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NATRIURETIC PEPTIDES
IN BRAIN PHYSIOLOGY

Abstract

Natriuretic peptides (NPs) regulate salt and water homeostasis by inducing natriuresis and diuresis in the kidney.
These actions in addition to those via the heart and vascular system play important roles in the regulation of
blood pressure. In the central nervous system NPs play a significant role in neuronal development, synaptic
transmission and neuroprotection. Currently, six different human NPs have been described: atrial natriuretic
peptide (ANP), urodilatin (URO, renal natriuretic peptide), brain natriuretic peptide (BNP), and C-type natriuretic
peptide (CNP) as well as guanylin and uroguanylin. ANP, URO and BNP activate the natriuretic peptide receptor
A (NPR-A or guanylate cyclase A (GC-A)) while CNP activates natriuretic peptide receptor B (NPR-B or guanylate
cyclase B (GC-B)). Guanylin and uroguanylin are known to activate guanylate cyclase C (GC-C). The receptors
GC-A, GC-B, and GC-C are widely expressed in the human body. Currently, GC-B and CNP seems to have the
highest expression in central nervous system compared to other NPs and their receptors. All known NPs generate
intracellular cyclic GMP (cGMP) by activating their specific guanylate cyclase receptors. Subsequently, cGMP is
able to activate protein kinase | or Il (PKG | or Il) and/or directly regulate transmembrane proteins such as ion
channels, transporters and pumps. NPs also bind to the natriuretic peptide receptor C (also called clearance
receptor NPR-C) which is a major pathway for the degradation of NPs and has no guanylate cyclase activity. In
this review we will focus on new insights regarding the physiological effects of NPs in the brain, especially specific
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1. Introduction

Natriuretic peptides (NPs)induce natriuresisand
diuresis in the kidney and cause vasodilatation
of the blood vessels and therefore are involved
in blood pressure regulation [1]. Six different
NPs have been identified: atrial natriuretic
peptide (ANP), urodilatin (URO) as the kidney
isoform of ANP, brain natriuretic peptide (BNP),
C-type natriuretic peptide (CNP) as well as the
intestinal natriuretic peptides guanylin and
uroguanylin. They all share a similar peptide
structure. A functionally important structural
feature of ANP, URO, BNP and CNP is the ring
structure formed by a disulfide bridge between
two cysteine residues (see Figure 1).

1.1 Natriuretic peptides and their

function

ANP is currently the most extensively
investigated natriuretic peptide. Regulation
of ANP synthesis in the heart atrium is
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areas of their signaling pathways in neurons and glial cells.
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directly dependent on volume expansion,
[2-4],
pH, increased heart

hypoxia, decrease of intracellular

rate, atrial stretch,
sympathetic stimuli and metabolic factors
[5-7]. In the kidneys, ANP affects sodium (Na*)
and water reabsorption along the nephron
by inhibiting various transport systems such
as Na*/H*-antiporter [8], Na*/K*-ATPase [9,10],
Na*-K*-2Cl-cotransporter [11], non-selective
cation channels [12], and aquaporins (AQP)
(via inhibition of the antidiuretic hormone
ADH) [13]. ANP mostly works as an opponent
to the renin angiotensin aldosterone system
(RAAS) by inhibiting renin secretion [14]. In
addition to the mentioned actions of ANP,
it is also found to decrease salt appetite and
the production of ADH in the hypothalamus
when injected into the ventricular system of
the brain [15,16]. Furthermore, it decreases
sympathetic activity and lowers baro-
receptor responses to high blood pressure

[17-20].

Although BNP was discovered in the brain
and named accordingly, it is actually produced
in the heart and its major function lies in
the regulation of the cardiovascular system.
ANP and BNP can also be used as markers for
Alzheimer’s disease as well as stroke and are
possibly involved in the pathophysiological
mechanisms of these diseases [21-25]. It has
been known that during ischemic stroke ANP
increases permeability of brain capillaries
and it's expression is increased in glial cells
surrounding the ischemic core [26-28]. Even
though NPs were shown to increase capillary
permeability in ischemic stroke and intracranial
hemorrhage, ANP is able to reduce the size
of brain areas affected with edema in those
conditions [29,30]. The beneficial effects of ANP
on developing brain edema could be due to
inhibition of immune system cells and microglia
as recently suggested [31] and by inhibition of
mediators of inflammation activated by injury
(unpublished results from our group).
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CNP is mainly expressed in the central
nervous system, bone and vasculature. In
hypothalamus CNP expression is 50 times
higher compared to ANP and BNP [32,33].
In a similar but more potent way than ANP,
CNP, when applied intracranially, inhibits the
production of ADH by inhibiting the L-type
Ca?*-channels [34-37].

