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Abstract

We present an active learning architecture that allows a robot to actively learn which data collection strategy is
most eɺcient for acquiring motor skills to achieve multiple outcomes, and generalise over its experience to achieve
new outcomes. The robot explores its environment both via interactive learning and goal-babbling. It learns at the
same time when, who and what to actively imitate from several available teachers, and learns when not to use
social guidance but use active goal-oriented self-exploration. This is formalised in the framework of life-long strategic
learning.
The proposed architecture, called Socially Guided Intrinsic Motivation with Active Choice of Teacher and Strategy
(SGIM-ACTS), relies on hierarchical active decisions of what and how to learn driven by empirical evaluation of learning
progress for each learning strategy. We illustrate with an experiment where a simulated robot learns to control its arm
for realising two kinds of diɼerent outcomes. It has to choose actively and hierarchically at each learning episode:
1) what to learn: which outcome is most interesting to select as a goal to focus on for goal-directed exploration; 2)
how to learn: which data collection strategy to use among self-exploration, mimicry and emulation; 3) once he has
decided when and what to imitate by choosing mimicry or emulation, then he has to choose who to imitate, from a
set of diɼerent teachers. We show that SGIM-ACTS learns significantly more eɺciently than using single learning
strategies, and coherently selects the best strategy with respect to the chosen outcome, taking advantage of the
available teachers (with diɼerent levels of skills).
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1. Strategic Active Learning for Life-Long
Acquisition of Multiple Skills

Life-long learning by robots to acquire multiple skills in unstructured en-
vironments poses challenges of not only predicting the consequences
or outcomes of their actions on the environment, but also learning the
causal eɼectiveness of their actions for varied outcomes. The set of
outcomes can be in large and high-dimensional sensorimotor spaces,
while the physical embedding of robots allows only limited time for col-
lecting training data. The learning agent has to decide for instance in
which order he should focus on learning how to achieve the diɼerent
outcomes, how much time he can spend to learn to achieve an out-
come or which data collection strategy to use for learning to achieve a
given outcome.

1.1. Active Learning for Producing Varied Outcomes
with Multiple Data Collection Strategies

These questions can be formalised under the notion of strategic learn-
ing [27].
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Figure 1. An arm, described by its angle φ, is controlled by a motor primitive
with 14 continuous parameters (taking bounded values) that deter-
mine the evolution of its acceleration φ̈ . A ball is held by the arm and
then released at the end of the motion. The objective of the robot is
to learn the mapping between the parameters of the motor primitive
and two types of outcomes he can produce: a ball thrown at distance
x and height h, or a ball placed at the arm tip at angle φ with velocity
smaller than |vmax |.

One perspective is learning to achieve varied outcomes. It aims at se-
lecting which outcome to spend time on. A typical classification was
proposed in [35, 36] where active learning methods improved the over-
all quality of the learning. In sequential problems as in robotics, produc-
ing an outcome has been modelled as a local predictive forward model
[33], an option [7], or a region in a parameterised goal/option space
[6]. In these works each sampling of an outcome entails a cost. The
learning agent has to decide which outcome to explore/observe next.
However, most studies using this perspective do not consider several
strategies.
Another perspective is learning how to learn, by making explicit the
choice and dependence of the learning performance on the method.
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For instance, [5] selects among diɼerent learning strategies depending
on the results for diɼerent outcomes. However most studies using this
perspective consider only a single outcome.
Indeed, these works have not addressed the learning of both how to
learn and what to learn, to select at the same time which outcome to
spend time on, and which learning method to use. Only [27] studies the
framework of these questions, and only examined a toy example with
discrete and finite number of states, outcomes and strategies. In initial
work to address learning for varied outcomes with multiple methods,
we proposed the Socially Guided Intrinsic Motivation by Demonstration
(SGIM-D) algorithm which uses both:

· socially guided exploration, especially programming by demon-
stration [8], and

· intrinsically motivated exploration, which are active learning al-
gorithms based on measures of the evolution of the learning
performance [32]

to reach goals in a continuous outcome space, in the case of a com-
plex and continuous environment. High-dimensional environments can
be handled by SGIM-D, designed for multiple outcomes in a continu-
ous outcome space. In [29], SGIM-D learned to manipulate a fishing
rod with a 6-dof arm, i.e. to place the float on the surface of the water,
which is described as a 2d continuous outcome space. The robotic
arm was controlled by a motor primitive with 24 continuous parame-
ters that determine the trajectory of its joint positions. The robot learned
which action a to perform for a given goal position on the surface of
the water yg, where the hook should reach when falling into the wa-
ter. However, the outcomes considered belonged to only one type of
outcomes. Moreover, although SGIM-D has 2 learning strategies, it is
a passive learner which only imitates when the teacher decides to give
a demonstration. SGIM-D does not learn which method enables it to
perform best.
In this paper, we address these two limitations. We study how a learn-
ing agent can achieve varied outcomes in structured continuous out-
come spaces, even with outcomes of diɼerent types, and how he can
learn for those various outcomes which strategy to adopt among 1) ac-
tive self-exploration, 2) emulation of a teacher actively selected among
available teachers, 3) mimicry of an actively selected teacher. We
propose an algorithm for actively choosing the appropriate strategy,
among several strategies.

