AS may reach the brain via 
a consecutive network of projection neurons 
[627,628].

7.  neuropathology of 
synucleinopathies

7.1. Parkinson’s disease
In sPD, the essential neuropathology is 
considerable neuronal loss not only in the 
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DAergic SN but in many other parts of the 
CNS, peripheral and autonomic nervous 
system and other visceral organs, associated 
with AS-positive Lewy pathology throughout 
these systems (for rev. see [8,9,37,38,368-
370,629,630]. The recently improved but still 
provisional criteria for PD require these two key 
features – neuronal loss in the SN compacta 
and Lewy pathology [372]. Standardized 
methods for the assessment of these changes 
by use of a semiquantiatitive grading system 
and immunohistological methods for the 
detection of Lewy pathology have been 
proposed [37,38,372,630]. Recent studies 
have confirmed the multiorgan distribution 
AS and Lewy pathologies, with negative 
involvement of the muscular-skeletal system 
and sciatic nerve [7,9,631,632]. The LC and 
cholinergic pedunculopontine/laterodorsal 
tegmental nucleus (PPN/LDT) are vulnerable 
to AS pathology in LB disease associated with 
significant neuronal loss [28,633].

7.1.1.  Formation and development of 
AS/Lewy pathology

Biochemical increase of AS phosphorylated at 
Ser 19 precedes histopathology of LB diseases 
[634] and AS aggregation precedes the 
formation of LBs and dystrophic neurites (LN) 
[123,635], but does not necessarily correlate with 
LB pathology [19,429-431,636]. The formation 
of axonal AS deposits and “pale bodies” [637] 
preceds the development of LBs in affected 
neurons. Loosely packed AS filaments as earliest 
or premature “pale neurites” are initiated at 
axon collaterals and extend centripetally into 
proximal segments [638]. The early intraaxonal 
aggregation of AS could damage the parental 
neurons by interfering with axonal transport 
[639,640], but the presence or absence of 
abnormal immunostaining for AS cannot be 
interpreted as evidence that the cell suffers 
or is free of dysfunction.related to abnormal 
protein deposition [9,641]. Reduced TH 
immunoreactivity in neurons may represent 
a cytoprotective mechanism [642], but it can 
also be preserved in neurons with early AS 
accumulation [641]. 

LBs occur in 2 types. Classic LBs are spherical 
cytoplasmic intraneuronal inclusions, 8-30µm 
in diameter with a hyaline eosinophilic 

core, concentric lamellar bands, and a 
narrow pale-stained halo. They may occur as 
single or multiple inclusions (Figure  7A,B). 
Ultrastructurally, they are non-membrane-
bound, granulofilamentous structures 
composed of radially arranged, 7-20nm 
intermediate filaments associated with 
electron-dense granule material and vesicular 
structures, with the core showing densely 
packed filaments and dense granular material 
and the periphery having radially arranged 
10 nm filaments [643] (Figure  7C). Cortical LBs 
– eosinophilic, rounded, angular, or reniform 
structures without halo – are poorly organized 
with a felt-like arrangement composed of 7-27 
nm wide filaments, mostly devoid of a central 
core [644].

Antibodies that preferentially recognize 
N-terminal epitopes (Syn 505, 506, and 514) 
detect AS, consistent with the conformational 
changes associated with its polymerization 
into amyloid fibrils [352]. AS adopts an altered 
3-dimensional structure and undergoes 
N-terminal ubiquitination but the mechanisms 
of its aggregation that may serve as a nidus 
for LB formation in vivo have no yet been 
elucidated. Both classic and cortical LBs 
share immunochemical and biochemical 
characteristics, the major components being 
AS, Ub, phosphorylated neurofilamens and 
many other substances (Table 2). Recent 
studies revealed cell-specific sequestration 
of choline acetyltransferase (CAT) and 
TH within LBs, suggesting that LBs may 
disrupt cholinergic and catecholaminergic 
neurotransmitter production by sequestration 
of the rate-limiting enzymes for their synthesis 
[648]. Recent demonstration of the autophagy 
adapter protein NBR1, which interacts with 
Ub via the Ub-associated (UBA) domain for 
degradation of ubiquitinated substrates in a 
way similar to p62 [649], suggests that NBR1 
is involved in the formation of cytoplasmic 
inclusions in α-synucleinopathies [650]. AS can 
be recovered from purified LBs from PD and 
DLB brain [651], and recumbinant AS tends to 
form LB-like fibrillar structures in vitro [652].

