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Abstract
In neuronal circuits, excitatory synaptic transmission predominantly occurs at postsynaptic protrusions called 
dendritic spines. Spines are highly plastic structures capable of formation, enlargement, shrinkage, and 
elimination over time.  Individual spine morphology is widely variable, and evidence suggests these differences 
in morphology are relevant to spine function.  Recent reports provide evidence that spine structural plasticity 
underlies functional synaptic changes, including those seen in animal models of learning and memory plasticity.  
Conversely, impairments in cognitive functions, such as those commonly seen in aging, have recently been 
linked to and correlated with alterations in spine density and morphology. In addition, dendritic spine density 
and morphology also appear to be altered in various transgenic animal models of neurodegenerative diseases. 
Ultimately, an understanding of the synaptic basis of age- and disease-related cognitive impairments may lead 
to the development of drug treatments that can restore or protect synaptic profiles in neural circuits that mediate 
cognition.  

Abbreviations

AMPA	� α-amino-3-hydroxyl-5-methyl-4-
isoxazole-propionic acid

NMDA	 N-methyl-D-aspartate
SSTEM	� serial section transmission electron 

microscopy
PP	 perforant path
DNMS	 delayed nonmatching-to-sample
EM	 electron microscopy
AD	 Alzheimer’s disease
HD	 Huntington’s disease
PD	 Parkinson’s disease
DA	 dopamine
MSN	 medium spiny neuron
DLB	 dementia with Lewy bodies
CJD	 Creutzfeldt-Jakob disease
PrP	 prion protein
Ab	 amyloid beta protein
CDR	 clinical dementia rating
APP	 amyloid precursor protein

1. Introduction

The vast majority of excitatory connections 
within neuronal circuits form synapses 

onto dendritic spines, which are specialized 
postsynaptic structures for glutamatergic 
neurotransmission. These tiny protrusions 
generally range between 0.001 and 1 µm3 in 
volume, and are studded along the dendritic 
shafts of principal neurons in densities as high 
as 10 spines per mm of dendrite [1]. Spines play 
multiple roles in neuronal circuits; for example, 
the presence of spines drastically enhances the 
number of synaptic connections per area of 
dendrite, and spines also act to maintain input 
specificity by serving as isolated microdomains 
for calcium dynamics, receptor trafficking, and 
intracellular signaling molecules (for reviews, 
see [2-5]).

Spines vary widely in their morphology 
along a dendrite (Figure 1). Investigators have 
divided spines into three basic morphological 
subtypes; spines with no necks and a stubby-like 
appearance (“stubby spines”), spines with small 
necks and a large, often complex, and irregular 
heads (“mushroom spines”), spines with and 
thin necks and small heads (“thin spines”) [6]. An 
additional set of structures called filopodia have 
long, thin protrusions with no obvious head. 
Filopodia, however, are most commonly seen 

during development and are rarely seen in the 
mature brain [7]. It is well established that the 
large majority of spines in the adult brain exhibit 
thin spine morphology [8].

Evidence suggests spine morphology may 
be a major determinant of spine stability and 
spine synaptic strength.  For example, in vivo 
evidence from mouse neocortex has shown 
that a majority of mushroom-type spines 
remain stable across multiple days or even 
months [9-11], while thin spines often appear 
and disappear rapidly (i.e., within a day) [7, 10, 
12, 13].  These differences suggest that spine 
subtypes have different roles maintaining 
synaptic stability and plasticity within neural 
circuits.  Spine morphological differences are 
also reflected by distinct physiological and 
molecular characteristics; for example, large 
spines are dominated by α-amino-3-hydroxyl-
5-methyl-4-isoxazole-propionic acid-type 
(AMPA) glutamate receptors and have greater 
glutamate-elicited excitatory postsynaptic 
potentials, while thin spines appear to be 
N-methyl-D-aspartate (NMDA) receptor-
dominated and comparatively less sensitive to 
glutamate [14-16].
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Taken together, these observations raise 
fundamental questions regarding how spine 
morphological plasticity might underlie 
cognitive functions such as learning and 
memory [13,17-19]. There is some evidence 
demonstrating spine morphological plasticity 
with learning [20-25], as well as evidence that 
the converse hypothesis may be true; that is, 
failure of spine formation and morphological 
plasticity may contribute to impairments in 
cognition [26]. Additional support for the 
latter hypothesis comes from studies that 
report alterations of spine numbers and 
morphology in animal models of aging [27-32] 
or neurodegenerative disease [33-39], both 
of which are characterized by compromised 
cognitive function.  

