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Learning a DFT-based sequence with reinforcement learning:

a NAO implementation

Boris Duran'*, Gauss Lee' 7,

Robert Lowe'# Abstract

The implementation of sequence learning in robotic platforms offers several challenges. Deciding when to stop
one action and continue to the next requires a balance between stability of sensory information and, of course, the
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knowledge about what action is required next. The work presented here proposes a starting point for the successful
execution and learning of dynamic sequences. Making use of the NAO humanoid platform we propose a math-
ematical model based on dynamic field theory and reinforcement learning methods for obtaining and performing

a sequence of elementary motor behaviors. Results from the comparison of two reinforcement learning methods
applied to sequence generation, for both simulation and implementation, are provided.
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1.

Introduction

All agent actions from the simple to the complex, and across time
scales of milliseconds to many minutes and beyond, involve sequences
of sub-action elements. Sequences of such elements functional to 'de-
sired’ (e.g. goal- or reward-based) outcomes are not arbitrary, however.
Individual elements must be organized such that an agent can move
from an initial state or action to one that yields the desired outcome.
Such organization in the context of embodied systems must be subject
to ongoing revisions in order that desired outcomes can be consistently
achieved.

Recently, the subject of much investigation into the embodied genera-
tion of sequences of sensorimotor activity has been the neural-dynamic
approach with a particular focus on dynamic field theory, or DFT (cf. [1],
[2]). In such systems, actions are selected as a function of the intrinsic
dynamics of spatially continuous sensory and motor surfaces as sub-
symbolically represented by neural fields. A field is comprised of a pop-
ulation of neurons and has the same structure as a fully recurrent neural
network where connections exert local excitatory or global inhibitory ef-
fects depending on the relative location within the network. Fields are
used to represent perceptual features, motion or cognitive decisions,
e.g. position, orientation, color, speed. The dynamics of these fields
allow the creation of attractors (supra-threshold peaks) which are the
units of representation in DFT [2]. The result of activating this type of
network is a continuously adaptive system that responds dynamically
to changes in sensed external stimuli. Through the use of field attrac-
tors, robotic behaviour can not only be responsive to, but also be be
robust to, temporary sensory occlusions of stimuli [3]. Attractors also
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enable robustness to action durations [2] that may vary consequent to
actuator inconsistencies or minor changes in the environment.
Sequence generation algorithms have been produced that exploit the
embodied properties of neural fields. For example, [4] used a DFT
architecture that enabled robots to infer goal-directed intentions from
other robots in a joint action task utilizing the stable attractor states as
various decision points. Action chains were learned using a hebbian
rule following teacher demonstration of the sequence. [5] provided an
architecture consisting of a number of ordinal nodes whose 'winner-
take-all' selected activations represent effective intentions to produce
a particular (sub-)action in a sequence. Sub-actions, which we refer to
as 'elementary behaviours’ (EBs - see [6]) are registered according to
site activation on a particular ‘action field’. Completion of a particular
sub-action is registered following supra-threshold activation in a 'con-
dition of satisfaction’ (CoS) field. This activity in turn provides the key
to destabilizing the current action 'intention’ (active ordinal node) and
enabling successor actions to be carried out.

Notwithstanding the successful deployment of such neural-dynamic ar-
chitectures in mobile robots the two aforementioned models rely on an
initial supervised hebbian learning phase prior to a secondary sequence
generation phase. In the domain of autonomous mobile robotics, re-
inforcement learning processes, under the guidance of affective sig-
nals, are necessary for robots to continually update the learning units
within a given sequence in an ‘online’ manner Reinforcement learn-
ing is a paradigm that has been employed for both autonomous, non-
supervised learning in robots and for learning sequences of states or
state-action pairs (cf. [7]). TD-based reinforcement learning robots, fol-
lowing initial random search, chance upon a sequence of behaviours
that leads to a reward (positive reinforcer). In subsequent learning tri-
als, the robots learn the temporally discounted value of states or state-
actions pairs back-chained from the final rewarding state to the robot's
start state (e.g. initial position in a learning trial).