Co-localization of AS, synphilin and parkin 
within LBs suggests that parkin plays a role in 
post-translational modification of AS, which 
results in changes in protein size, structure-

α-Synuclein (major component)

α-B-crystallin

Ubiquitin

Phosphorylated neurofilament proteins

Synaptophysin

Chromogranin A

Synphylin

Synphylin-1

γ-Tubulin

P25α (tubulin-binding protein)

Parkin
Pael-R (parkin-associated endothelin receptor-like 
receptors)
Calbindin

Torsin A

Gelsolin-related amyloid

Amyloid β-peptide (Aβ)

Amyloid precursor protein (APP)

Actin-like protein

Ubiquitin-pathway associated enzymes

α-B-crystallin

α-Microglobulin

Cu/Zn superoxide dismutase

Tau proteins (phosphorylated at Ser129)

MAP-1B / MAP1-LC3 [645]

MAP-2

MAP-5

MAP-9

Lipids

Calmodulin

Septin 4 (substrate for Parkin)

Tubulin

Tyrosine hydroxylase

14-3-3 protein

Redox-active iron

Cytochrome c

Advanced glycation end products (AGE)

Dorfin, an E3 ubiquitin kinase p62 protein

Cyclin B

Redox-active iron

Vesicular monoamine transporter 2 (VMAT2)
LC3, GABARAP and GATE-16 (autophagosomal 
proteins) [646]
Histone deacetylase 6 (aggresome-related 
protein) [647]

Table 2.  Major biochemical components of Lewy 
bodies (modified from [8]).

enhancing fibrillation and formation of LBs 
[11]. Proteomic analysis of cortical LBs revealed 
296 proteins related to multiple or unknown 
functions. In brainstem LBs, 90 proteins 
were identified [595], whereas another study 
identified 1263 proteins in SN [653]. A recent 
proteomic analysis of post mortem locus 
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ceruleus tissue in 6 autopsy-confirmed PD 
cases detected 2495 proteins, of which 87 
were differentially expressed in locus ceruleus. 
The majority was involved in mitochondrial 
dysfunction, OS, protein misfolding, 
cytoskeleton dysregulation and inflammation, 
but some additional proteins involved in 
calcium homeostasis and microtubular 
transport were detected [654]. 

The formation of LBs runs through several 
phases. Classic LBs show initial intraneuronal 
appearance of dust-like AS particles related 
to neuromelanin or lipofuscin, homogenous 
deposition of AS and Ub in the center, 
stepwise condensation to ubiquitinated 
filamentous inclusion, and final degradation 
to extraneuronal LBs after disappearance of 
the involved neuron [123]. Cortical LBs show 
diffuse AS and Ub labeling, while subcortical 
LBs have a distinct, central Ub domain with AS 
appearing in the periphery and ubiquitination 
being the later event. Their development 
shows initial accumulation of AS in the 
neuronal cytoplasm, stepwise accumulation 
of dense filaments (Lewy neurites – Figure 7D), 
spreading to dendrites, deformation of LBs, and 
final degradation by astroglial processes [640]. 
LBs are accompanied by dystrophic neurites, 
which according to recent 3-dimensional 
studies may evolve into LBs, with Ub at the 
core and neurofilaments at the outermost layer 
[655].

7.1.2.  Relationship between α-synuclein 
and Lewy pathology

Based on semiquantitative assessment of LB 
inclusions in a large autopsy series of PD, a 
staging of the spread of Lewy pathology was 
proposed to designate a predictable sequence 
of lesions in the nervous system beginning in 
the lower brainstem and anterior olfactory 
nucleus with caudo-rostral progression to 
the neocortex [340,656-658]. The validity of 
this 6-staging scheme, which corresponds 
roughly to the classification of LB disorders 
into 3 phenotypes – brainstem predominant 
limbic/transitional, and diffuse neocortical 
[659] - has been a matter of vigorous debate 
[7,430,636,660-663], since between 6.3 and 
47% of all cases of autopsy-proven PD and 18% 
of iLBD did not follow a caudo-rostral spread of 

Figure 7.  (A) Lewy body in substantia nigra whose peripheral rim is stained with anti-AS x 300; (B) Multiple Lewy 
bodies in nigral neuron; anti-AS x 1200; (C) Electron microscopy of nigral Lewy body showing a central 
electron dense filamentous core with a loosely fibrillary rim (x 2500); (D) Dystrophic Lewy neurites in 
the hippocampal C2/3 region, anti-AS x 150; (E) Multiple cortical Lewy bodies in frontal cortex in DLB; 
double label immunohistochemistry (brown: AS, red: tau), x 200. AS = α-synuclein.