1.2. Formalisation

Let us consider an agent learning motor skills, i.e. the mapping be-
tween an outcome space and a policy space. As an illustration, let us
imagine the agent learning how to play tennis, He maps how the ball
behaves (outcome) with respect to the movement of his racket (policy).
He thus learns a forward model M to predict where the ball bounces
given the movement of his racket. More importantly, he builds an in-
verse model L−1 to control his racket in order to make the ball bounce
at a desired position. A good player knows which outcomes are feasi-
ble and knows at least one policy to produce any possible outcome: he
can place the ball anywhere on the court. Ideally, he builds an inverse
model L−1 such that M(L−1) is identity.
More formally, we define an outcome space which may comprise of
outcomes of diɼerent types and diɼerent dimensionalities. For tennis,
outcomes can be the bouncing positions, spin angles ... We only as-
sume that they can be parameterised by parameters τ ∈ T and that
we can define a distance measure J on T × T . A policy πθ is de-
scribed by motor primitives parameterised by θ ∈ Π. Its outcome is
M(θ), where the mapping M : Π → T describes the environment.
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Figure 2. Representation of the problem. The environment can evolve to an
outcome state τ bymeans of the learner’s policy of parameterθ or the
teacher’s actions ζ . The learner and the teacher have a priori diɼerent
policy spaces. The learner estimates L−1 : T 7→ Π. By emulation or
mimicry, the learner can take advantage of the demonstrations (ζ ,τd)
of the teacher to improve its estimation L−1.

For the tennis player, the policy controls the movement of his arm and
racket and M represents the physical equations for the ball trajectory.
The performance of a policy πθ at completing an outcome τ is mea-
sured by the distance between τ and the outcome of πθ : J(τ, M(θ)).
The agent focuses on learning the inverse model and builds its esti-
mate L−1 : T → Π. We note that M−1, the inverse of M might not
be a function as M might be redundant, whereas our learner builds a
function L−1 that finds at least one adequate policy to complete every
outcome τ . In sum, it endeavours to minimise with respect to L−1 :

I =
∫

τ∈T
P(τ)J(τ, M(L−1(τ)))dτ (1)

whereP(τ) is a probability density distribution overT . A priori unknown
to the learner, P(τ) can describe the probability of τ occurring or the
reachable space or a region of interest.
We assume that T can be partitioned into subspaces where the out-
comes are related, and in these subspaces our parametrisation allows
a smooth variation of τ 7→ J(τ, M(θ)),∀θ with respect to τ most of the
time. This partition, initially unknown to the agent, needs to be learned.
Note that we have described our method without specifying a particular
choice of policy representation, learning algorithm, action or outcome
space properties. These designs can indeed be decided according
to the application at hand. In particular, outcomes can be of diɼerent
types and dimensionalities. In this case, we note Ti the subspaces of
T corresponding to the diɼerent types of outcome and T = ∪Ti.

1.3. Our Approach

To solve the problem formalised above, we propose a system, called
Socially Guided Intrinsic Motivation with Active Choice of Teacher and
Strategy (SGIM-ACTS) that allows an online interactive learning of
inverse models in continuous high-dimensional robotic sensorimotor
spaces with multiple teachers, and learning strategies. SGIM-ACTS
learns various outcomes with diɼerent types of outcomes, and gener-
alises from sampled data to continuous sets of outcomes.
Technically, we adopt a method of generalisation of policies for new out-
comes similar to [15, 18]. Whereas in their approaches the algorithms
use a pool of examples given by the teacher preset from the beginning
of the experiment to learn outcomes specified by the engineer of the

137



PALADYN Journal of Behavioral Robotics

robot, in a batch learning method; in our case, the SGIM-ACTS algo-
rithm decides by itself which outcomes it needs to learn more to better
generalise for the whole outcome space, like in [6, 7, 33]. Moreover,
SGIM-ACTS actively requests the teacher’s demonstrations online, by
choosing online the best learning strategy, similarly to [5], except that
we do not learn with a discrete outcome space for a classification prob-
lem, but with a continuous outcome space. SGIM-ACTS also interacts
with several teachers and uses several social learning methods, in an
interactive learning approach.
Our active learning approach is inspired by:

· intrinsic motivation in psychology [38] which triggers sponta-
neous exploration and curiosity in humans, which recently led to
novel robotic and machine active learning methods which out-
perform traditional active learning methods [6, 24]

· teleological learning [14] which considers actions as goal-
oriented, and recently led to eɺcient goal babbling methods in
robotics [6, 37]

· psychological theories for socially guided learning [12, 16, 42],
as detailed in the next section.

After this formal description of our approach, we analyse our point of
view on social guidance in Section 2. Then, we detail the proposed
algorithm SGIM-ACTS in Section 3, before testing it on a problem to
learn how to throw and place a ball (fig. 1) in Section 4.

2. Social Guidance

2.1. Interactive Learning

An interactive learner who not only listens to the teacher, but actively
requests for the information it needs and when it needs help, has been
shown to be a fundamental aspect of social learning [13, 31, 40]. Under
the interactive learning approach, the robot can combine programming
by demonstration, learning by exploration and tutor guidance. Several
works in interactive learning have considered extra reinforcement sig-
nals [41], action requests [17, 25] or disambiguation among actions
[13]. In [10] the comparison of a robot that has the option to ask
the user for feedback, to the passive, shows a better accuracy and
fewer demonstrations. Therefore, requesting demonstrations when it
is needed can lessen the dependence on the teacher and reduce the
quantity of required demonstrations. This approach is the most bene-
ficial to the learner, for the information arrives as it needs it, and to the
teacher who no longer needs to monitor the learning process.
For an agent learning motor skills, i.e. the mapping between policies
and outcomes, let us examine the type of social guidance that a learner
can get as reviewed in [3, 8, 26, 39] with respect to: what, how, when
and who [16]. In this section, we note siH the information flow from
the human to the robot.