The use of reinforcement learning in the context of sequence genera-
tion promotes autonomy but also viability as it enables robots to adapt
to changing environments (i.e. where 'conditions of satisfaction’ are
not met). [8] demonstrated that temporal difference (TD) based Actor-
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Critic algorithms could be potentially deployed for learning arbitrary se-
quence lengths; however, their approach (neural network state function
approximation - the 'Critic’) relied on the learning, over blocks of trials,
of stimulus-action pairs successively back-chained from the rewarding
pair to the initial pair. This may therefore be seen as a semi-supervised
approach. The model was also only tested in simulation using abstract
actions without a mobile robotics application. Learning stimulus (or
state)- action pairs in the real world represents a challenge that must
account for the embodied dynamics of real world interactions. More re-
cently, TD-based reinforcement learning techniques have been applied
to robots learning fine-grained sensori-motor patterns [9] though these
are not conceived in terms of learning chains of elementary behaviours
that may be reused according to different contexts.

In this paper, we present an extension of the sequence learn-
ing/generation architecture of [10] that uses TD-based reinforcement
learning algorithms with simple discrete state-action representation. In
this way, we hope to exploit: 1) the embodied properties of a neural-
dynamic approach (i.e. provision of stable time invariant attractors ro-
bust to temporary sensory occlusions), and 2) the autonomy provision-
ing properties of reinforcement learning for exploring the space of ele-
mentary behaviours (EBs) that contribute to rewarding sequences. We
compare the performance of a NAO robot on a simple sequence learn-
ing/generation task using SARSA and Q-learning (both with TD(0O) or
TD(A), i.e. one sample backups of state-action pairs). Comparisons of
these two particular TD algorithms is common practise in reinforcement
learning tasks motivated both from the perspective of computational ef-
ficiency (e.g. Bellot et al. 2012) and also biological relevance (cf. [11]).
The main contribution of our work can, therefore, be viewed as provid-
ing an investigation into how standard TD-based reinforcement learning
algorithms may be applied to autonomous agents operating in the real
world over long duration action sequences.

The paper breaks down as follows: In section 2, we discuss the model
that learns and generates serially ordered EBs as well as the particular
pre-given EBs that the NAO robot can use; in section 3, we apply the
model to the NAO robotic platform and present results of the learning
efficiency of the two TD algorithms; finally, in section 4 we offer some
concluding remarks.

l2. The Model

The model developed for the present project is based on the work done
by [10]. A single sequence of motor behaviors should be performed in
an specific order. After exploring its motor repertoire, the agent will be
able to extract that right sequence. Seven different actions were used
for the current application:

- Stand up

- Search (position)
- Approach

- Arm up (point)

- Arm down

- Go back

- Sit down

Each of the seven actions previously mentioned is represented by what
is known as an Elementary Behavior (EB), [6]. An EB groups three

discrete neurons (a memory, an ordinal, and a condition-of-satisfaction)
and two dynamic fields (an intention field and a condition-of-satisfaction
field). Not all behaviors need to include fields and in the specific case of
NAQO some behaviors are performed in a blocking call, i.e. the program
will not continue to the next line until the robot finishes its current action.
This means that the onset and offset of a EB has a discrete nature,
therefore there is no need (or possibility) of using dynamic fields for
those EBs.

The main components of the proposed model are described next. First
the different components of each elementary behavior are described
under the dynamics of serial order. Second the algorithms used for
both reinforcement learning approaches, Q-learning and SARSA, are
explained as pseudo-code.