LB pathology [340,429,663-665]. Longitudinal 
clinico-pathologic studies showed that 17-31% 
of PD patients have a fast disease progression 
[666,667].

A recently proposed unifying system 
for LB diseases correlates AS pathology 
with nigrostriatal degeneration, cognitive 
impairment, and motor dysfunctions [660]. 
Whereas the old classification left 45-50% of 
individuals unclassified [668,669], all were now 
classified into 1 of 4 stages (Figure  8). This is 
supported by an increase of pAS restricted to 
the olfactory bulb and brainstem in early stages 
of LB pathology [634]. Progression through 
these stages was accompanied by stepwise 
deterioration of striatal TH concentration, 
SN cell loss, and clinical scores. Significant 
correlations between these measures and AS 
pathology documented improvement of the 
previous staging. 

The duration and severity of motor 
dysfunction in PD, the corresponding 

decrease of DA transporter (DAT), and 
vesicular monoamine transporter 2 (VMT2) 
immunoreactivity in the striatum are inversely 
correlated with the total AS burden and 
neuronal loss in the SN [670-673], but not with 
LB counts in the SN, which supports the concept 
of synaptic dysfunction and/or impairment of 
axonal transport [641]. Both neuron number 
and densitie in SNc decrease with time [672]. 
About 15% of SN neurons contain LBs [674] and 
may survive for 7.5 years (2% neuronal death 
per year). AS alterations affect neurotransmitter 
release [88,159-161,675], possibly through 
impaired assembly of SNARE complex [675]. 
This supports a dying back mechanism in 
diseases with neuronal AS pathology in which 
dysfunction starts at the synapse and leads 
to axonal degeneration and AS accumulation 
in LBs and LNs [631,676,677]. According to 
this hypothesis, although AS aggregates may 
be cytotoxic, LBs are markers of an ongoing 
neuronal damage [678], or they might even 
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be harmless end products of sequestration 
of toxix molecules as a type of cell-protective 
mechanism [8,10,369,370,432]. However, the 
ultimate upstream mechanism responsible for 
the regulation of the machinery that handles 
toxic waste by segregating it into aggregates 
(LBs) is still poorly understood.

A BAC mouse model, created with the most 
frequent disease-causing human mutant 
(LRRK2 /R1441R), recapitulating cardinal 
features of human PD, showed no loss of 
mesencephalic DA neurons, but diminished DA 
release and axonal pathology of nigrostriatal DA 
projections [679]. According to recent studies, 
overexpression of human AS in rat nigral 
neurons leads to a deficiency in DA release 
preceding outright neuron loss via decreased 
presynaptic vesicle density, indicating that lack 
of DA is due to axonal fiber loss [680].

These data and demonstration of 
accumulation of small AS aggregates at 
presynaptic terminals in human LB disease 

and A53T AS tg mice [681-683] suggest that 
AS related synaptic dysfunction or axon 
degeneration, not nerve cell loss, may be the 
primary determinant of progression of the 
neurodegeneration [682,683], and loss of 
neurons is an epiphenomenon after the loss 
of synapses, defining PD a “synaptopathy”. 
This may allow to single out novel potential 
therapeutic targets among the AS synaptic 
partners for new treatment strategies in PD 
[684].

7.2.  Dementia with Lewy bodies and 
Parkinson disease-dementia

DLB and PDD are considered part of a spectrum 
associated with α-synucleinopathy. PDD 
implies PD with subsequently developing 
dementia; DLB is a pregressive dementia 
syndrome associated with several core clinical 
neuropsychiatric features, considered to be 
the second most common neurodegenerative 
dementia syndrome in the elderly [685]. An 

