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1. Introduction

Natriuretic peptides (NPs) induce natriuresis and 
diuresis in the kidney and cause vasodilatation 
of the blood vessels and therefore are involved 
in blood pressure regulation [1]. Six different 
NPs have been identified: atrial natriuretic 
peptide (ANP), urodilatin (URO) as the kidney 
isoform of ANP, brain natriuretic peptide (BNP), 
C-type natriuretic peptide (CNP) as well as the 
intestinal natriuretic peptides guanylin and 
uroguanylin. They all share a similar peptide 
structure. A functionally important structural 
feature of ANP, URO, BNP and CNP is the ring 
structure formed by a disulfide bridge between 
two cysteine residues (see Figure 1). 

1.1  Natriuretic peptides and their 
function

ANP is currently the most extensively 
investigated natriuretic peptide. Regulation 
of ANP synthesis in the heart atrium is 

directly dependent on volume expansion, 
hypoxia, [2-4], decrease of intracellular 
pH, increased heart rate, atrial stretch, 
sympathetic stimuli and metabolic factors 
[5-7]. In the kidneys, ANP affects sodium (Na+) 
and water reabsorption along the nephron 
by inhibiting various transport systems such 
as Na+/H+-antiporter [8], Na+/K+-ATPase [9,10], 
Na+-K+-2Cl--cotransporter [11], non-selective 
cation channels [12], and aquaporins (AQP) 
(via inhibition of the antidiuretic hormone 
ADH) [13]. ANP mostly works as an opponent 
to the renin angiotensin aldosterone system 
(RAAS) by inhibiting renin secretion [14]. In 
addition to the mentioned actions of ANP, 
it is also found to decrease salt appetite and 
the production of ADH in the hypothalamus 
when injected into the ventricular system of 
the brain [15,16]. Furthermore, it decreases 
sympathetic activity and lowers baro-
receptor responses to high blood pressure 
[17-20]. 

Although BNP was discovered in the brain 
and named accordingly, it is actually produced 
in the heart and its major function lies in 
the regulation of the cardiovascular system. 
ANP and BNP can also be used as markers for 
Alzheimer’s disease as well as stroke and are 
possibly involved in the pathophysiological 
mechanisms of these diseases [21-25]. It has 
been known that during ischemic stroke ANP 
increases permeability of brain capillaries 
and it’s expression is increased in glial cells 
surrounding the ischemic core [26-28]. Even 
though NPs were shown to increase capillary 
permeability in ischemic stroke and intracranial 
hemorrhage, ANP is able to reduce the size 
of brain areas affected with edema in those 
conditions [29,30]. The beneficial effects of ANP 
on developing brain edema could be due to 
inhibition of immune system cells and microglia 
as recently suggested [31] and by inhibition of 
mediators of inflammation activated by injury 
(unpublished results from our group). 
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Abstract
Natriuretic peptides (NPs) regulate salt and water homeostasis by inducing natriuresis and diuresis in the kidney. 
These actions in addition to those via the heart and vascular system play important roles in the regulation of 
blood pressure. In the central nervous system NPs play a significant role in neuronal development, synaptic 
transmission and neuroprotection. Currently, six different human NPs have been described: atrial natriuretic 
peptide (ANP), urodilatin (URO, renal natriuretic peptide), brain natriuretic peptide (BNP), and C-type natriuretic 
peptide (CNP) as well as guanylin and uroguanylin. ANP, URO and BNP activate the natriuretic peptide receptor 
A (NPR-A or guanylate cyclase A (GC-A)) while CNP activates natriuretic peptide receptor B (NPR-B or guanylate 
cyclase B (GC-B)). Guanylin and uroguanylin are known to activate guanylate cyclase C (GC-C). The receptors 
GC-A, GC-B, and GC-C are widely expressed in the human body. Currently, GC-B and CNP seems to have the 
highest expression in central nervous system compared to other NPs and their receptors. All known NPs generate 
intracellular cyclic GMP (cGMP) by activating their specific guanylate cyclase receptors. Subsequently, cGMP is 
able to activate protein kinase I or II (PKG I or II) and/or directly regulate transmembrane proteins such as ion 
channels, transporters and pumps. NPs also bind to the natriuretic peptide receptor C (also called clearance 
receptor NPR-C) which is a major pathway for the degradation of NPs and has no guanylate cyclase activity. In 
this review we will focus on new insights regarding the physiological effects of NPs in the brain, especially specific 
areas of their signaling pathways in neurons and glial cells.
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Figure 1.  Structure of human atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic 
peptide (CNP). All three peptides have the ring structure formed by a disulfide bridge between two 
cysteine residues and share 11 amino acids which are presented as gray circles. 
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Figure 1. Structure of human atrial natriuretic peptide (ANP), brain natiuretic 
peptide (BNP) and c-type natriuretic peptide (CNP). All three peptides have the 
ring structure formed by a disulfide bridge between two cysteine residues and 
share 11 amino acids which are presented as gray circles.  