2.1. Serial order

In order to simplify but at the same time exemplify the use of neural
and field dynamics, the model makes use of dynamic fields only for the
Search EB. There are other EBs that could make use of dynamic fields
as well, for example in the case of Approach, Go back or Point the
robot could be dynamically coupled to fields that represent distances
and orientations. The present work focuses on the learning of serial
order of the discrete representation of behaviors, i.e. the right sequence
of EBs. The implementation of all distances and orientations for each
degree of freedom of NAQO falls out of the scope of the present work.

Ordinal nodes

An EB i is activated by its ordinal node, v/. The dynamics of ordinal
nodes are given by the following equation:

0.:0

= — v+ h°+c"a(V})—c Z o(vy)
(i)

= () + ) W o(v]) (1)

where T° is the time constant, h° is a negative resting level, ¢®° is
a self-excitatory gain, ¢~ is the strength of the mutual inhibition be-
tween ordinal nodes. ¢ is an inhibitory input from the condition-of-
satisfaction node of the EB, this helps deactivate the ordinal node when
the EBis finished. W;’;" is a connection weight from the memory node
i’ to the ordinal node {, this matrix controls the sequential activation of
ordinal nodes. Finally, o(-) represents a sigmoidal non-linearity which
gives the output of each node.

Memory nodes

Memory nodes, V", become activated when the associated ordi-
nal node has been activated. They remain active through strong
self-excitatory coupling even after the activation of the condition-of-
satisfaction node. An active memory node provides excitatory input to
the next ordinal node in a sequence. These memory-ordinal connec-
tions are the ones encoding the serial organization of EBs, therefore it
is the matrix that represents them the one that will be the target of the
reinforcement learning algorithms.

vim YL Cm'mO'(V[m) + Cm,oo.(vp)

L

(2)

notations is analogous to that of Eq.(1). Note that there’s no mutual

inhibition between memory nodes.
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Figure 1. Schematics of the model for sequence generation based on dynamic field theory and reinforcement learning.

Condition-of-Satisfaction nodes
An active CoS node, v7, signals that the behavioral goal of the EB have

s Vi

been realized. Its dynamics are described by the following equation:

— i+ + o) = ¢ max(o(v))

+ CS,ITI O_(V[m) + CS,COSICOS

)

where the first three terms form the generic dynamics of an Amari node,
the fourth term is a global inhibition within a layer. Input from the mem-
ory node of the EB is scaled by the constant, ¢*". I.,s represents
the information from sensors and for the case of on-or-off behaviors
this would be a simple 1 or 0 respectively, but for sensors attached to
continuous dimensions (fields) this term is given by [ o(u$(x’))dx’.

Intention field

An intention field, ui™(x), receives localized input from the ordinal
nodes. An active ordinal node thus specifies parameter values of the
intended action. Since we are only using the Search behavior to ex-
emplify the use of fields inside an EB, x, represents the orientation of
NAQO’s head. For other EBs an intention field could be associated to
other features (e.g., color, distance, area). The dynamics of the inten-
tion fields reads:

Tl"tUii"t(x) - _ uiint(X)+hint+ I'Lnt

+ /a(u%”‘(x'))wl"t(x —x')dx'. (4)

The intention field receives input, /™, from the associated ordinal node,
v¢, through a synaptic weights function, W™(x); or, as for the cur-
rent application, from a gaussian input with mean at the position of the
tracked object within the field of view of NAO's camera. The area of the
tracked object is used to proportionally scale the amplitude of this input.
Pushed by this input the intention field crosses the detection instability
creating a peak and activating the pan motion of NAO's head.

Condition-of-Satisfaction field

A CoS field, u$**(x), tells the system whether the intended action of
the current EB has been achieved or not. This field receives input from
sensors and from the intention field. Once both overlap, a peak forms
in the CosS field and activates the CoS node, which in turns deactivates
the current EB. The dynamics of the CoS field are given by the following
equation:

TCOS UEOS (X) —

_UICOS(X) +hCOS + ICOS(X)

()
+ CCOS / O_(UI?OS(X/))WCOS(X _ X/)dX/

J’_

Ccos,int]o_(uiint(X/))Wcos,int(X’X/)dX/

2.2. Reinforcement learning

In order to verify the validity of reinforcement learning (RL) for a DFT-
based sequence model, Q-learning (off-policy) and SARSA (on-
policy) were applied and compared to each other. The major difference
between these two learning mechanisms is that the maximum reward
for the predicted state is not necessarily used for updating the g-values
in SARSA but it is needed in Q-learning.