arbitrary cut-off is used: PD develops first 
followed after more than 1 year by dementia, 
the suggested diagnosis is PDD; if dementia 
develops first or within 1 year of PD diagnosis, 
then DLB is diagnosed. Distinction of the 
clinical, pathological and biochemical findings 
in both disorders may be difficult [9,686-689]. 
There is no “gold standard” for the pathological 
diagnosis of DLB and PDD. Their hallmark is 
AS pathology manifested as LBs or a variable 
mixture of AS and AD pathologies, which 
may interact synergistically [690-692]. Both 
cortical and subcortical AS pathologies have 
been suggested to be the main determinant 
[693,694], whereas others suggested AD 
pathology to be more important, particularly 
when the Aβ load may be similar to that in 
AD [695]. The severity and extent of AS are 
variable, and according to revised guidelines 
are scored semiquantitatively in specific 
brain areas [593,696-699]. AD pathology is a 
consistent but not universal finding in both 
disorders, differentiating two types of DLB: The 
“common form” is characterized by abundant 
neocortical senile plaques and NFTs in the 
limbic cortex; while “pure DLB” shows minimal 
AD lesions [700]. NFTs, being frequent in both 
DLB and PDD, are often restricted to limbic 
regions, whereas excessive tau pathology may 
be absent [687]. Beween 10 and 50% of PDD 
cases had enough AD lesions to attain the 
pathological diagnosis of definite AD using 
CERAD criteria [92,701-704], but PDD may 
also develop in the absence of significant AD 
pathology, related to higher Braak LB stages 
[702]. Reduced cortical cholinergic innervation 
in DLB and PDD is similar and lower than in AD 
[705,706]. Synaptic loss is a consistent feature 
in DLB and is of equal severity as in AD [707].

Despite many similarities between DLB 
and PDD, several morphological differences 
have been demonstrated, in particular higher 
amyloid plaque load in striatum, usually absent 
in non-demented PD [37,38,630,708], and 
more severe AS load in hippocampal CA2/3 
areas [429-431]. A recent study showed DLB 
cases having more severe Aβ load than PDD, 
but no differences in neuritic Braak and AS 
scores, while others found higher Aβ scores 
in cortical and subcortical areas [692]. Other 
differences between PDD and DLB are more 

Figure 8.  Scheme of the hypothetic progression pathways and stages of Lewy body (LB) disorders. The pathway 
for Parkinson’s disease (PD) is suggested to proceed through stage IIa (brainstem predominant), and 
that for dementia with LBs (DLB) and Alzheimer’s disease (AD) with LBs probably passes through stage 
IIb. For incidental LB disease (iLBD), both pathways seem possible, whereas only PD/ PD dementia 
(PDD), DLB, and the LB variant of AD (LBV/AD) progress to the neocortical stage [660].
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marked nigral cell loss and postsynaptic 
DA upregulation [709], and more severe 
cholinergic deficit in temporal cortex in PDD 
[710]. Both DLB and PDD are usually associated 
with mild cerebrovascular lesions, except in 
cases with severe AD pathology and cerebral 
amyloid angiopathy [691], and recent studies 
confirmed an inverse relationship between 
cerebrovascular lesions and the severity of 
LB pathology [711]. The role of microglia and 
inflammatory pathology in DLB and PDD 
is unresolved [687]. In conclusion, both DB 
and PDD show heterogenous pathology 
and neurochemistry, which depend on the 
different patterns of pathology supporting 
the hypothesis that these AS-related disorders 
and AD share a common, underlying molecular 
pathogenesis.

7.3. Multiple system atrophy
MSA is a usually sporadic, adult-onset, 
progressive neurodegenerative disease of 
unknwon etiology, the morphologic hallmark 
of which is the abnormal AS positive glial 
cytoplasmic inclusions (GCI) in oligodendrocytes 
[18] or Papp-Lantos bodies [712], see [13], and 
rare neuronal cytoplasmic inclusions (NCIs), 
associated with systemic neuronal loss, gliosis, 
myelin pallor, and axonal degeneration. The 
clinical terms MSA-P and MSA-C classify cases 
according to the predominant motor disorder 
due to abnormalities in the striatonigral (SND) 
and olivopontocerebellar systems (OPC) 
[29,30]. Macroscopic changes are atrophy and 
discoloration of putamen, depigmentation 
of SN, and/or atrophy of cerebellum, middle 
cerebellar peduncle, and pontine basis [330]. 
Histology shows neuronal loss and gliosis in 
the striatonigral system, locus ceruleus, and 
other regions, associated with widespread 
occurrence of argyrophilic AS-positive GCIs 
(Figure 9A-C) and, less frequent, NCIs (Figure 9D) 
in gray and white matter. They are often related 
to neuronal loss and disease duration [713-
716], although GCIs are more widespread 
[717]. A grading scheme of neuropathology, 
based on semiquantiative assessment of 
GCIs and neuronal loss in essential brain 
areas differentiated the various subtypes of 
MSA showed considerable variations in the 
morphological expression, but correlated well 

with clinical deficiencies and disease duration 
[718,719].

