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Abstract

The use of concepts is fundamental to human-level cognition, but there remain a number of open questions as to
the structures supporting this competence. Specifically, it has been shown that humans use concept prototypes, a
flexible means of representing concepts such that it can be used both for categorisation and for similarity judgements.
In the context of autonomous robotic agents, the processes by which such concept functionality could be acquired
would be particularly useful, enabling flexible knowledge representation and application. This paper seeks to explore
this issue of autonomous concept acquisition. By applying a set of structural and operational principles, that support
a wide range of cognitive competencies, within a developmental framework, the intention is to explicitly embed the
development of concepts into a wider framework of cognitive processing. Comparison with a benchmark concept
modelling system shows that the proposed approach can account for a number of features, namely concept-based
classification, and its extension to prototype-like functionality.
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1. Introduction

From the perspective of autonomous robotic agent functionality, hu-
mans form an important source of inspiration as they provide a work-
ing example of desirable behaviours. Theory and data are therefore
drawn from the empirical sciences (psychology, neuroscience, etc) in
the search for aspects of functionality and mechanisms that can be ap-
plied to computational systems. Furthermore, from the perspective of
the design of synthetic agents for the purpose of human-robot inter-
action (particularly social), it is desirable that the functionality of these
agents reflects human cognitive processing, e.g. [6, 22]. This is to en-
sure that the humans’ expectations of the system may be fulfilled, and
that the system may better assess the behaviour (be it actual or ex-
pected) of the human. In this context, it is not just desirable to achieve
the highest possible eɺciency for the robotic agent, it is also desirable
to be able to account for the sources of non-optimal (in the sense of ac-
curacy) performance in humans. Finally, in the context of autonomous
operation, it is also desirable that robotic agents acquire the desired
competencies in a manner that is not purely reliant on supervised learn-
ing.

One particularly important aspect of human behaviour is the ability to
deal with conceptual knowledge. It is a fundamental requirement for
human cognition, and so is likewise a necessary competence for au-
tonomous synthetic agents [8, 19]. Concepts have long been regarded
as logical definitions, eɼectively specifying a list of necessary and suf-
ficient properties that describe a concept. For example, the concept
bachelor may be comprised of the properties adult, male and is not
married ; consequently, everything that is an adult male and is unmar-
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ried is therefore a bachelor. This definition of concept representation
is known as the classical theory [16, 20, 27].
However, fundamental problems with the classical theory of concept
have been identified, in particular the fact that for a lot of concepts it
is very hard, if not impossible, to come up with a logical set of defining
properties. And even if such a set could be identified, it is apparent
from psychological studies that people do not adhere to these defini-
tions consistently. This has resulted in the formulation of new theories
that closer matched human performance. One such reformulation is
that a fundamental characteristic of human concepts is the use of pro-
totypes [24]. This theory postulates a concept as an idealised version
constructed from examples that people have experienced throughout
their life. For the concept bird people have a prototype that repre-
sents the ideal bird, and any encounters they have in the real world
are matched with this prototypical version. The more similar an obser-
vation is to the prototype, the more likely it is to be considered as an
instance of this concept. A prototype is thus a summary representation
that specifies the properties of the concept, where the properties need
not have equal importance. Not all properties are necessary, as in the
classical theory, but rather they describe which properties instances of
the concept in general tend to posses. The process of identifying an
object in the world thus entails a matching to known prototypes.
This perspective has displaced the notion that concepts can be defined
through solely logical definitions, as it has been shown that people are
readily able to assess an instance of a concept as being more or less
typical of the concept prototype, where this assessment is based on a
similarity judgement, rather than a property-checklist matching proce-
dure [24].
We seek to provide an account of how these features of concept utility
can be applied to robotic agents. Increasing evidence from the study of
the substrate of human cognition indicates that cognitive functionality
is overlapping and distributed, operating on a number of common prin-
ciples, e.g. [1, 15]. In considering one type of cognitive competence,
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this evidence thus indicates that there is a need to consider the wider
implications of the required functionality in terms of cognitive process-
ing and architecture, e.g. [5, 29], and interaction with the environment,
e.g. [23]. This widening of scope underlines the importance of con-
sidering ontogeny: exploring the developmental substrate of such in-
tegrated functionality provides insight not only into how such cognitive
competence arises, but also indicates a means to achieve autonomous
operation for robotic agents [31], with the changes in perspective on
system design and evaluation that this entails [26].
In this paper, the question of how to account for concept utility embed-
ded in wider cognitive processing within a developmental framework
is explored. We propose and apply a system inspired by a neuropsy-
chological perspective on memory: the Distributed, Associative and
Interactive Memory (DAIM) model. To act as a benchmark for human
performance, a Conceptual Spaces (CS) system is used, whose ac-
count of prototypes matches closely that found in human behaviour
[10, 24]. Whilst a good predictive model, the CS system is rather static
in structure, and it is unclear how conceptual learning over time can be
accounted for in an unsupervised manner. The purpose of this com-
parison is to see how the developmental DAIM system compares with
CS; whether DAIM can account for those features of conceptual knowl-
edge processing exhibited by humans. It is thus equally important to
both account for correct classification as it is to account for errors in the
identification of concepts; this study is not intended as the proposal of
an algorithm for optimal classification performance.
After an introduction to the computational models used to explore
the issues of concept prototype acquisition in this paper (Section 2),
the zoo dataset used for this exploration is described (Section 3.1).
The experimental procedure (Section 3.2) and results obtained are
subsequently presented (Section 4), demonstrating classification and
prototype-like functionality. These are then discussed in the context of
concept development in autonomous synthetic systems (Section 5).