According to the characteristics of the sequence model in section 2, the
connection matrix W™ (Eq.3) needs to be learned. In reinforcement
learning, this matrix is represented by Q which is used to update the
connection weights following a gradient change. Rows and columns of
Q represent both the action taken a and the state space s representing
finished actions, respectively. At the same time an arbitrary element
Mﬁfjm represents the connection from an j-th EB into the next i-th EB.
Therefore, a direct mapping between the Q(a, s) matrix and W™ can
be made. The pseudo-code described below illustrates the process of
reward/punishment sequence learning.
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RL pseudo-code:

1. Initialize discount factor y, learning rate {ax}-, and Q matrix.
Initialize the state s.

2. Select an action a according to the € — greedy policy
nt(a,s) ~ argmaxQ”(a, s), where e = 0.02.

3. Observe its reward r and the next state s’ . Calculate the pre-
diction Q(a’, s’) and update Q(a, s), W

- For Q learning:
— choose the maximun Q(a’, s’) and update:

Qnewla,s) = Q(a,s) + a[r — Q(a, s)
+ ymaxy Q(d’, s')]
Wyi'(a,s) = F(OQpew(a, s))

- For SARSA:

— choose the Q(a’, s’) according to € — greedy pol-
icy and update:

Qnew(a,s) = Q(a,s) + a[r — Q(a, s)
+y0(d’, s")]
W:":’(U,S) = F(Qnew(als))

4. if the condition for state transition (see 3) is fulfilled then s = s,
repeat from 2) until the sequence is memorized.
*F is a function for extracting the diagonal and positive values
from Q matrix.

Within the reinforcement learning process, the model of serial ordinal
node is utilized as the memory which records the correctly-learned se-
quence of behaviors. The learning algorithm converges when the se-
quence of actions are fully memorized (The convergence is detected
when the ArmDown node is up in neural sequence model). Accord-
ing to [12], RL is a function pertaining to dopamine systems in human
brains. Hence, the implementation of RL with DFT-based models is
actually the embodiment of a cognitive dynamic system involving the
interaction of neural memory, dopamine systems and environment.

As to the efficiency of Q-learning and SARSA, it is, in fact, a very
application-dependent topic [7]. For the implementation on NAO, in
order to make algorithms converge efficiently, an eligibility trace rule is
applied for approximating action-state function and given by:

exp(Q(a, s))
>, exp(Qa;, )

e(a,s) =

(6)

where e(a, s) is eligibility for action-state pair (a,s). a; is an arbitary
state. Za,- exp(Q(aj, s)) is a sum with respect to all possible a. The
advantage of using this moderate eligibility is: Firstly, it is associated
with Q(a,s) with one-step backward back-up (ae(a, s)[r — Q(a, s) +
yOQ(d’,s')). If Q(a,s) < 0, the eligibility is reduced, increasing that
of the other actions. If Q(a, s) > 0, the eligibility is increased by sup-
pressing the other behaviors. Because of the requirement that each ac-
tion can only be taken once in the sequence of the serial ordinal model,

Figure 2. Snapshot of NAO after completing the learning process in the pro-
posed scenario.