Ultrastructurally, GCIs are composed of 
randomly arranged tubules and filaments 
with 20-40 nm diameter associated with 
granular material [720]; showing AS in these 
structures [721]. NCIs show a meshwork of 
granule-associated filaments 18-28nm in 
diameter, similar to those of oligodendroglia 
[722]. Involvement of the autonomous nervous 
system leads to clinical autonomic disturbance 
[717,723]. It was discussed whether myelin loss 
in many networks is a primary event in MSA or 
due to neuronal depletion [724].

Biochemical studies showed increased 
insolubility of AS even in brain areas with 
few GCIs, indicating that AS aggregation 
precedes the formation of inclusions [21,346]. 
Immunoblotting of brain extracts showed 
19kDa species with higher molecular weight 
bands, representing aggregated protein [346], 
and a newly described specific antibody 
(5GA) detects AS deposits with much higher 
sensitivity [354]. GCIs contain modified AS 
nitrated and phosphorylated at Ser 129, which 
has an enhanced ability to form fibrils, while 

nitration may indicate a role of oxidative 
damage [122,521,725]. In addition to AS, GCIs 
and NCIs contain a large number of proteins, 
oligodendroglial markers, myelin basic protein 
(MBP), as well as p25α tubulin-polymerization-
promoting protein (TPPP) [726,727]; which 
promotes AS phosphorylation [728] and shows 
interaction with MBP (see [13,729]) (Table 3). 
The generation of tg animal models of MSA 
coupled with an increasing understanding of 
the biochemical structure and function of AS 
has highlighted the key pathological pathways 
thought to underly the neurodegeneration 
in MSA. OS and chronic inflammation [733], 
reduced oligodendroglial trophic support, 
and neuronal dysfunction associated with AS 
inclusions (GCIs) are suggested to contribute 
to neurodegeneration. The effect of AS on 
micro- and astroglia is currently a topic of 
intense research in MSA and PD [19]. Increasing 
evidence suggests that oligodendroglial 
dysfunction due to AS aggregation resulting 
in abnormalities of myelination, degeneration 
of the oligodendroglia-myalin-axon-neuron 
complex leading to neuronal degeneration 
may be important in MSA, supporting the 

Figure 9.  (A-C) Glial cytoplasmic inclusions (GCIs) in MSA: (A) in globus pallidus (Gallyas silver impregnation); 
(B) in pontine basis (α-synuclein); (C) in frontal white matter, anti-ubiquitin. (D) Neuronal cytoplasmic 
inclusion and neurites in pontine basis (α-synuclein) (GCIs glial cytoplasmic inclusions). A-D x 4000.
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working model of MSA (Figure 10) as a primary 
oligodendrogliopathy [729,734].

Recent reviews give insight into current 
knowledge about neuropathology, 
pathophysiology, genetics, and animal 
models of MSA [330,735-737]. The genetical, 
morphological, and pathogenic relations 
between PD and MSA are summarized in 
Figure 11.

8.  animal models of parkinson’s 
disease

In an attempt to shade light on the 
neurobiology of PD, numerous experimental 
models have been developed. They come 
from essentially 3 sources: pharmacological, 
e.g. reserpine, toxic e.g. MPTP [738], rotenone 
and paraquat [739-742], and genetic. Despite 
the fact that numerous mutations causing 
hereditary forms of PD have been identified 
in the last decade, current tg animal models 
do not adequately reproduce cardinal clinical 
and neuropathologic features of the human 
disease [99,743-747]. During the last years a 
myriad of different models carrying mutations 
similar to those found in humans, in Drosophila 
melanogaster [748-750], Caenorhabditis 
elegans [492,751] and in mammalians [752] 
have been developed to study the cellular 
mechanisms impaired in this disease [746]. 
Although some genetic models reproduced 
the key features of PD, most of them induced 
DA neurodegeneration, but did not succeed 
in reproducing both the broad pathology and 
progressive degenerating process in human PD 
[747,753,754]. To date, viral PD models comprise 
AS and LRRK2-based overexpression or mimic 
parkin loss of function by overexpression of 
parkin substrates [755]. These viral and other 
recent genetic models models are hoped to 
provide valuable insights into PD mechanisms 
in order to contribute to the development of 
therapeutic targets. 