1.2 Receptors and signaling pathways
of natriuretic peptides
The intracellular concentration of cyclic GMP
(cGMP - the primary second messenger for
NPs) is elevated by activation of different
guanylate cyclase receptors. cGMP activates
cGMP-dependent protein kinase | (PKG 1) or
Il (PKG 1) as well as cGMP gated ion channels
[38,39]. cGMP via activation of different cGMP
dependent phosphodiesterases (PDE2, PDE3
and PDE5) which degrade cAMP, influence
the intracellular cAMP concentration and it's
signaling cascade [39] (Figure 2).

The growing family of guanylate cyclases
includes soluble cytoplasmatic guanylate
cyclase which is a receptor for nitric oxide (NO)
and carbon monoxide (CO) [40] as well as 7
types of transmembrane guanylate cyclases.
Natriuretic peptide receptor A (NPR-A) known
as guanylate cyclase A (GC-A), natriuretic
peptide receptor B (NPR-B or GC-B), and
guanylate cyclase C (GC-C) are receptors for
known natriuretic peptides and are involved in
the regulation of salt, water and blood pressure
homeostasis. GC-A is the receptor for ANP, BNP
and urodilatin while GC-B is the receptor for
CNP. GC-C is bound by guanylin, uroguanylin
and heat-stable enterotoxin of E. coli (STa)
(Figure 3).

AlINPs and their receptors can be foundin the
brain. Expression of NPs and their receptors is
giveninTable 1. mRNA for GC-A is located in the
glial cells as well as in neurons of the forebrain
[41,42]. Even though NPR-B (GC-B) and it's
binding hormone CNP are the most abundant
in the brain (Table 1) it’s truncated form, NPR-Bi
shows a much stronger expression signal in the
brain [43-45]. NPR-Bi acts as tyrosine kinase and
not as guanylate cyclase, however it's specific
function is still unknown. GC-C is the receptor
for the intestinal natriuretic peptides guanylin
and uroguanylin and it's mRNA is expressed in

e

Translational Neuroscience VERSITA

Figure 1. Structure of human atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic
peptide (CNP). All three peptides have the ring structure formed by a disulfide bridge between two
cysteine residues and share 11 amino acids which are presented as gray circles.
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Figure 2. Signaling pathway of natriuretic peptides. Activation of guanylate cyclase A, B and C (GC-A/B/C)
also known as natriuretic peptide receptor A and B (NPR-A/B) and GC-C for guanylin peptides leads
to intracellular increase in cGMP concentration. cGMP activates soluble protein kinase G | (PKG
1) or membrane bound protein kinase G Il (PKG Il) as well as ion channels and ¢cGMP dependent
phosphodiesterases (PDE).
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the brain. However, the physiological effects of
intestinal natriuretic peptides in the brain are
still unknown [46]. GC-A, GC-B and GC-C are
consistent of distinctive parts. These are the
extracellular domain, transmembrane region,
kinase-like domain and guanylate cyclase
catalytic domain (Figure 3) [47,48]. The NPR-C
does not have guanylate cyclase activity and
it mainly functions as a clearance receptor
(Figure 3). It binds ANP, BNP, and CNP which
results in endocytosis, hormonal degradation,
activation of pertussis toxin sensitive G-protein
and inhibition of adenylate cyclase (responsible
for increasing intracellular cAMP concentration)
and protein kinase C [49-52]. mRNA for NPR-C
is located in the kidney, heart, cerebral cortex
and cerebellar tissue (see Table 1) [53]. It was
suggested that the mechanism by which NPs
display a neuromodulatory effect involved
inhibition of PKC by NPR-C [54]. In cultured
rat astrocytes, activation of NPR-C led to the
inhibition of DNA synthesis and consequently
the suppression of cell proliferation [55].