2.2. What?

Let us examine the target of the information given by the teacher, or
mathematically speaking, the space on which he operates. This can
be either the policy or outcome spaces, or combinations of them.

2.2.1. Policy Space
Many social learning studies target the policy parameter space Π. For
instance, in programming by demonstration (LbD), siH shows the right
policy to perform in order to reach a given goal. As an illustration, when

teaching how to play tennis, your coach could show you how to hit
a backhand by a demonstration, or even by taking your hand and di-
recting your movement. This approach relates to two levels of social
learning: mimicry, in which the learner copies the policies of others
without an appreciation of their purpose, and imitation, in which the
learner reproduces the policies and the changes in the environment, as
formalised in [12, 26, 43]. The literature often considers that targeting
the policy space is the most directive and eɺcient method. However, it
relies on the human teacher’s expertise, which bears limitations such as
ambiguity, imprecision, under-optimality or the correspondence prob-
lem.

2.2.2. Outcome Space
The second kind of information is about possible outcomes τ ∈ T ,
and is related to goal-directed exploration, where the learner focuses
on discovering diɼerent outcomes instead of diɼerent ways of entail-
ing the same outcome. Psychologically speaking, this case pertains to
the emulation level of social learning, where the observer witnesses
someone produce a result on an object, but then employs his own pol-
icy repertoire to reproduce the result, as formalised in [12, 26, 28, 43].
During our tennis training, your coach could ask you to hit with the ball
the right corner of the court, wherever you received the ball, whichever
shot you use. Goal-directed approaches allow the teacher to reset goal
outcomes [1], to request the execution of outcomes [40] or to label out-
comes [40, 41]. The learner can infer from the demonstrations the goal
outcome by positional and force profiles to iron and open doors [21], or
by using inverse reinforcement learning [23]. This approach is essential
to learn multiple outcomes, and all the more interesting as it is inspired
by psychological behaviours [14, 42, 43]. The drawback is that the
learning needs the actions repertoire to be large enough to be used to
reach various goals, before it improves.
As we want the learner to accomplish not only a single outcome but
to be eɺcient on a large variety of goals, we choose to bootstrap its
learning with information targeting the outcome space. Furthermore,
we also want the learning process to benefit from the social interaction
early. So that the learner builds its action repertoire quickly, we choose
to target the policy parameter space Π too.

2.3. When?

The timing of the interaction varies with respect to its general activity
during the whole learning process. The rhythm of social interaction
varies considerably among studies of social learning:

· At a fixed frequency: In classical imitation learning, the learner
uses a demonstration to improve its learning at every policy it
performs [1, 2, 11]. This solution is ill-adapted to the teacher’s
availability or the needs of the learner who requires more sup-
port in diɺcult situations.

· Beginning of learning: A limited number of examples are given
to initialise the learning, as a basic behaviours repertoire [1, 2],
or a sample behaviour to be optimised [20, 34]. The learner is
endowed with some basic competence before self-exploration.
Nevertheless, if the interactions are restricted to the beginning,
the learner could face diɺculties adapting to changes in the en-
vironment.

· At the teacher’s initiative: The teacher alone decides when he
interacts with the robot [40], by for instance giving corrections
when seeing errors [10, 19]. Nevertheless, it still is time con-
suming as he needs to monitor the robot’s errors to give ade-
quate information to the learner.
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· At the learner’s initiative: The interactive learner can request for
the teacher’s help in an ambiguous [10, 13] or unknown [40] sit-
uation, or only reproduces the observations when the observed
outcome matches its goal during goal-based imitation or mim-
icking [11]. This approach is the most beneficial to the learner,
for the information arrives as it needs them, and the teacher
needs not monitor the process.

These 4 types can be classified into 2 larger groups:

· batch learning, where the data provided to the learner is de-
cided before the learning phase, and is given independently of
the learning progress, generally in the beginning of the learning
phase.

· interactive learning, where the user interacts with the incremen-
tally learning robot, either at the teacher’s or the learner’s initia-
tive.

2.4. Who?

While most social guidance studies only consider a single teacher, in
natural environments, a household robot in reality interacts with several
users. Moreover, being able to request help to diɼerent experts is also
an eɺcient way to address the problem of the reliability of the teacher.
Imitation learning studies often rely on the quality of the demonstrations,
whereas in reality a teacher can be performant for some outcomes
but not for others. Demonstrations can be ambiguous, unsuccessful
or suboptimal in certain areas. Like students who learn from diɼerent
teachers who are experts in the diɼerent topics of a curriculum, a robot
learner should be able to determine its best teacher for the diɼerent
outcomes it wants to achieve.
In this work, we consider the possibility of a learner to observe and imi-
tate from several teachers, as much like a child in a natural environment
would observe and imitate several adults in his surrounding throughout
his development. In this case, choosing whom to imitate, recognising
who is the expert in the outcomes we need to make progress, consti-
tutes an important strategy choice.

2.5. Actively Learning When, Who and What to Imi-
tate

For the model and experiments presented below, our choice of social
guidance among this listing of social learning is:

· What: We opted for an information flow targeting both policy
and outcome spaces, to enable the biggest progress for the
learner. It can imitate to reproduce either a demonstrated pol-
icy or outcome. Therefore, our learner can decide whether to
mimic and emulate by learning what is the most interesting
information.