Although the precise origin of AS in 
oligodendrocytes in MSA remains unknown, 
its presence as a key pathological hallmark of 
the disease in many tg animal models tried to 
reproduce the human disorder [99,756,757]. 
These and other models provide evidence 
of oligodegeneration as a result of human 

Constituents positively identified by routine immunohistochemistry

α-Synuclein (MS+) (Syn 202, 205, 215 > SNL-4 > LB509 > Syn 208), (S129-P, S87-P)

α-Tubulin (MS+)

β-Tubulin (MS+)

14-3-3 protein (in subset of GCIs)

Bcl-2 (MS+)

Carbonic anhydrase isoenzyme IIa (MS+)

cdk-5 (cyclin-dependent kinase 5) (MS+)

Midkinea

Tau2 (reversible on exposure to detergent)

DARPP32

Dorfin

Heat shock proteins Hsc70 and Hsp70 (MS+)

Isoform of 4-repeat tau protein (hypophosphorylated) (MS+)

DJ-1

LRRK2

Rab5, Rabaptin-5

Parkin

Mitogen-activated protein kinase (MAPK)

NEDD-8 (MS+)

Other microtubule-associated proteins (MAPs): MAP-1A and -1B; MAP-2 isoform 1, and isoform 4 (all MS+)

Phosphoinositide 3-kinase (P13K) (MS+)

p25α/TPPP (MS+) (tubulin polymerization-promoting protein)

Septin-2, -3, -5, -6 and -9

Synphilin-1

Transferrina

HtrA2/Omi

Ubiquitin (MS+) SUMO-1 (small ubiquitin modifier 1)

Leu-7a

p62-co-localization with α-synuclein (inconsistent)

Metallothionein-III (MT-III)

Candidate proteins that have so far eluded detection by routine immunohistochemistry

Actin, γ-1 and γ-2 propeptides (MS+)

Amyloid-b precursor protein (MS+)

β-Synuclein (MS+)

Cytokeratin

Desmin

Glial fibrillary acidic protein (GFAP) (MS+)

Myelin basic protein (MBP)-3, -4, -5 (MS+)

Myelin oligodendrocyte glycoprotein (MOG), α- and β-isoforms (MS+)

Myosin (9 distinct isoforms) (MS+)

Neurofilaments (NF-3, NF-HC, NF-LC) (MS+)

Vimentin

Table 3.  List of protein constituents identified in glial cytoplasmic inclusions (GCIs) from human multiple system 
atrophy brain (modified from [729]).

MS+: polypeptides identified by mass spectrometry following affinity purification of glial cytoplasmic inclusion body 
purification as described in [730-732]
a: Known oligodendroglial markers
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Figure 10.  Summary of working model for oligodendroglia dysfunction in multiple system atrophy (MSA). (1) Normal oligodendroglia and myelin sheath; initial altered 
function of p25α and myelin basic protein (MBP). (2) Accumulation of p25α within oligodendroglia. (3) Reduction of MBP and deposition of degraded MBP in 
affected cell body. (4) Deposition of amorphous and fibrillary α-synuclein species within oligodendroglia, thereby forming glial cytoplasmic inclusions (GCIs). 
(5) Amorphous material (α-synuclein) of isolated GCIs. (6, 7) Schematic of core fibril comprising two subfibrils and a strand of interconnected 3 to 6nm fibrils. (8) 
Amorphous material deposited within neuropil. (9) Resultant glia degeneration and demyelination. (10) Resultant neurodegeneration. After [729].

Figure 11.  Major genetic, morphological and pathogenetic relations between Parkinson disease and multiple 
system atrophy. AS: α-synuclein; LN: Lewy neurite; LB: Lewy body; GCI: glial cytoplasmic inclusions; 
NCI: neuronal cytoplasmic inclusion; MSA-P: multiple system atrophy with predominant parkinsonism; 
SNCA: α-synuclein gene.

AS overexpression in oligodendrocytes and 
a secondary neurodegenerative process, 
although, due to several deviations from 
human disease they are less than ideal as a 
model for MSA [330,758]. However, continued 
work with several models of MSA [759] and 
human samples, and lessons from other 
synucleinopathies, will shed new light on 
the underlying pathogenic mechanisms and 
increase the likelihood of developing disease-
modifying interventions.