this eligibility can speed up the update. Secondly, e(a, s) is bounded
between 0 and 1. Unlike the incremental eligibility in [7], the increase of
speed Is also bounded, lest W, (a, s) can be abruptly updated over
its boundary value. Finally, as for the normal eligibiltiy rule, e(a, s) for
all a, s decays with A = 0.8 for each step if Q(a, s) is not visited of-
ten anymore, the e(a, s) decays with Ae(a, s) if it is SARSA. It decays
according to Watkin's rule [7] if it is Q-learning. On the other hand, the
e(a, s) in our work is not initialized with O as the backup of “penalties”
is also necessary and useful in ruling out the negative behaviors.

| 3. Results

In order to successfully perform the whole sequence the physical robot
needs to always start from Stand up and end with Arm down (the
restart condition of one episode). For each step of one episode, the
robot evaluates the behaviors according to its value function and adapts
to environmental change (the position of the approaching target). With
the implementation in two different situations (simulated in Matlab and
non-simulated on the physical robot), the difference of supervised and
non-supervised learning is observed.

NAO's repertoire of motor behaviors for this application consisted of 7
elementary actions. From this, for performing a simple task, a smaller
set (three EBs) was chosen: search for an object, approach and
point/reach, Fig. 2. A very basic color-segmentation algorithm was
used to obtain the position of an object in the field of view of NAO.
This information was represented in a dynamic field to drive the EB
named Search.

3.1.  Simulation: supervised

The reinforcement learning mechanisms here proposed take advan-
tage of the discrete nature of the DFT sequential model. In this simu-
lation, the condition for the transition between states is achieved when
the CoS node of each elementary behavior is active and stable, i.e.
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Q-Learning:Maximization of Reward for Two Results (See-F and Walk-F)
T T T T

Reward

to 100 150 200 250 300 350 400 7

Learning cycles

Figure 3. Comparing the performance of Q- and SARSA- learning in simula-
tion.

o(v’) ~ 1.0. At the same time the next potential action is selected
from the activity of ordinal nodes, i.e. a(v?) ~ 1.0. The reward signal
r is a constant value set to 4 if a is equal to its correspondent action in
the supervised set. Itis equal to -10 (a penalty) if a is a repeated action
in the last step. Otherwise it is set to zero.

Figure 3 shows the results (positive reward) of a supervised re-
ward/punishment learning using Matlab. It is clearly observed that Q-
learning outperforms SARSA in terms of convergence speed. How-
ever, SARSA has its own characteristics as well since its exploratory
feature is more smooth and stable. Q-learning exploration happens
densely during the end of every learned action which can be seen at
the flat regions of Fig. 3. The sharp edges of the Q-learning curve rep-
resent the “greedy” quality of the exploitation of the selected actions.

3.2. Implemention on NAO: non-supervised

In order to glean the performance of Q- and SARSA- learning on the
physical robot, we separately implement two algorithms in the same
context and scenario. The robot learns the Q matrix every step in the
episode. Different from the simulation, the transition condition is merely
satisfied when the action taken is not a repetitive action in a previous
sequence in each episode. Nevertheless the reward function is differ-
ent and given by:

reward = rgistance + I'penalty

/)

Where rgistance 1S the only reward based on sensory information.
For each action, if the distance from the arm to the target is closer,
raistance = 20; if the distance increases, ryistance = —10; otherwise,
Tdistance = 0. Ipenatry = —10 when a repeated action is selected.

In the scenario, the robot needs to pick up proper actions and organize
them in a correct sequence from a limited action space in order to finish
the task through interaction with the environment. Specifically, the task
is about finding a blue paper on the wall, approach (walk to), and point
with lifting its arm. Since the distance is a dominant variable in this task,
it is chosen to be the only reward-related information. With the NAO
robot, it is able to sense the distance change in 3D space between
two steps. The visual searching space is [—7, 7] in front of NAO, in
which case the robot's working space is also limited. After finishing
each episode, NAO is put back in the initial position.