G 
V 

R 
G 
F 

K 

S Q C G S 

M D 
R 
I 

S 
S 
S 

C 
S G G L 

K 
V 
L 
R 
R 

P K M 

H BNP 

Figure 2.  Signaling pathway of natriuretic peptides. Activation of guanylate cyclase A, B and C (GC-A/B/C) 
also known as natriuretic peptide receptor A and B (NPR-A/B) and GC-C for guanylin peptides leads 
to intracellular increase in cGMP concentration. cGMP activates soluble protein kinase G I (PKG 
I) or membrane bound protein kinase G II (PKG II) as well as ion channels and cGMP dependent 
phosphodiesterases (PDE). 
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Figure 2. Signaling pathway of natriuretic peptides. Activation of guanylate 
cyclase A, B and C (GC-A/B/C) also known as natriuretic peptide receptor A and 
B (NPR-A/B) and GC-C for guanylin peptides leads to intracellular increase in 
cGMP concentration. cGMP activates soluble protein kinase G I (PKG I) or 
membrane bound protein kinase G II (PKG II) as well as ion channels and cGMP 
dependent phosphodiesterases (PDE).  

CNP is mainly expressed in the central 
nervous system, bone and vasculature. In 
hypothalamus CNP expression is 50 times 
higher compared to ANP and BNP [32,33]. 
In a similar but more potent way than ANP, 
CNP, when applied intracranially, inhibits the 
production of ADH by inhibiting the L-type 
Ca2+-channels [34-37]. 

1.2  Receptors and signaling pathways 
of natriuretic peptides

The intracellular concentration of cyclic GMP 
(cGMP - the primary second messenger for 
NPs) is elevated by activation of different 
guanylate cyclase receptors. cGMP activates 
cGMP-dependent protein kinase I (PKG I) or 
II (PKG II) as well as cGMP gated ion channels 
[38,39]. cGMP via activation of different cGMP 
dependent phosphodiesterases (PDE2, PDE3 
and PDE5) which degrade cAMP, influence 
the intracellular cAMP concentration and it’s 
signaling cascade [39] (Figure 2). 

The growing family of guanylate cyclases 
includes soluble cytoplasmatic guanylate 
cyclase which is a receptor for nitric oxide (NO) 
and carbon monoxide (CO) [40] as well as 7 
types of transmembrane guanylate cyclases. 
Natriuretic peptide receptor A (NPR-A) known 
as guanylate cyclase A (GC-A), natriuretic 
peptide receptor B (NPR-B or GC-B), and 
guanylate cyclase C (GC-C) are receptors for 
known natriuretic peptides and are involved in 
the regulation of salt, water and blood pressure 
homeostasis. GC-A is the receptor for ANP, BNP 
and urodilatin while GC-B is the receptor for 
CNP. GC-C is bound by guanylin, uroguanylin 
and heat-stable enterotoxin of E. coli (STa) 
(Figure 3). 

All NPs and their receptors can be found in the 
brain. Expression of NPs and their receptors is 
given in Table 1. mRNA for GC-A is located in the 
glial cells as well as in neurons of the forebrain 
[41,42]. Even though NPR-B (GC-B) and it’s 
binding hormone CNP are the most abundant 
in the brain (Table 1) it’s truncated form, NPR-Bi 
shows a much stronger expression signal in the 
brain [43-45]. NPR-Bi acts as tyrosine kinase and 
not as guanylate cyclase, however it’s specific 
function is still unknown. GC-C is the receptor 
for the intestinal natriuretic peptides guanylin 
and uroguanylin and it’s mRNA is expressed in 
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ANP BNP CNP NPR-A NPR-B NPR-C

Cerebral cortex weak strong strong moderate moderate strong

Amygdaloid nuclei moderate weak strong weak moderate strong

Hypothalamus strong strong strong strong strong strong

Cerebellum scattered cells weak strong weak moderate moderate

Hippocampus scattered cells weak weak weak weak moderate

Retina weak weak weak weak weak moderate

Table 1.  Expression of natriuretic peptides and their receptors in mammalian central nervous (modified from Cao LH at al 2008 [73]).