· When: Interactive learning at the learner’s initiative seems
the most natural interaction approach, the most eɺcient for
learning and less costly for the teacher than if he would have
to monitor the learner’s progress to adapt his demonstrations.
The robot has to learn when it is useful to imitate.

· Who: Interactive learning where the learner can choose who
to interact with and to whom to ask for help, is an important
strategy choice in learning.

Algorithm 1 SGIM-ACTS
Input: the different strategies σ1, ...σn.
Initialization: partition of outcome space R ← singleton T
Initialization: episodic memory (collection of produced outcomes)
Memo← empty
loop

τi, σ ← Select Goal Outcome and Strategy(R)
if σ = Mimic teacher i strategy then

(ζd, τd)← ask and observe demonstration to teacher i.
γ1 ← Competence for τg
Memo ← Mimic Action(ζd)
Update L−1 with collected data Memo
γ2 ← Competence for τg

else if σ = Emulate teacher i strategy then
(ζd, τd)← ask and observe demonstration to teacher i.
Emulation: τg ← τd
γ1 ← Competence for τg
Memo ← Goal-Directed Policy Optimisation(τg)
Update L−1 with collected data Memo
γ2 ← Competence for τg

else
σ = Intrinsic Motivation strategy
τg ← τi
γ1 ← Competence for τg
Memo ← Goal-Directed Policy Optimisation(τg)
Update L−1 with collected data Memo
γ2 ← Competence for τg

end if
nbA← number of new episodes in Memo
prog← 2(sig(αp ∗ γ2−γ1

|Ti|·nbA )− 1)
R ← Update Outcome and Strategy Interest Mapping
(R, Memo, τg, prog, σ )

end loop

Thus, it learns to answer the four main questions of imitation learning:
”what, how, when and who to imitate” [9, 16] at the same time. We ad-
dress active learning for varied outcomes with multiple strategies, multi-
ple teachers, with a structured continuous outcome space (embedding
sub-spaces with diɼerent properties). The strategies we consider are
autonomous self-exploration, emulation and mimicking, by interactive
learning with several teachers. Hereafter we describe the design of our
SGIM-ACTS (Socially Guided Intrinsic Motivation with Active Choice
of Teacher and Strategy) algorithm. Then we show through an illustra-
tion experiment that SGIM-ACTS eɺciently learns to realise diɼerent
types of outcomes in continuous outcome spaces, and it coherently
selects the right teacher to learn from.

3. Algorithm Description

In this section, we describe the SGIM-ACTS architecture by giving a
behavioural outline in Section 3.1, before describing its general struc-
ture in Section 3.2. We then detail the diɼerent functions in sections
3.3 and 3.4. The overall architecture is summarised in Algorithm 1 and
is illustrated in Fig. 3 .

3.1. Architecture Outline

SGIM-ACTS is an architecture that merges intrinsically motivated self-
exploration with interactive learning as socially guided exploration. In
the latter case, a teacher performs an observed trajectory ζ which
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Figure 3. Time flow chart of SGIM-ACTS, which combines Intrinsic Motivation and Mimicking and Emulation into 3 layers that pertain to the strategy, the outcome
space and the policy space exploration respectively.

achieves an outcome τd. Note that the observed trajectory might be
impossible for the learner to re-execute, and he can only approach it
best with a policy πθd .
The agent learns to achieve diɼerent types of outcomes by actively
choosing which outcomes to focus on and set as goals, which data
collection strategy to adopt and to which teacher to ask for help. It
learns local inverse and forward models in complex, redundant and
continuous spaces.
SGIM-ACTS learns by episodes during which it actively chooses simul-
taneously an outcome τg ∈ T to reach and a learning strategy with
a specific teacher (cf. 3.4.3). Its choice σ is selected between : in-
trinsically motivated exploration, mimicry from teacher 1, emulation of
teacher 1, mimicry from teacher 2, emulation of teacher 2 ....
In an episode under a mimicking strategy (fig. 3), our SGIM-ACTS
learner actively self-generates a goal τg where its competence improve-
ment is maximal (cf. 3.4.3). The SGIM-ACTS learner explores prefer-
entially goal outcomes easy to reach and where it makes progress the
fastest. The selected teacher answers its request with a demonstra-
tion [ζd, τd] to produce an outcome τd that is closest to τg (cf. 3.3.1).
The robot mimics the teacher to reproduce ζd, for a fixed duration, by
performing policies πθ which are small variations of an approximation
of ζd.
In an episode under an emulation strategy (fig. 3), our SGIM-ACTS
learner observes from the selected teacher a demonstration [ζd, τd].
It tries diɼerent policies using goal-directed optimisation algorithms to
approach the observed outcome τd, without taking into account the
demonstrated policy ζd. It re-uses and optimises its policy repertoire
built through its past autonomous and socially guided explorations (cf.
3.3.2). The episode ends after a fixed duration.
In an episode under the intrinsic motivation strategy (fig. 3), it explores
autonomously following the SAGG-RIAC algorithm [6]. It actively self-
generates a goal τg where its competence improvement is maximal
(cf. 3.4.3), as in the mimicking strategy. Then, it explores which policy
πθ can achieve τg best. It tries diɼerent policies to approach the self-
determined outcome τg, as in the emulation strategy (cf. 3.3.2). The
episode ends after a fixed duration. The intrinsic motivation and emu-
lation strategies diɼer mainly by the way the goal outcome is chosen.
An extensive study of the role of these diɼerent learning strategies can
be found in [30]. Thus the mimicry exploration increases the learner’s
policy repertoire on which to build up emulation and self-exploration,
while biasing the policy space exploration. Demonstrations with struc-
tured policy sets, similar policy shapes, bias the policy space explo-