It is this last area of research that the current 
review will focus on.  As the aging population 
grows, understanding the synaptic basis 
of age- and neurodegeneration-associated 
cognitive decline could identify rational targets 
for therapeutic intervention, and perhaps most 
importantly, prevention.  Studies focused on 
abnormal patterns of spine morphology and 
altered plasticity in aging and with disease can 
also be informative as to how spines function in 
the healthy brain. The remainder of this review, 
therefore, will focus on three themes: 1) a brief 
discussion of the techniques that are commonly 
used to visualize dendritic spines; 2) studies 
that have investigated spine morphology in 
models of normal aging; and 3) studies focused 
on the relationship between dendritic spines 
and various models of neurodegenerative 
disease.    

1.1 �Techniques that allow visualization 
of dendritic spines

1.1.1 �Issues regarding data bias, image 
resolution, and throughput

The elucidation of how age and disease affect 
spine morphology is made difficult by the 
dynamic temporal and spatial characteristics of 
dendritic spines.  As mentioned above, spines 
predominantly exist as small spine heads with 
long, slender, necks.  More often than not, 
these thin spine structures are approximately 
100 to 400 nm in width, and are at the limit of 
resolution of conventional light microscopy [8]. 
Nonetheless, most spine data currently in the 
literature is based upon Golgi impregnation 
studies, which suffer from three limitations: 1) 
the Golgi stain impregnates some, but not all 
cells, which raises questions about sampling 
biases, 2) Golgi-stained neurons are very 
difficult to accurately quantify in the z-axis, 
leading to both an underestimation of spine 
number or density and a bias in spine sampling, 
and 3) Golgi does not lend itself to rigorous 
quantitative analysis of spine volume and other 
morphometric parameters.

Fluorescence-labeling strategies such as 
intracellular injections of dyes and genetic 
expression of fluorescent molecules have several 
advantages over traditional Golgi methodology.  
Intracellular injection protocols allow specific 
subpopulations neurons to be labeled, including 
neurons labeled with anterograde or retrograde 
tracers for circuit-level analyses [29, 40]. In 
addition, these labeled cells can be coupled 
with quantitative immunofluorescence for 
double- or triple-labeling studies [41]. Using 

genetic approaches, subsets of neurons can 
be engineered to express fluorescent proteins 
under the control of a specific gene promoter 
[42], allowing a level of molecular specificity 
that is otherwise unachievable using Golgi or 
electron microscopy (EM).  These fluorescent 
techniques, when combined with confocal, 
two-photon, or stimulation emission-depleted 
microscopy enable high resolution and fully-
automated reconstructions in 3-dimensions.  
These technical advances provide more accurate 
spine density numbers, and generally allow for 
more precise and quantitative datasets [43-45].

Nevertheless, there are drawbacks to 
fluorescent labeling and laser-scanning 
techniques.  Although data deconvolution 
improves image resolution, particularly along 
the z-axis, all three laser microscopy methods 
suffer from the unavoidable optical aberration 
in the z-plane which distort spine volumes [46].
To avoid these problems, studies commonly 
employ serial section transmission electron 
microscopy (SSTEM).  SSTEM remains the gold 
standard for spine reconstructions because 
it achieves the greatest resolution, the most 
precise volumetric measures, and unambiguous 
identification of spine synapses.  However, this 
technique remains labor-intensive and extremely 
low-throughput (Figure 1B) [8], and thus poses 
experimental design issues of its own.    