Figure 3.  Structural differences between natriuretic peptide receptor A and B (NPR-A/B) and clearance receptor 
known as natriuretic peptide receptor C (NPR-C) which shows no guanylate cyclase activity. The NPR-
Bi receptor is a splice variant of the NPR-B receptor which also has no guanylate cyclase activity but it 
most likely displays tyrosine kinase-like activity. NPR-A is the receptor for atrial natriuretic peptide (ANP) 
and brain natriuretic peptide (BNP) while NPR-B is specific for the C-type natriuretic peptide (CNP). The 
clearance receptor NPR-C binds all three natriuretic peptides. 
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Figure 3. Structural differences between natriuretic peptide receptor A and B 
(NPR-A/B) and clearance receptor known as natriuretic peptide receptor C (NPR-
C) which shows no guanylate cyclase activity. The NPR-Bi receptor is a splice 
variant of the NPR-B receptor which also has no guanylate cyclase activity but it 
most likely displays tyrosine kinase-like activity. NPR-A is the receptor for atrial 
natiuretic peptide (ANP) and brain natriuretic peptide (BNP) while NPR-B is 
specific for the C-type natriuretic peptide (CNP). The clearance receptor NPR-C 
binds all three natriuretic peptides.  
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the brain. However, the physiological effects of 
intestinal natriuretic peptides in the brain are 
still unknown [46]. GC-A, GC-B and GC-C are 
consistent of distinctive parts. These are the 
extracellular domain, transmembrane region, 
kinase-like domain and guanylate cyclase 
catalytic domain (Figure 3) [47,48]. The NPR-C 
does not have guanylate cyclase activity and 
it mainly functions as a clearance receptor 
(Figure  3). It binds ANP, BNP, and CNP which 
results in endocytosis, hormonal degradation, 
activation of pertussis toxin sensitive G-protein 
and inhibition of adenylate cyclase (responsible 
for increasing intracellular cAMP concentration) 
and protein kinase C [49-52]. mRNA for NPR-C 
is located in the kidney, heart, cerebral cortex 
and cerebellar tissue (see Table 1) [53]. It was 
suggested that the mechanism by which NPs 
display a neuromodulatory effect involved 
inhibition of PKC by NPR-C [54]. In cultured 
rat astrocytes, activation of NPR-C led to the 
inhibition of DNA synthesis and consequently 
the suppression of cell proliferation [55].

Other isoforms of guanylate cyclases (GC-
D, GC-E, GC-F) are located in sensory organs 
but their ligands are still unknown [56-60]. 
Recently it was shown that GC-D is activated 
by bicarbonate ions [61]. Another guanylate 
cyclase named G (GC-G or GC-1) is an orphan 
receptor located in skeletal muscles, lung and 
intestine. Current research has shown that GC-G 
is the only type of guanylate cyclase present in 
principal cells of the cortical collecting duct in 
the rat kidney [62-64].

2.  Natriuretic peptides and 
neuronal function

cGMP, regardless of it’s source (NO, and 
soluble guanylate cyclase or NPs and their 

receptors) plays an important role in brain 
physiology. It’s actions are of particular 
importance regarding modulations of long-
term changes of synaptic activity in the 
hippocampus, amygdala, cerebellum (by 
pre-synaptic transmitter release [65]) and 
post-synaptic functions via activation of 
different PKG isoforms [66,67]. ANP negatively 

modulates noradrenergic neurotransmission 
by inhibiting K+-induced Ca2+ uptake which 
decreases the norepinephrine release at the 
pre-synaptic site of the neurons [68]. 

Furthermore, cGMP signaling pathways (both 
NO and NPs related) change during neuronal 
development. ANP binding receptor(s) are up-
regulated during neuronal differentiation (in the 
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telencephalon in E13 mice, dorsal root ganglion 
cells and peripheral nerves in E14 mice). The 
highest ANP binding was seen in the rat cortical 
neuroepithelial cells at E17. ANP binding sites 
mostly correspond to localization of clearance 
receptor NPR-C but not GC-A receptor [69-71]. 
Thus, it is not surprising that an increase of 
intracellular cGMP concentration by activation of 
GC-A is not substantial in differentiated cells [72].

Recent studies showed a neuroprotective 
role of NPs and the cGMP signaling 
pathway. An increase of intracellular cGMP 
concentration protects neurons against 
excitotoxic, metabolic, oxidative damages as 
well as N-methyl D-aspartate (NMDA)-induced 
neurotoxicity [73]. 

3.  Natriuretic peptides and glial 
cells

Glial cells with the necessary expressed 
proteins for NP signaling are proposed to be a 

source and target of NPs where they could be 
involved in glia communication with neurons 
and brain capillaries [31,74]. However, some 
of the published effects of cGMP on glial cells 
are not proven to be due to action of NPs but 
are more likely due to the presence of the NO 
system and activation of soluble guanylate 
cyclase.

During ischemic stroke and brain injury 
astrocytes can swell due to changes in pH 
and increase in extracellular K+ concentration. 
Since NPs regulate ion and water transport 
as well as pH-regulating transport systems in 
kidney cells, it is not surprising that NPs inhibit 
osmotic swelling in astrocytes [75]. CNP 
influences ion transport by inhibiting Na+/H+ 
exchanger and thereby lowers the intracellular 
pH [76], It also increases expression of the 
most important aquaporin (type 4) present 
in astrocytes responsible for brain water 
transport via the blood-brain barrier and 
cerebrospinal fluid [77]. 

4. Conclusion 

Despite the abundance of the evidence 
suggesting that NPs play an important 
physiological role in certain pathophysiological 
conditions such as stroke and brain trauma, 
there still remain many unanswered questions. 
Future investigations need to address the 
variety of NPs, their receptors and the signaling 
pathways involved in the brain. To be able to 
use potential beneficial effects of NPs studies 
should identify the effects of NPs on the 
immunological response, neurons and glial 
cells during pathological conditions. 
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