ration to interesting subspaces, that allow the robot to overcome high-
dimensionality and redundancy issues and interpolate to generalise in
continuous outcome spaces. With emulation learning, the teacher in-
fluences the exploration of the outcome space. He can hinder the ex-
ploration of subspaces attracting the learner’s attention to other sub-
spaces. On the contrary, he can encourage their exploration by mak-
ing demonstrations in those subspaces. Self-exploration is essential to
build up on these demonstrations to overcome correspondence prob-
lems and collect more data to acquire better precision according to the
embodiment of the robot.
This behavioural description of SGIM-ACTS is followed in the next sec-
tion by the description of its architecture.

3.2. Hierarchical Structure

SGIM-ACTS improves its estimation L−1 to minimise I =∫
τ P(τ)J(τ, M(L−1(τ)))dτ by exploring with the diɼerent strate-
gies the outcome and policy spaces. Its architecture is separated into
three levels:

· A Strategy Exploration level which decides actively which
learning strategy to use between intrinsic motivation, emula-
tion and mimicry, and which teacher to ask for demonstrations
(Select Goal Outcome and Strategy). Tomotivate its choice,
it maps T in terms of interest level for each strategy (Outcome
and Strategy Interest Mapping) to keep track which strategy
and which subspace of T leads to the best learning progress.

· An Outcome Space Exploration level which minimises I by
exploring T. It decides actively which outcome τg to focus on, to
minimise J(τg, M(L−1(τg))), according to the adopted strategy.
In the case of an emulation strategy, it sets the observed out-
come of the demonstration τd as a goal. In the case of mimicry
and intrinsic motivation strategies, it self-determines a goal τg
selected by theSelect Goal Outcome and Strategy function.

· A Policy Space Exploration level which explores the pol-
icy parameters space Π to improve its estimation of J and
estimate the inverse mapping L−1(τg). With the mimicry
learning strategy, it mimics the demonstrated trajectory ζd
by the chosen teacher to estimate J around that locality
(Mimicry). With the emulation and autonomous exploration
strategy, the Goal-Directed Policy Optimisation function
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minimises J(τg, M(θ)) with respect to θ. It attempts to reach
the goals τg set by the Strategy and Outcome Space Explo-
ration level, and gets a better estimate of J that it can use later
on to reach other goals. It finally returns to the Strategy and
Outcome Space Exploration level the measure of competence
progress for reaching τg or τd.

The exploration in the three levels is the key to the robustness of SGIM-
ACTS in high dimensional policy spaces.

3.3. Policy Space Exploration

3.3.1. Mimicry
This function tries to mimic a demonstration (ζd, τd) with policy param-
eters θim = θd + θrand with a random movement parameter variation
|θrand| < ε and πθd is the closest policy to reproduce ζd. θd is com-
puted by minimising over θ the distance between ζd and the motor
primitives πθ . This function thus makes an estimate of J(τd, M(θ))
in the locality of θd. After a short fixed number of times, SGIM-ACTS
computes its competence at reaching the goal τd.

3.3.2. Goal-Directed Policy Optimisation
This function searches for policies πθ that guide the system toward the
goal τg by 1) building local models of J during exploration that can be
re-used for later goals and 2) updating its estimated inverse model L−1.
In the experiments below, exploration mixes local optimisation with the
Nelder-Mead simplex algorithm [22] and global random exploration to
avoid local minima. The measures are used to build memory-based lo-
cal direct and inverse models, using interpolation and more specifically
locally weighted learning with a gaussian kernel such as presented in
[4].

3.4. Strategy and Outcome Space Exploration

3.4.1. Emulation
In the emulation strategy, the learner explores outcomes τd that he ob-
served from the demonstrations: τg ← τd. The learner tries to achieve
τd by goal-oriented policy optimisation, which allows data collection
and updating of L−1.

3.4.2. Outcome and Strategy Interest Mapping
T is partitioned according to interest levels. We note R = {Ri, T =
∪iRi} a partition of T . For each outcome τ explored with strategy
σ , the learner evaluates its competence progress, where competence
measure assesses how close it can reach τ : γ = J(τ, M(L−1(τ))). A
high value of γ means a good competence at reaching the goal yg by
strategy σ .
For each episode, it can compute its competence for the goal outcome
at the beginning of the episode γ1 and the end of the episode γ2 after
trying nbA movements and measure its competence progress:

prog = 2(sig(αp ∗
γ1 − γ2

|Ti| · nbA )− 1) with sig(x) = ex + e−x

2 (2)

where αp is a constant and |Ti| is the size of the subspace Ti.
T is partitioned so as to maximally discriminate areas according to their
competence progress, as described in Algorithm 2 and [6]. For each
strategy σ , we define a cost κ(σ ), which are weights for the compu-
tation of the interest of each region of the outcome space. κ(σ ) rep-
resents the preference of the teachers to help the robot or not, or the