Figure 4, 5 show the results of learning curves for two algorithms.
Firstly, the efficiency advantage of Q-learning is not observed, which
is distinct from supervised learning. Two algorithms both converge
around 100 learning cycles. Secondly, in the first 30 learning cy-
cles, there is a decrease of expected reward. Since the eligibility and

Expected Reward

G
Learning Cycles

Figure 4. The curve of Q-learning for two converged behaviors: See-F and
Walk-F.

SARSA:Maximization of Reward for Two Results (See-F and Walk-F)
T T T T T

See-F

Expected Reward
=

Walk-F

&
Learning Cycles

Figure 5. The curve of SARSA for two converged behaviors: See-F and Walk-F.

€ — greedy policy both do not work well in the beginning, the robot
needs to explore to get penalties in order to know which action to
take. Those penalties are forward-chained with subsequent behav-
iors in a complete action sequence in one trial, gradually driving the
emergence of a coherent action sequence. In dynamic systems the-
ory, explorations of this type are "instabilities” which are important to
the emergence of new behaviors [13]. Meanwhile, when the robot
gets "punished” through interaction exploration, unappealling actions
are suppressed, causing the emergence of attraction of certain behav-
jors. For instance, “arm down”, as a neutral behavior, cannot be finally
chosen without oppressing the other behaviors.

Interestingly, the sequence learning, most of the time, converges to
two continuous behaviors which comprises an intriguing result: the
dilemma of seeing (sensing) first versus walking (acting) first. One se-
quence is Search (seeing) - Approach (walking) - ArmUp - ArmDown
and the other is Approach (walking) - Search (seeing) - ArmUp - Ar-
mDown. It seems both of these two behaviors are correct. However,
according to [14], sensorimotor systems are contingent on visual stim-
uli. In other words, these two systems cannot be separated. In the EB,
these two actions are independent from each other, which may account
for the 'dilemma’ of arranging the sequence of seeing and walking.
Meanwhile, the other behavior related to “forgetting of the correction
behavior” is observed in the process of learning. For instance, when
the robot chooses to walk backward (negative behavior) and then sta-
tistically select walking forward, the link between these two actions is
considered as a positive connection (the correspondent Q(a,s) is up-
dated above zero). It seems walking forward is the correction of walking
backward. However, since walking backward is an unappealing action
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Figure 6. Activity of ordinal nodes for all elementary behaviors when the Search
behavior is explored first.
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Figure 7. Activity of the CoS field for the Search behavior when the search
behavior is explored first.

in our task, it is seldom chosen so that the positive link disappears, as
if it is “forgotten”.

Because of the random learning policy at the beginning, the system fully
explores the action space in order to experience different negative and
positive behaviors with respect to the reward function. This determines
the volatile dynamics for each experiment. Since the aim of our work is
to memorize the right sequence with a DFT-based model, the dynamics
of the neural model during learning is not crucial as long as the ordinal
nodes layer records the converged action sequence with three node
activities above threshold (Figure 6 and 8). In both figures there is a
gradual increase of the dynamics chosen by the system to converge
into a first optimal behavior. Intriguingly, the onward dynamics is entirely
distinct. In the learning process, the system explores the complete se-
quence as a target so that it is possible that some positive transitions
have been found before or when the first converged behavior is being
determined. As the sequential behavior can only be boosted one by
one from each state to the next, the first unidentified behavior actually
delays the boost of the subsequent nodes. This is why in Fig. 6, the
activity of the Pointing behavior immediately reaches the zero thresh-
old after the inhibition of the Approach behavior. In Fig. 8 the activities
of both Search and Point behaviors reach the zero threshold imme-

Ordinal nodes

— Search
ar — Approach []
| [ Point

b | \ ] A “‘\HHHH‘AH\M\

I INAE
J\H“‘\H\H\“H\\“\ 'u:"

UYL
|
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Figure 8. Activity of ordinal nodes for all elementary behaviors when the Ap-
proach behavior is explored first.