1.1.2 �Spine plasticity as a static vs. 
dynamic process

A second caveat to most of the above-
mentioned techniques is that they only provide 
a single time-point snapshot of spine structures 

Figure 1. �Visualization of dendritic spines. A) Dendritic spines along a neocortical dendritic segment from a neuron labeled by intracellular injection of fluorescent dye and 
captured with confocal laser microscopy.  Maximum spine head diameters vary from 0.14 to 0.70 µm, while spine surface areas vary from 0.32 to 2.55 µm2. Scale 
bar = 5 µm. B) An axospinous synapse from prefrontal cortex as visualized by electron microscopy. The dendritic shaft (“d”) and spine (“sp”) are highlighted in blue, 
while the presynaptic axon (“ax”) is highlighted in red.  Scale bar = 500 nm.
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that are known to be morphologically and 
temporally plastic. For example, a majority of 
these techniques —including SSTEM — require 
fixed tissue, which prevents repeated sampling 
of spines after experimental manipulations.  As 
such, perhaps the best way to interpret these 
data is as an indirect index of capacity for 
plasticity, rather than a direct measure of spine 
plasticity itself.  

In contrast to the methods that require fixed 
tissue, confocal or two-photon live imaging of 
slices or dissociated cultures allows repeated 
spine sampling after experimental manipulations.  
However, these methods leave questions as to 
whether spine dynamics are similarly regulated 
between in vitro and in vivo conditions. Two-
photon microscopy combined with transgenic 
mice expressing fluorescent proteins in neurons 
has recently allowed investigators to measure 
spine plasticity and stability in vivo [5, 47], 
but requires surgical manipulations that may 
provoke inflammatory responses and alter 
spine plasticity [48]. Lastly, in vivo two-photon 
studies are restricted to the overlying cortex 
and, with the exception of few studies (e.g. 
[49]), have not yet been extended to deeper 
brain structures such as the hippocampus.  

1.2 �Evidence for aging-related 
changes in spine morphology 

1.2.1 �Selective spine vulnerability in 
the perforant path-dentate gyrus 
circuit

A common misconception about brain aging is 
that cognitive decline is a reflection of neuronal 
death. In fact, modern stereological methods 
have provided evidence that neuronal circuitry 
remains very much intact in the aging brain, 
with little evidence for gross anatomical 
change. For example, declines in cognitive 
abilities in aging animals models are not 
associated with reductions in neuron numbers 
in hippocampus [50] or neocortex [51-53], save 
for a single exception in area 8a of the primate 
prefrontal cortex [54]. With these data in hand, 
investigators have focused on the hypothesis 
that aging may be manifested by subtle losses 
in network connectivity via reductions in 
dendritic complexity, spine synapse density, 
and morphological plasticity [55].  Rodents 
and non-human primates provide excellent 

models for testing these hypotheses, as they 
show similar age-related declines in long-term 
memory and executive function but do not 
suffer from neurodegenerative diseases [56]. 

The strongest evidence in support of age-
related synaptic morphological change in 
the medial temporal lobe memory system 
has largely come from SSTEM reconstruction 
studies.  Geinisman and colleagues [27, 28] 
have shown that aged rats that are impaired 
in a hippocampus-dependent spatial memory 
task show reduced density of large, perforated 
synapses (synapses with a segmented or non-
continuous postsynaptic density). This subtype-
specific synapse loss is restricted to perforant 
path (PP) inputs from the entorhinal cortex onto 
dentate gyrus granule cell dendritic spines, and 
does not occur in aged animals with intact 
spatial memory performance. Furthermore, 
the loss of perforated synapses correlates with 
greater cognitive impairments [27]. Hara et al. 
[31] recently extended these observations to 
aging Rhesus monkeys, in which perforated 
synapses from the PP termination zone in 
the outer molecular layer correlated with 
performance on a delayed nonmatching-
to-sample (DNMS) task. In general, spines 
and axospinous synapses elsewhere in 
the hippocampal formation appear to be 
maintained throughout aging, thus suggesting 
a selective vulnerability of large hippocampal 
synapses within the entorhinodentate circuit 
(for review, see [57]).

1.2.2 �Subtle yet extensive thin spine loss 
in neocortex

In contrast to the limited age-related spine 
synapse changes seen in the hippocampus, 
studies focusing on neocortex have suggested 
more widespread changes in dendritic 
morphology, dendritic spine number, and spine 
morphology. Studies in human specimens 
using Golgi stains have found evidence of 
dendritic atrophy and dendritic spine loss in 
association cortex pyramidal neurons [58-60], 
but minimal changes in neurons from visual 
cortices suggesting a selective vulnerability 
of pyramidal neurons in association cortices. 
In the absence of age-related effects on 
dendritic morphology, Petanjek and colleagues 
[61] have reported increased inter-individual 

variability in dendritic morphology with age in 
human prefrontal neurons.