Algorithm 2 [R] = Update Outcome and Strategy Interest
Mapping(R, Memo, τg, progressg, σ )

input: R: set of regions Rn and corresponding interestRn (σ ) for each
strategy σ .
input: τg, progressg: goal outcome of the episode and its progress
measure.
input: Memo: the set of all observed outcomes during the episode
and their progress measures (τr , progressr ).
input: σ : strategy and teacher used during the episode.
parameter: gMax : the maximal number of elements inside a region.
parameter: δ : a time window used to compute the interest.
for all (τ, progress) ∈ {Memo, (τg, progressg)} do

Find the region Rn ∈ R such that τ ∈ Rn.
Add progress in Rn(σ ), the list of competence progress measures
of experiments τ ∈ Rn with strategy σ .
Compute the new value of competence progress of Rn(σ ):

interestRn (σ ) =
mean|Rn |

i=|Rn |−δprogressi
κ(σ )

if |Rn(σ )| > gmax then
R ← Split Rn.

end if
end for
return R

cost in time and energy ... of each strategy, and in this study κ(σ ) are
set to arbitrary constant values.
We compute the interest as the local competence progress, over
a sliding time window of the δ most recent goals attempted in-
side Ri with strategy σ which builds the list of competence progress
measures Ri(σ ) = {progress1, ...progress|Ri(σ )|}:

interestRi (σ ) =
mean|Ri(σ )|

j=|Ri(σ )|−δprogressj

κ(σ ) (3)

The partition of T is done recursively and so as to maximally discrimi-
nate areas according to their levels of interest. A split is triggered once
a number of outcomes gmax has been attempted inside Rn with the
same strategy σ . The split separates areas of diɼerent interest levels
and diɼerent reaching diɺculties. The split of a region Rn into Rn+1
and Rn+2 is done by selecting among m randomly generated splits,
a split dimension j ∈ |T | and then a position vj (we suppose that
Rn ⊂ Ti ⊂ T with Ti a n-dimensional space) such that:

· All the τ ∈ Rn+1 have a jth component smaller than vj;

· All the τ ∈ Rn+2 have a jth component higher than vj;

· It maximises the quantity Qual(j, vj) = |Rn+1|.|Rn+2|
|interestRn+1((σ )) − interestRn+2 (σ )|, where |Ri| is the size
of the region Ri;

3.4.3. Select Goal Outcome and Strategy
In order to balance exploitation and exploration, the next goal outcome
and strategy are selected according to one of the 3 modes, chosen
stochastically with respectively probabilities p1, p2 and p3:

· mode 1: choose σ and τ ∈ T randomly. It ensures a minimum
of exploration of the full strategy and outcome spaces.
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Figure 4. The selection of outcome and strategy is based on a partition of the outcome space with respect to diɼerent competence progress levels. We illustrate with
the case of an outcome space of 3 diɼerent types of outcomes. T 1 ⊂ R2, T 2 ⊂ R and T 3 ⊂ R3. T is partitioned in regions Ri to which are associated
measures of competences γ for each strategy. The “Select Goal Outcome and Strategy” function chooses the (region, strategy) pair that makes the most
competence progress.

· mode 2: choose the region Rn(σ ) and thus the strategy σ with
a probability proportional to its interest value interestRn (σ ):

Pn(σ ) = interestRn (σ ) − min(interestRi )∑|Rn |
i=1 interestRi (σ ) − min(interestRi )

(4)

A outcome τ is then generated randomly inside Rn. This mode
uses exploitation to choose the region with highest interest mea-
sure.

· mode 3: the strategy and regions are selected like in mode 2,
but the outcome τ ∈ Rn is generated close to the already ex-
perimented one which received the lowest competence estima-
tion. This mode also uses exploitation to choose the best out-
come and strategy with respect to interest measures.

We illustrate in the following Section this hierarchical algorithm through
an illustration example where a robot learns to throw a ball or to place it
at diɼerent angles with 7 strategies: intrinsically motivated exploration,
mimicry from 3 teachers and emulation from 3 teachers.

4. Throwing and Placing a Ball

4.1. Experimental Setup

In our simulated experimental setup, we have a 1 degree-of-freedom
arm place a ball at diɼerent angles or throw the ball by controlling its
angular acceleration φ̈ (fig. 1). The time evolution of its angular accel-
eration is described a motor primitives determined by 14 parameters.
Π ⊂ R14 as described in 4.1.1. The outcome space is composed of 2
types of outcomes T = T 1 ∪ T 2, that we detail in 4.1.2 and 4.1.3.

4.1.1. Policy Parameter Space
Starting from angle φ = 0, the robot can control its angular accel-
eration φ̈. Its movement is parameterised by (φ̈1, t1, ...φ̈7, t7) which
defines the acceleration of the arm for the 7 durations ti. It thus defines
φ̈(t) as a piecewise constant function. The policy parameter space is
arbitrarily set to a 14 dimensional space.

4.1.2. Throwing Outcomes
The first type of outcomes is the diɼerent distance x and height h at
which the ball B can be thrown. T 1 = {(x, h)} is of dimension 2. The
ball, initially in the robot’s hand is first accelerated by the robot arm, and
then automatically released:

· at position �OBt=0 which is the position of the tip of the arm,

· with velocity d �OB
dt t=0 which magnitude is the velocity of the arm,

and which direction is the tangent of the arm movement.