Cos field for search behavior

Orientation

0 20 40 60 80 100 120
Timesteps

Figure 9. Activity of the CoS field for the Search behavior when the Approach
behavior is explored first.

diately after the first converged Approach behavior. These behaviors
are the ones learned before the first optimal one based on the forward-
propagated punishment and back-chained reward.

The activity of the ordinal nodes for the case when the learning mod-
ule took the Search behavior first is plotted in Fig. 6. Since this be-
havior was explored and executed first, the robot tries to locate the
target in the center of the camera for later approaching it. A peak
in the Condition-of-Satisfaction (CoS) field for the Search behavior
(Fig. 7) inhibits the activity of the Search node allowing a new behavior
(Approach) to be explored and executed. Once the Approach behav-
ior has finished a CoS signal for this node inhibits its activity allowing
the Point behavior to start its exploration and execution. Something
similar happens when the learning module explores the Approach be-
havior first, Fig. 8. A new sequence of behaviors is learned from the
same dynamics of exploration, execution and inhibition but this time
the initial behavior is Approach.

The input to the CoS field comes from the camera of the robot and it
represents the horizontal orientation of a colored object or target, Fig. 7,
9. The main activity of these fields stays around the center of the cam-
era with some interruptions due to the non-smooth way of NAO ap-
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proaching the target. By comparing these two plots it is easy to notice
the advantages of selecting the Search behavior before starting to walk
with the Approach behavior. In Fig. 7 it is possible to see a smoother
tracking of the target compared to the one observed in Fig. 9. In other
words, a sequence where the robot adopts ‘Search’ the target first be-
fore Approaching’ it is more efficient than a sequence where the robot
starts walking before knowing where to walk.

| 4. Conclusion

DFT-based sequence generation was previously presented with super-
vised learning, i.e. using a Hebbian rule, [5], and implemented on a
mobile robot. In this paper we sought to validate and extend that work
to a non-supervised type of learning and to implement it on a humanoid
robot platform. The advantages of using neural dynamics in sensory-
motor loops are tangible when dealing with real environments and it was
once more demonstrated in our current application. Moreover, the flex-
ible, but robust, nature of the serial order dynamics was evident when
stabilizing the transitions between elementary behaviors. The activity of
ordinal and Condition-of-Satisfaction nodes was perfectly matched to
the pair action-state of reinforcement learning algorithms fusing them to
dynamic field theory effortlessly. From the reinforcement learning point
of view DFT works as the “critic” part of an actor-critic configuration.
Reinforcement learning, as a dynamic learning process based on in-
teraction, adaptively connects the environment and the memory (DFT-
based sequence model) in searching for the task-oriented sequence
with respect to a specific reward/punishment chain. From the perspec-
tive of dynamic systems theory, RL finds two “attractors” from the given
primitive behaviors in order to finish a goal-directed task by balancing
exploration and exploitation. The “instabilities” shown in the learning
process not only insulates the importance of exploration but also the
source of the emergence of new behaviors[13]. However, since the
action and state space is limited with EB for ordinal-node model, the
performance is highly dependent on the modelling of each basic action.
This is the reason for the occurrence of the dilemma between seeing
and walking.

The use of RL methods and DFT-based sequences was presented in
[15], being the main difference the use on our side of punishment to
rule out the “negative” behaviors. Moreover we thought important to
include a comparison of RL methodologies in this type of tasks which
is not done in [15].

The study of two very different learning processes in our model gave
us important insights into the way sequences can be built depending
on initial conditions. One of the sequences followed a more logical
path starting from a search behavior for later approaching and finally
for reaching or pointing. The other case did not follow a logical path
and its effects were observed in the poor tracking of targets. This tells
us that some trade off or mixed model must be implemented between
supervised and unsupervised learning approaches in order to obtain
efficient and dynamic learning architectures.

The following stages of our research involve the implementation of hi-
erarchical serial order. After showing the feasibility of working with the
NAO platform we are encouraged to create more complex scenarios
involving different objects and routines using the same robot.
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