Naturally, animal models are more 
tractable with respect to experimental 
dissection of the effects of age on neocortical 
neuronal structure.  Using tract-tracing and 
fluorescence microscopy in young and aged 
Rhesus monkeys, Duan and colleagues [29] 
demonstrated that while neurons projecting 
from temporal association cortex to prefrontal 
cortex in aged animals had relatively intact 
dendritic morphology, spine number and 
density were reduced by as much as 34 and 
26%, respectively. Using unbiased electron 
microscopy, Peters and colleagues [62] recently 
demonstrated age-related axospinous synaptic 
loss in layer I of area 46 from aged monkeys 
that correlated with impairments in working 
memory. 

However, these studies did not clarify 
whether the age-related spine synapse loss was 
selective or occurred across all spine types. In 
a recent study, our group demonstrated layer 
III pyramidal neurons show a selective loss 
of small, thin spines (<400 nm in diameter) in 
aging monkey prefrontal cortex; in contrast, 
there was no change in the occurrence of 
large spines (>600 nm) [32] (Figure 2). This 
selective reduction of thin spines correlated 
with impairments in acquisition of a DNMS task, 
suggesting that thin spines within dorsolateral 
prefrontal cortex might provide crucial support 
for task learning and behavioral plasticity 
[32]. In addition, disruption in dendritic and 
spine morphologies in prefrontal neurons 
of aged macaque monkeys has been shown 
using electrophysiologic [63,64] and modeling 
approaches [65,66], suggesting aging also 
influences significantly the firing and cable 
properties of these neurons.  As these data 
were obtained from dendritic segments 
of layer III neurons, of which a majority are 
corticocortically-projecting neurons, they 
suggest age-related decrements in prefrontal 
functions may be the result of subtle 
disruptions of corticocortical circuits at the 
level of the spine.

Taken together, studies from rat and monkey 
models suggest that selective changes in spine 
number and morphology in specific neocortical 
regions is associated with functional 
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impairments in cognition. Data from the 
medial temporal lobe memory system suggest 
a restricted, circuit-specific vulnerability of 
large, perforated synapses. In contrast, studies 
from prefrontal cortex suggest an extensive yet 
selective loss of thin spines and a resilience of 
large, mushroom-type spines.  These studies 
suggest that the nature of the age-related 
synaptic vulnerability is distinct between 
hippocampus and prefrontal cortex.  If true, this 
implies therapeutics designed at increasing the 
presence of a single type of spine throughout 
the brain may not result in improved function 
across all cognitive domains, and may 
instead result in impaired cognitive functions 
mediated by other brain structures.  This 
hypothesis is supported by a similar dichotomy 
between prefrontal/hippocampus regarding 
pharmacological manipulation of the protein 
kinase A intracellular signaling pathway to 
ameliorate age-related cognitive deficits [67].  

1.3 �Evidence for spine morphological 
changes in models of 
neurodegenerative disease

As noted in the introduction, the remodelling 
of synapses is a fundamental property of 
neuronal circuits.  Neurodegenerative diseases 
result in synaptic dysfunction, losses of 
synaptic connectivity, and ultimately neuronal 
death, each of which may lead to functional 
impairments. Evidence is mounting that spine 
dysfunction and synapse loss may underlie the 
earliest symptoms of many neurodegenerative 
diseases including prion disease, Huntington’s 
disease (HD), Parkinson’s disease (PD), and 
Alzheimer’s disease (AD). 

1.3.1 Prion diseases
Prion diseases are fatal transmissible diseases 
affecting the central nervous system. In 
animals, prion diseases such as scrapie 
and bovine spongiform encephalopathy 
are characterized by non-viral spread 
of disease proteins from one species to 
another. In humans, prion diseases can be 
sporadic (Creutzfeldt-Jakob disease [CJD]), 
familial (familial CJD, fatal familial insomnia, 
Gerstmann-Sträussler-Scheinker, acquired 
through iatrogenic sources), or by ingestion 
of contaminated meat from infected animals. 