9.  α-Synuclein as a biomarker for 
synucleinopathies

Numerous forms of AS can be released into 
cerebrospinal fluid (CSF) and other biological 
fluids of healthy subjects and patients with 
neurodegenerative disorders [760] and is also 
abundantly expressed in the hematopoetic 
system [190]. Full-length AS has been 
recovered from lumbar CSF in PD and DLB 
patients [731,761]. As a candidate biomarker 
of synucleinopathies, namely PD and DLB, 
AS determination in CSF [762] was hoped 
to improve the clinical diagnostic accuracy. 
Although AS is the main constitutent of LBs, 
the detection of AS in body fluids of patients 
with synucleinopathies has yielded promising 
but inconsistent results [763,764,764a]. Similar 
to divergent results on the plasma levels of 
AS in PD [765-767], retrospective studies of 
CSF provided inconclusive and contradictory 
results [731,760,768-771]. pAS was detected in 
PD samples, which was not the case for oligoAS 
or oligo-pAS [772]. Confirming several studies 

showing relatively low CSF AS concentrations 
in both PD and DLB [731,773-775], more 
recent ones reported significantly lower AS 
levels in PD [776,777] as well as in PD, DLB and 
MSA than in AD [777-779]. While CSF levels 
of AS oligomers were significantly increased 
in PD patients against controls [298,416,780], 
AD and progressive supranuclear palsy 
(PSP) [781], others were unanble to detect 
oligomeric AS in CSF [776]. Recent work 

detected alterations in AS phosphorylation 
(Ser129) in the CSF of PD patients [782]. 
However, CSF AS alone did not provide 
relevant information for PD diagnosis, showing 
low specificity, but a better performance was 
obtained with the total tau/AS ratio, giving 
a sensitivity of 89% and specificity of 61%, 
contributing to the determination of PD [777]. 
A recent study reported different levels of 
CSF biomarkers in different phenotypes of 
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PD, non-tremor-dominant (NT-PD) patients 
showing significantly higher levels of CSF 
tau and index tau/Aβ than early onset and 
tremor-dominant PD and controls, but no 
differences between NT-PD and AD [783]. 
These data were confirmed by personal 
studies [9], corroborating the opinion that 
CSF levels of tau may be a biomarker for the 
presence and severity of  neurodegeneration 
[784,785], while others did not see such 
biomarker changes [786-788]. Other recent 
studies showed that CSF AS is currently 
unsuitable to differentiate between PD and 
atypical parkinsonism [789]. The source of PD-
linked AS in human CSF remains unknown, but 
recent studies suggest that despite the higher 
levels in peripheral blood products, neurons in 
the CNS represent the principal source of AS 
in human CSF [790]. Postmortem CSF levels 
of oligomeric AS and pAS significantly raised 
in MSA compared to other controls and other 
synucleinopaties, but did not distinguish PD 
and DLB from PSP or control groups [791]. CSF 
AS levels did not differ significantly between 
DLB and/or PD and AD [792], but AS levels were 
reduced in DLB patients with long disease 
duration or worse cognitive performance 
[760,792]. DLB compared with PD, PDD, and 
AD showed the lowest CSF levels of Aβ42 and, 
when combined with CSF tau, differentiated 
DLB from PD and PDD; but not from AD [788], 
and PiB PET binding showed higher amyloid 
loaden in DLB and AD than in PD, PDD and 
controls [793,794]. While earlier studies 
showed increased CSF total (t)tau in both DLB 
and AD [795], others found differences for 
both t-tau and p-tau differentiating DLB from 
AD [796], and levels of t-tau and p-tau181 
were significantly increased in DLB [797]. 
Recent studies suggested that combinations 
of CSF measures may be able to differentiate 
DLB from other dementias: AS reduction in 
early DLB, a correlation between CSF-AS and 
Aβ42 measures (characteristic for DLB only), 
and total (t)-tau and p-tau 181, differentiating 
AD from DLB [798,799]. Combined analysis of 
CSF tau, Aβ42 and Aβ42/40 may differentiate 
between AD, DLB and PDD [800], while the 
differential association between amyloid 
precursor proteins sAPPα and sAPPβ with 
Aβ and tau species between DLB and AD 

suggests a relationship with their underlying 
pathologies [801]. Combination of CSF 
t-and p-tau, Aβ42, and MHGP (3-methoxy-
4-hydroxyphenyleneglycol) discriminated 
between AD and DLB with a sensitivity of 95% 
and a specificity of 90% [802]. In autopsy-
confirmed cases of DLB and AD, p-tau 181 
yielded only a sensitivity of 75%, and specificity 
of 61%, with diagnostic accuracy of 73% [803]. 
According to recent studies, reduction of 
dihydroxyphenylacetic acid was seen in both 
early PD and MSA, separating recent onset PD 
from controls with 100% sensitivity and 89% 
specificity, but was of no value in differing PD 
from MSA [804].