Then, the ball falls under gravity force, described by the equation:

�OBt = �g
2 · t2 + d �OB

dt t=0
· t + �OBt=0, (5)

where �g is the gravity force. x is therefore computed for timpact , the
time when the ball touches the ground, or in other words the solution
to the 2nd polynomial equation:

−g
2 · t2 + dz

dt t=0
· t + zt=0 = 0 (6)

The maximum height is also directly computed by equation:

h = zt=0 +
( dOB

dt t=0)2

2g ; (7)

To make the throwing less trivial, we also added a wall as an obstacle
at x= 10. The ball can bounce on the wall using an immobile wall model
and elastic collision.

4.1.3. Placing Outcomes
The second type of outcomes is placing a ball at diɼerent angles φ.
Therefore T 2 is of dimension 1. To achieve an outcome in T 2, the
robot has to stop its arm in a direction φ before releasing the ball, i.e.
it learns to reach φ at a small velocity |v | < |vmax |.
Any policy would move the arm to a final angle φ, but to “place” the
ball at an angle, it also needs to reach a velocity smaller than |vmax |.
Therefore placing a ball is diɺcult.
The robot learns which arm movement it needs to perform to either
place at a given angleφ or to throw a ball at a given height and distance.
Mathematically speaking, it learns highly redundant mappings between
a 14-dimensional policy space and a union of a 1D and a 2D continuous
outcome spaces.
In our experimental setup, the outcome space is thus the union of two
continuous spaces of diɼerent dimensionalities, related to throwing and
placing skills, which makes it complex because of the continuous and
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Figure 5. Comparison of several learning algorithms

composite nature of the space. The complexity of the placing of the
ball depends on the physics of the body and on the structure of motor
commands. We choose to control the robot by angular acceleration to
emphasise the diɼerence in the ease of control between the ”throwing
outcomes” which require rather a velocity control, and the ”placing out-
comes” which require rather a position control. Given the motor control
by acceleration and the encoding of motor primitives, the placing out-
comes are thus more diɺcult to achieve than the throwing outcomes.

4.2. Several Teachers and Strategies

We create simulated teachers by building 3 demonstration sets from
which to pick a random demonstration when asked by the learner :

· teacher 1 has learned how to throw a ball with SAGG-RIAC.
The teacher 1 has the same motor primitives encoding as the
learner, and the robot observes from the demonstrated trajec-
tories directly the demonstrated (φ̈1, t1, ...φ̈7, t7).

· teacher 2 is an expert in placing, programmed by an explicit
equation to place at any angle with a null velocity. The teacher 2
too has the same motor primitives encoding as the learner, and
the robot observes from the demonstrated trajectories directly
the demonstrated (φ̈1, t1, ...φ̈7, t7).

· teacher 3 is an expert in placing, except that in this case the
learner faces correspondence problems and misinterprets the
two parameters φ̈6 and φ̈7 as the opposite values. In this ex-
periment, we do not attempt to solve this correspondence prob-
lem. We also note that while the learner has issues mimicking
teacher 3, he has no issues emulating teacher 3, as the out-
come space parametrisation is the same.

Therefore in our experiment, the interactive learner can choose be-
tween 7 strategies : SAGG-RIAC autonomous exploration, emulation
of each of the 3 teachers or mimicry of each of the 3 teachers.

4.3. Comparison of Learning Algorithms

To assess the eɺciency of SGIM-ACTS, we decide to compare the
performance of several learning algorithms (fig. 5):

· Random exploration : throughout the experiment, the robot
learns by picking policy parameters randomly. It explores ran-
domly the policy parameter space Π.

· SAGG-RIAC : throughout the experiment, the robot uses ac-
tive goal-babbling to explore autonomously, without taking into
account any demonstration by the teacher, and is driven by in-
trinsic motivation.

· mimicry : at a regular frequency, the learner determines a
goal τg where learning progress is maximal, and requests to
the chosen teacher a demonstration. The teacher selects

Figure 6. Mean error for the diɼerent learning algorithms averaged over the two
sub outcome spaces (final variance value∆ is indicated in the legend)
.

among his data set a demonstration [ζd, τd] so that τd =
argminτ∈{DemoSet}||τg − τ||. The learner mimics the demon-
strated policy ζd by repeating the movement with small varia-
tions.

· emulation : at a regular frequency, the learner determines a
goal τg where is learning progress is maximal, and requests
to the chosen teacher a demonstration. The teacher selects
among his data set a demonstration [ζd, τd] so that τd =
argminτ∈{DemoSet}||τg − τ||. The learner tries to reproduce
the outcome τd.

· SGIM-ACTS : interactive learning where the robot learns by ac-
tively choosing between intrinsic motivation strategy or one of
the social learning strategies with the chosen teacher: mimick-
ing or emulation.

We run simulations with the following parameters. The costs of all so-
cially guided strategies κ(σ ) are set to 2, and the cost of intrinsic moti-
vation is set to 1. The probabilities for the diɼerent modes of selecting
a region of the outcome space and a strategy are: p1 = 0.05, p2 = 0.7
and p3 = 0.25. Other parameters are ε = 0.05, gmax = 10, αp = 1000
and vmax = 0.01.
For each experiment, we let the robot perform 8000 actions in total, and
evaluate its performance every 1000 actions, by requiring the system
to produce outcomes from a benchmark set that is evenly distributed
in the outcome space and independent from the learning data.