Figure 2. �Age-related changes in spine density and morphology in monkey layer III pyramidal neurons from 
area 46. A) Age-related alterations of spines on layer III pyramidal neurons of the monkey PFC includes 
increased mean spine head diameter, increased B) mean spine head volume, but not C) mean spine 
distance from dendrite. D) Cumulative frequency plot of each spine head diameter from individual 
animals demonstrates a shift towards larger spines in individual animals.  E) Quantitative analysis reveals 
age-related spine losses are comprised solely of thin spines, while mushroom spines remain unaffected 
by age. Representative three-dimensional reconstructions of dendritic segments from young (F) and 
aged (G) rhesus monkeys. Scale bar = 2 µm. (Adapted from [32]).

Genetically, prion disease is caused by 
mutations in the prion protein (PrP) gene. In 
this instance, cellular prion protein (PrPC), a cell 
surface glycoprotein, is converted to a partially 

protease-resistant form (PrPSc), resulting 
in protein misfolding and accumulation of 
proteins in the brain (reviewed in [68]). The 
self-propagating process of PrPSc acting as a 
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recruiter for PrPC and causing conformational 
changes that are thought to be critical for 
the neurotoxicity typically observed in 
disease pathology [69]. The pathological 
hallmarks of prion disease are spongiform 
degeneration of the brain accompanied 
by synaptic alterations, extensive neuronal 
loss, astrogliosis, dementia, and locomotor 
changes [70]. While the physiological role of 
PrP is debated, several observations suggest 
that in non-disease states PrP may play a role 
in synaptic structure, function or maintenance 
(for review see [71]).

Studies in mice infected with prions 
have shown cognitive, behavioral, and 
neurophysiological impairments that correlate 
with the loss of presynaptic terminals in the 
dorsal hippocampus [72,73]. As with other 
neurodegenerative diseases such as AD (see 
below), it appears that the synaptic dysfunction 
that occurs in prion diseases is independent 
of aggregated misfolded proteins. Rather it 
may be the soluble, non-aggregated proteins 
causing dysfunction as functional deficits have 
been shown to occur before accumulation is 
apparent [69]. Morphological neuronal changes 
and loss of dendritic spines have been observed 
in patients suffering from CJD [74]. Further 
morphological analyses in various prion mouse 
models have revealed dendritic abnormalities 
such as the emergence of varicosities and loss of 
dendritic spines have been well described in the 
terminal stage of the disease [75-79]. Moreover, 
during the spongiform stage that occurs in 
prion-induced neurodegeneration [79], spine 
loss has been localized to regions of the dendrite 
that exhibit vacuolar pathology [80]. Live in vivo 
studies by Fuhrmann et al. [79] using two-photon 
in vivo imaging techniques demonstrated an 
extremely slow and progressive loss of persistent 
mushroom spines in the somatosensory cortex 
over several days to weeks, with linear kinetics 
of 5.9 ± 0.5 spines/mm per day from the 
presymptomatic phase to the terminal phase of 
the disease with no change in the density of thin 
spines. Interestingly, these authors also reported 
an increase in new spine formation before 
the largest period of spine loss was observed, 
suggesting cellular compensatory mechanisms 
may fail to maintain neuronal circuitry in prion 
disease models. 