These conflicting data indicating 
a differential CSF pattern between 
synucleinopathies (and tauopathies) imply 
the development of novel techniques to 
specifically target and visualize AS and other 
proteins in brain and biological fluids in order 
to detect the complex interplay between 
misfolded proteins in the brain during 
these diseases. For a recent critical review 
of molecular genetics and biomarkers in LB 
related disorders (see [805]). The recently 
described AS antibody 5GA, and a novel one-
step time-resolved Förster’s response energy 
transfer (TR-FRET) immunoassay to quantify 
distinct AS species in CSF [776], may offer new 
perspectives for the development of in vivo 
diagnostic assays for AS-related diseases in 
body fluids. In general, longitudinal studies, 
pathological confirmation of diagnosis, 
and the combined approach may be the 
most promising way for the identification of 
(imaging and protein) biomarkers [806].

10. conclusions and final remarks

AS is a small, soluble neuronal protein 
with predominantly presynaptic location 
in brain as well as in many other organs. 
Its physiological functions regulating 
symaptic vesicle traffic, neuronal function, 
neurotransmitter release, etc, are not fully 
understood. In its physiological form, AS 
occurs in both soluble and membrane-bound 
form. Under pathological conditions, like due 
to gene mutations and exogenous factors, 
or both, AS undergoes post-tranlational 

changes and aggregation leading to 
formation of deposits of insoluble proteins. 
Intraneuronal and axonal deposits, LBs and 
LNs, the histological hallmarks of LB disorders 
(PD, DLB), and intracytoplamic deposits in 
oligodendroglia (GCIs) of MSA, are associated 
with degeneration and loss of specific 
neuronal populations and networks in these 
disorders. They are sequelae of complicated 
molecular changes due to mitochondrial 
dysfunction, autophagy, oxidative and 
nitrative changes, disorders of calcium 
homeostasis, neuroinflammation, and other 
deleterious factors leading to energy deficit 
and cell death. Neurotoxicity of AS, like of 
other pathogenic proteins, is suggested to be 
caused by soluble oligomers or intermediate 
proteins and not by insoluble aggregates. 
Whether LBs and other protein deposits 
are detrimental or protective is a matter 
of discussion; they may either be innocent 
bystanders or represent an end stage of failed 
cytoprotective elimination of toxic proteins 
as a defense mechanism against the primary 
process underlying nerve cell death [807,808]. 
The recent demonstration of presynaptic 
deposition of AS in PD and DLB suggests them 
to represent synaptopathies, while deposition 
of AS in oligodendroglia in MSA inducing 
demyelination and neuronal degeneration 
supports the working hypothesis of a 
primary oligodendrogliopathy. Interaction 
of AS with other pathological proteins may 
explain the frequent overlap between various 
proteinopathies, e.g. PD and DLB with AD. 
“Prion-like” interneuronal seeding/spread 
of pathological proteins is suggested an 
important mechanism of disease propagation 
[27]. Since most of the available models 
do not exactly reproduce the molecular 
and morphological key features of PD and 
other synucleinopathies, new viral and/or 
genetic models may provide deeper insights 
into neurodegeneration in these disorders. 
Although increasing evidence suggests that 
AS is an interesting therapeutic target in PD 
[809], future clinical trials need more exact 
analysis of AS and other pathogenic proteins 
excreted into body fluids by biomarkers that 
reflect AS misfolding in the brain to enable 
more accurate diagnosis of these disorders 
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[810]. Early intervention into the aggregation 
process by development of ligands that 
can bind to misfolded proteins (eg, heat 
shock proteins, clearing toxic oligomers, 
stimulation of proteolysis, anti-prion drugs) 
or modification of AS phosphorylation [811], 
may allow detection of AS pathology even 
before the onset of clinical symptoms. Such 

surrogate markers of disease progression 
would be important tools for clinical trials 
aiming to achieve disease modification [812]. 
These developments and the development 
of new targets or novel candidate drugs that 
might be neuroprotective for PD and other 
proteinopathies are major challenges of 
modern neurosciences. 
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