Other isoforms of guanylate cyclases (GC-
D, GC-E, GC-F) are located in sensory organs
but their ligands are still unknown [56-60].
Recently it was shown that GC-D is activated
by bicarbonate ions [61]. Another guanylate
cyclase named G (GC-G or GC-1) is an orphan
receptor located in skeletal muscles, lung and
intestine. Current research has shown that GC-G
is the only type of guanylate cyclase present in
principal cells of the cortical collecting duct in
the rat kidney [62-64].

2. Natriuretic  peptides and

neuronal function

cGMP, regardless of it's source (NO, and
soluble guanylate cyclase or NPs and their

receptors) plays an important role in brain

physiology.
importance regarding modulations of long-

It's actions are of particular

term changes of synaptic activity in the
cerebellum (by
pre-synaptic transmitter release [65]) and

hippocampus, amygdala,

post-synaptic functions via activation of
different PKG isoforms [66,67]. ANP negatively

modulates noradrenergic neurotransmission
by inhibiting K*-induced Ca?" uptake which
decreases the norepinephrine release at the
pre-synaptic site of the neurons [68].
Furthermore, cGMP signaling pathways (both
NO and NPs related) change during neuronal
development. ANP binding receptor(s) are up-
regulated during neuronal differentiation (in the

i NPR-A (GC-A) |
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Figure 3. Structural differences between natriuretic peptide receptor A and B (NPR-A/B) and clearance receptor
known as natriuretic peptide receptor C (NPR-C) which shows no guanylate cyclase activity. The NPR-
Bi receptor is a splice variant of the NPR-B receptor which also has no guanylate cyclase activity but it
most likely displays tyrosine kinase-like activity. NPR-A is the receptor for atrial natriuretic peptide (ANP)
and brain natriuretic peptide (BNP) while NPR-B is specific for the C-type natriuretic peptide (CNP). The
clearance receptor NPR-C binds all three natriuretic peptides.

Table 1. Expression of natriuretic peptides and their receptors in mammalian central nervous (modified from Cao LH at al 2008 [73]).

ANP BNP CNP NPR-A NPR-B NPR-C
Cerebral cortex weak strong strong moderate moderate strong
Amygdaloid nuclei moderate weak strong weak moderate strong
Hypothalamus strong strong strong strong strong strong
Cerebellum scattered cells weak strong weak moderate moderate
Hippocampus scattered cells weak weak weak weak moderate
Retina weak weak weak weak weak moderate
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telencephalon in E13 mice, dorsal root ganglion
cells and peripheral nerves in E14 mice). The
highest ANP binding was seen in the rat cortical
neuroepithelial cells at E17. ANP binding sites
mostly correspond to localization of clearance
receptor NPR-C but not GC-A receptor [69-71].
Thus, it is not surprising that an increase of
intracellular cGMP concentration by activation of
GC-A is not substantial in differentiated cells [72].

Recent studies showed a neuroprotective
the cGMP
pathway. An increase of intracellular cGMP

role of NPs and signaling

concentration protects neurons against
excitotoxic, metabolic, oxidative damages as
well as N-methyl D-aspartate (NMDA)-induced

neurotoxicity [73].

3. Natriuretic peptides and glial
cells

Translational Neuroscience

source and target of NPs where they could be
involved in glia communication with neurons
and brain capillaries [31,74]. However, some
of the published effects of cGMP on glial cells
are not proven to be due to action of NPs but
are more likely due to the presence of the NO
system and activation of soluble guanylate
cyclase.

During ischemic stroke and brain injury
astrocytes can swell due to changes in pH
and increase in extracellular K* concentration.
Since NPs regulate ion and water transport
as well as pH-regulating transport systems in
kidney cells, it is not surprising that NPs inhibit
osmotic swelling in astrocytes [75]. CNP
influences ion transport by inhibiting Na*/H*
exchanger and thereby lowers the intracellular
pH [76], It also increases expression of the
most important aquaporin (type 4) present
in astrocytes responsible for brain water

v
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4. Conclusion

Despite the abundance of the evidence

suggesting that NPs play an important
physiological role in certain pathophysiological
conditions such as stroke and brain trauma,
there still remain many unanswered questions.
Future investigations need to address the
variety of NPs, their receptors and the signaling
pathways involved in the brain. To be able to
use potential beneficial effects of NPs studies
should identify the effects of NPs on the
immunological response, neurons and glial

cells during pathological conditions.
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