1.3.2 Huntington’s disease
HD is a neurodegenerative genetic disorder 
caused by an expanded CAG repeat in the 
huntingtin gene which translates into an 
lengthened polyglutamine track in the 
expressed protein. The neuropathological 
features of HD include the formation of 
aggregates of mutated huntingtin protein 
leading to neuronal death in the striatum 
and cerebral cortex; in HD patients, these 
neurobiological changes result in cognitive, 
psychiatric and motor impairments (reviewed 
in [81]). In the early stages of the disease, 
there is a decrease in striatal volume without 
changes in neuron number which correlates 
with motor disturbances, indicating that early 
neurobiological dysfunctions prior to neuron 
death can initiate HD symptomatology. In 
support of this hypothesis, many studies have 
shown that HD causes alterations in dendritic 
morphology and synapse number. In humans, 
degenerative changes of striatal medium spiny 
neurons including truncated dendritic arbors, 
dendritic varicosities, and decreased spine 
densities occur in severe grades of HD [82]. 
Similar changes have also been reported in 
several mouse models of HD; for example, Golgi 
studies in mice expressing the full huntingtin 
gene showed morphologic abnormalities 
that included a significant decrease in the 
number of dendritic spines and a thickening 
of proximal dendrites in striatal and cortical 
neurons [83]. These mice were symptomatic 
but had not reached a stage in which neuronal 
loss could be observed. Another mouse model 
of HD, R6/2 mice which express exon 1 of the 
huntingtin gene with different CAG repeat 
lengths, exhibits different ages of HD-like 
symptom onset and dysmorphic neurites in 
pyramidal neurons of the frontal and anterior 
cingulate neocortex. These alterations were 
characterized by significant retraction of apical 
dendrites as well as cytoplasmic vacuoles 
and plasma membrane blebs of the soma 
[84]. Recently, Spires et al. [85,86] reported 
decreases in dendritic spine density and 
dendritic spine length in striatal medium 
spiny neurons and anterior cingulate cortex 
pyramidal neurons in the R6/1 mouse model. 
While there was no change in the proportion of 
spine type, there was a decrease in the length 

of both mushroom and thin spines. These 
changes in spine morphology might reflect a 
loss of excitatory input into these brain regions 
and could potentially account for the cognitive 
deficits observed in HD [85,86].

1.3.3 Parkinson’s disease
Selective degeneration of neurons in the 
nigrostriatal pathway and an extreme reduction 
in the striatal concentration of dopamine (DA) 
are the key pathological hallmarks of PD. PD 
is an age-related neurodegenerative disorder 
that affects as many as 1-2% of persons aged 
60 years or older and symptoms include 
motor deficits such as resting tremor, rigidity, 
bradykinesia/akinesia and a postural reflex 
impairment [87]. Cognitive impairment, 
thought to occur due to the presence of limbic 
and neocortical Lewy body inclusions made 
of misfolded α-synuclein proteins, is also 
associated with PD and is found in 30–80% of 
affected individuals. 

The main cell type affected by the loss of 
DAergic innervation in PD is the medium spiny 
neurons (MSNs) of the caudate, putamen, and 
nucleus accumbens that together make up 
the neostriatum. These neurons account for 
approximately 90% of striatal neurons and 
receive DAergic inputs predominantly onto 
the necks of dendritic spines [88]. The clinical 
symptoms of PD and dementia with Lewy 
bodies (DLB) suggest synaptic dysfunction 
as a potential early mechanism of disease 
pathology, likely due to the aggregation of 
α-synuclein in presynaptic terminals [89]. 
Indeed, numerous studies have demonstrated 
a reduction in presynaptic protein markers 
such as syntaxin and postsynaptic markers 
such as PSD95 and drebrin in DLB and PD 
patients compared to controls [89-91]. Previous 
Golgi stain studies in postmortem materials 
from PD patients showed severe pathological 
changes in striatal MSNs such as a reduction of 
total dendritic length, a decrease in dendritic 
segments, losses of dendritic spines, and 
several types of dendritic varicosities and 
swollen perikarya [92-96]. In a more recent 
extensive postmortem study by Stephens et al. 
[97], there was a 27% decrease in spine density 
in both the caudate nucleus and putamen 
of individuals suffering from PD. In addition, 
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the size of the dendritic trees (i.e., length and 
arborization) and the number of dendritic 
branches was also significantly reduced in the 
caudate nucleus and putamen from the brains 
of PD cases [97]. In patients with DLB, there is an 
almost complete loss of spines in frontal cortical 
neurons as well as in MSNs of the caudate 
nucleus compared to controls [89,95]. Rodent 
models of PD have revealed similar results in 
MSNs; for example, in a 6-hydroxydopamine 
rat model of PD there was a 19% decrease 
in spine density in the prefrontal cortex and 
basal ganglia [98, 99]. In a nonhuman primate 
model of PD, there was significant loss of 
striatal neurons with dopamine denervation 
with as much as a 50% loss in the sensorimotor 
striatum, the most affected region [100]. Taken 
together, it appears that he accumulation of 
a-synuclein has a detrimental effect on the 
glutamatergic transmission in the striatum 
along with denervation of DAergic systems, 
together which lead to PD- like symtomology 
and potentially cognitive decline. These 
initial events may cause retraction of spines, 
reductions in dendritic arborization, and 
ultimately the neuronal pathology observed in 
PD and DLB associated with PD.