4.4. Results

The comparison of these four learning algorithms in Fig. 6 shows that
SGIM-ACTS decreases its cumulative error for both placing and throw-
ing. It performs better than autonomous exploration by random or intrin-
sic motivation, and better than any socially guided exploration with any
teacher. Fig. 7 details that SGIM-ACTS error rate for both placing and
throwing is low. For throwing, SGIM-ACTS performs the best in terms
of error rate and speed because it could find the right strategy. We
also note that random exploration and SAGG-RIAC also perform well
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Figure 7. Mean error for the diɼerent learning algorithms for each of the throwing
outcomes and placing outcomes separately. The legend is the same
as in Fig. 6.

Figure 8. Strategy chosen by by SGIM-ACTS through time: percentage of times
each strategy is chosen for several runs of the experiment.

for solving the 2nd degree polynomial equation (5) to achieve throw-
ing outcomes. While mimicking and emulating teacher 1 decreases
the error as expected, mimicking and emulating a teacher who is ex-
pert in another kind of outcomes and is bad in that outcome leaves a
high error rate. For placing, SGIM-ACTS makes less error than all other
algorithms. Indeed, as we expected, mimicking the teacher 2, and em-
ulating teachers 2 and 3 enhances low error rates, while mimicking a
teacher with correspondence problem (teacher 3) or an expert on an-
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Figure 9. Outcome chosen by SGIM-ACTS through time: percentage of times
each kind of outcome is chosen for several runs of the experiment.

Figure 10. Consistency in the choice of outcome, teacher and strategy: per-
centage of times each strategy, teacher and outcome are chosen
over all the history of the robot.

other outcome (teacher 1) gives poor result. We also note that for both
outcomes, mimicry does not lead to important learning progress, and
the error curve is almost flat. This is due to the lack of exploration which
leads the learner to ask demonstrations for outcomes only in a small
subspace.
Indeed, we see in Fig. 8 which illustrates the percentage times each
strategy is chosen by SGIM-ACTS with respect to time, that mimicry
of teacher 3, which lacks eɺciency because of the correspondence
problem, is seldom chosen by SGIM-ACTS. Mimicry and emulation
of teacher 1 is also little used because autonomous learning learns
quickly throwing outcomes. Teachers 2 and 3 are exactly the same
with respect to the outcomes they demonstrate, and are emulated in
the same proportion. This figure also shows that the more the learner
cumulates knowledge, the more autonomous he grows : his percent-
age of autonomous learning increases steadily.
Not only does he choose the right strategies, but also the right outcome
to concentrate on. Fig. 9 shows that he concentrates in the end more
on placing, which are more diɺcult.
Finally, Fig. 10 shows the percentage of times over all the experiments
where he chooses at the same time each outcome type, a strategy and
a teacher. We can see that for the placing outcomes, he seldom re-
quests help from the teacher 1, as he learns that teacher 1 does not
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know how to place the ball. Likewise, because of the correspondence
problems, he does not mimic teacher 3. But he learns that mimick-
ing teacher 2 and emulating teachers 2 and 3 are useful for placing
outcomes. For the throwing outcomes, he uses slightly more the au-
tonomous exploration strategy, as he can learn eɺciently by himself.
The high percentage for the other strategies is due to the fact that the
throwing outcomes are easy to learn, therefore are learned in the be-
ginning when a lot of sampling of all possible strategies is carried out.
SGIM-ACTS is therefore consistent in its choice of outcomes, data col-
lection strategies and teachers.

5. Conclusion and Discussion

We presented the SGIM-ACTS (Socially Guided Intrinsic Motiva-
tion with Active Choice of Teacher and Strategy) algorithm that eɺ-
ciently and actively combines autonomous self-exploration and inter-
active learning, to address the learning of multiple outcomes, with out-
comes of diɼerent types, and with diɼerent data collection strategies.
In particular, it learns actively to decide on the fundamental questions
of programming by demonstration: what and how to learn; but also
what, how, when and who to imitate. This interactive learner de-
cides eɺciently and coherently whether to use social guidance. It
learns when to ask for demonstration, what kind of demonstrations
(action to mimic or outcome to emulate) and who to ask for demonstra-
tions, among the available teachers. Its hierarchical architecture bears
three levels. The lower level explores the policy parameters space to
build skills for determined goal outcomes. The upper level explores
the outcome space to evaluate for which outcomes he makes the best
progress. A meta-level actively chooses the outcome and data collec-
tion strategy that leads to the best competence progress. We showed
through our illustration example that SGIM-ACTS can focus on the out-
come where it learns the most, while choosing the most appropriate
associated data collection strategy. The active learner can explore eɺ-
ciently a composite and continuous outcome space to be able to gen-
eralise for new outcomes of the outcome spaces.

SGIM-ACTS has been shown an eɺcient method for learning with mul-
tiple teachers and multiple outcome types. The number of outcomes
used in the experiment is infinite, with a continuous outcome space that
is made of 2 types of outcomes, but all the formalism and framework
is in principle scalable to a higher number of types of outcomes. Like-
wise, the method should apply to domestic or industrial robots who
usually interact with a finite number of teachers. Even in the case
of correspondence problems, the system still takes advantage of the
demonstrations to bias its exploration of the outcome space. When the
discrepancies between the teacher and the learner are small, demon-
strations advantageously bias the exploration of the outcome space,
as argued in [30]. Future work should test SGIM-ACTS on more com-
plex environments, and with real physical robots and everyday human
users. It would also be interesting to compare the outcomes selected
by our system to developmental behavioural studies, and highlight de-
velopmental trajectories.
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