1.3.4 Alzheimer’s disease
As with the neurodegenerative disorders 
discussed above, AD also results in pervasive 
and significant changes in dendritic spine 
density and structure in addition to overt 
neuronal death [101]. AD is the most 
common form of dementia and accounts 
for approximately 80% of cases [102]. The 
neurodegeneration that occurs in AD affects 
neuronal circuits of the perforant path as well 
as long corticocortical projections that link 
association cortices [55]. While AD leads to a 
loss of principal neurons across multiple cortical 
areas, local interneuron populations remain 
unaffected [103-106], suggesting neuronal 
vulnerability to AD is selective and restricted to 
pyramidal neuron subtypes. The pathological 
changes that occur in AD have been attributed 
to both the presence of extracellular amyloid 
plaques composed of amyloid beta protein 
(Ab) and intracellular neurofibrillary tangles 
(NFTs) comprised of hyperphosphorylated tau 
proteins. 

Many studies in various animal models 
of AD and humans affected with AD have 
demonstrated that synapse loss and alteration 
in synaptic structures is a strong correlate of 
cognitive decline in AD [107]. Whether the spine 
loss observed in AD is a result of soluble or 
fibrillar aggregates of Ab, hyperphosphorylated 
tau, or both, is still unresolved. Studies from 
our laboratory comparing patients with 
clinical dementia rating scores (CDR) of 0 and 
3 have demonstrated that neurons in AD 
undergo morphological alterations and show 
significant spine alterations, as assessed by 
immunoreactivity to NR1 and GluR3 receptor 
proteins (Figure 3) (P. Hof, unpublished data). 
Such changes in the expression or distribution in 
these synaptic proteins are indicative of changes 
in the molecular composition of dendritic spines. 
Other groups have also observed significant 
reduction in spine density as well as a decrease 
in overall dendritic area in AD patients when 
compared to age-matched controls [108-112].  
Electron microscopy studies have corroborated 
these data and found significant synaptic loss 
in the brains of patients with early onset AD 
compared to mild cognitively impaired and non-
demented individuals [113]. 

Mouse models that overexpress mutated 
forms of the amyloid precursor protein (APP) 
have demonstrated the detrimental effect 
of Aβ plaques on neuronal morphology 
including attrition of apical dendritic 
arbors, aberrant sprouting, and curvature 
of dendritic processes [34,35,114-117]. 
In regards to spine pathology, studies in 
PSAPP and Tg2576 mice have demonstrated 
significant spine loss from cortical pyramidal 
neurons located close to or within Aβ plaques 
and in areas that are devoid of amyloid 
pathology [34, 117]. Spine loss has also 
been reported in the CA1 field, the dentate 
gyrus, and somatosensory cortex [33, 35,
118-125]. In contrast, studies in the dentate 
gyrus in APP/PS1 mice showed spine 
reduction in dendrites that pass through 
plaques and an increase in spine density 
in dendrites touching plaques with no 
changes in spine density in area devoid of 
plaques [37]. Such differences in reported 
data may be a result of studies in different 
brain regions, different cell types, different 
transgene expression, and method of 
quantification. Nevertheless, while changes 
in spine density, type, and length are evident, 

Figure 3. �Evidence for spine alterations in patients affected with AD compared to non-demented controls. NR1 
and GluR3 glutamate receptor subunit protein immunoreactivity is significantly reduced in CDR 3 cases 
compared to CDR 0 cases. Scale bar = 10 µm.

Translational Neuroscience



55

Figure 4. �Representative three-dimensional reconstructions of dendritic segments from AD mouse models.  
Dendritic segments from 24-month-old Tg2576 AD model mice A) wt, B) transgenic and from 12-month-
old htau model mice C) wt, and D) htau. Scale bar = 5 µm. (Adapted from [39]).

there are no data on whether certain spines 
are more vulnerable to degradation than 
others. In a recent study Tackenberg et al. 
(2009), using organotypic hippocampus slice 
cultures of APPSDL mice, found a reduction of 
spine number and spine length in APP mice 
compared to controls with a decrease in the 
number of mushroom spines and an increase 
in the number of stubby spines. The changes 
observed here were attributed to the presence 
of soluble Aβ as treatment of the cultures 
with a g-secretase inhibitor abolished spine 
loss [124]. In regards to plaque proximity, one 
study has shown a decrease in spine head 
volume in plaque-free spines and in-contact 
spines compared to spines traversing a 
plaque and controls in the dentate gyrus [37]. 
Further analysis of spine characteristics were 
in agreement with other studies indicating 
an overall loss of large spines [37, 124]. The 
mechanism by which Aβ mediates these 
changes is still uncertain. It is possible that 
Aβ mediates these changes through many 
pathways including the inhibition of NMDA 
receptor activity, calcineurin activity, GSK3β 
activity, tau phosphorylation, and activation 
of caspases [124, 125].

The effect of tau on dendritic spine 
pathology is still not fully understood. 
Whether tau alone, or tau in concert with 
Aβ cause alterations in neuronal and spine 
properties remains a mater of debate. 
Moreover, it is still unclear if mutations in tau 
have the same effect on neuronal pathology 
as non-mutated tau. This is of importance 
since to date no mutations on tau have 
been implicated in AD. Ex-vivo studies in 
organotypic hippocampal slices expressing 
AD-relevant tau constructs found no effect 
of tau expression on spine density and 
morphology even though there was apparent 
tau hyperphophorylation and accumulation 
with the cell [126]. Recently, Rocher et al. [36] 
examined changes in dendrites and spines in 
the rTg4510 tau mouse model that harbours 
the P301L mutation. These authors reported 
that mutated tau expression severely altered 
dendritic shafts with significant morphological 
alterations, including loss or atrophy of the 
apical tuft, reduced dendritic complexity and 
length. Moreover, mutations in tau resulted in 

a ~30% reductions in spine density in cortical 
pyramidal neurons [36]. Studies from our lab 
have examined the effect of wild-type tau 
on dendritic spines. We have found that with 
age, the hTau mouse model, which expresses 
all 6 isoforms of human tau and no mouse 
tau, exhibits significant alterations in apical 
dendritic architecture from prefrontal neurons 
of 3 month mice versus 12 month mice 
(Figure  4) with a reduction in spine volume 
and a shift from mushroom to thin spines [39]. 
It is evident that changes in spine density and 
spine type occur during the pathogenesis of 
AD and contribute to the cognitive deficits 
that are associated with disease progression. 
Whether it is the exposure of neurons to 
soluble or fibrillar Ab or hyperphosphorylated 
tau that causes synaptic dysfunction still 
remains to be elucidated. 

2. Conclusions

Changes in spine density, morphology, and 
synapse density are important for addressing 
the ultimate and proximate causes of 

cognitive impairment that occur during 
normal aging and in neuropathological 
disorders. The data summarized in this review 
support the hypothesis that age-related 
alterations in spine plasticity processes can 
drive some of the cognitive impairments 
commonly seen in the elderly.  Furthermore, 
animal models of neurodegenerative disease 
have documented early spine pathology, 
suggesting that in some disease models 
synaptic dysfunction precedes some of the 
more common pathologies linked to these 
disorders.  

An important and open question is to 
what extent aging neuronal circuits retain the 
capacity for experience-induced structural 
plasticity.  Recent studies give us reason to be 
optimistic; for example, aged rats retain the 
capacity for spinogenesis in dentate neurons in 
response to environmental enrichment [127], 
and we have shown aging female monkeys 
maintain estrogen-induced spinogenesis 
in PFC neurons [30].  A main focus of future 
research should be to corroborate and extend 
these data to models of neurodegenerative 
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disease with the hopes of slowing or ultimately 
preventing disease progression.  An important 
consideration should be the restoration of 
spines and synapses within the context of 
spine size, as evidence has demonstrated 
functional differences and differential 
vulnerability depending on spine size. The data 
presented here provide compelling evidence 

of aging-related vulnerable and resilient 
spine populations, which differ between brain 
structures and also between disease models.  
The knowledge gained by understanding the 
mediators of spine vulnerability and resilience 
should help pave the way for therapeutics 
aimed at synaptic preservation or regeneration 
in both normal aging and in disease states.
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