2. Architecture of Models

2.1. The Conceptual Spaces (CS) Model

A Conceptual Space (CS) consists of a geometrical representation in
vector space along various quality dimensions [10]. This perspective
on concept representation is consistent with accounts of human be-
haviour (e.g. [24]); a CS model is therefore suitable for use as a bench-
mark system against which the performance of DAIM can be assessed.
A CS is a collection of domains (like colour, shape, or tone), where a do-
main is postulated as a collection of inseparable sensory-based quality
dimensions with a metric [11]. For instance, to express a point in the
colour domain using an RGB encoding, the diɼerent quality dimensions
red, green, and blue are all necessary to express a certain colour and
are therefore inseparable. In its simplest form, a concept can be rep-
resented as a point in the conceptual space, where the coordinates of
the point determine the features of the concept (e.g. Figure 1).
Crucial to modelling concepts in a CS is the ability to take a distance
measurement. For each of the dimensions involved, a suitable metric
to calculate distance between coordinates on this dimension must be
defined. For the case of numerous dimensions the Euclidean distance
is typically the most appropriate. For example, for colour, a normalised
RGB space can be defined, such that the Euclidean distance between
any two points in this space can be calculated (Figure 1). The metric
can be augmented with a weight (w) to allow certain dimensions to be
more prominently expressed than others.
Within a CS the learning of prototypes can be modelled by exposing
the model to instances with associated labels. For example, various

Figure 1. Abstract representation of a simple conceptual space with 2 dimen-
sions which is populated by 10 concepts (circled points). Through
generation of a Voronoi diagram the boundaries of the concepts can
be illustrated. Within CS these boundaries are not explicitly defined
or represented, but illustrate the assignment of presented examples
as belonging to a single concept through the application of a distance
measure (Equations 1 and 2).

shades of red could be presented, each with the label ‘Red’: the pro-
totype in this case could correspond to the mean coordinates of all
instances. After this learning phase, the model is able to classify new
examples as belonging to some known class, and specify how typi-
cal the example is, based on a distance measurement between this
example and the various possible classes.

2.1.1. Mechanisms
The notion of prototypes comes naturally to conceptual space mod-
elling, as the distance metric functions as a metric of typicality. Dis-
tance dxy between a prototype x and an example y takes the general
form:

dxy =
( N∑

i=1

wi|xi − yi|r
) 1

r

(1)

where r denotes the type of metric with r = 2 for the Euclidean dis-
tance (or r = 1 for Manhattan distance) and w = 1.0 the weight
of the dimension (with this parameter value, all dimensions are treated
equally, which is a reasonable choice given no a priori domain knowl-
edge). To do justice to psychological evidence of how people tend to
rate concepts [21, 25], the distance is converted into a similarity mea-
surement:

sij = e−cdij (2)

where the similarity s between concept prototypes i and j is computed
as an exponentially decaying function of distance, where c = 1.0 is a
sensitivity parameter.

2.2. Distributed Associative Interactive Memory
(DAIM) Model

The DAIM model operates on a set of four functional principles derived
from the operation of memory within biological systems, embedded
within the context of a wider cognitive system [5, 32]. These principles
are [32]: (1) memory as being fundamentally associative; (2) memory,
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rather than being a passive storage device, is an active component
in cognition through activation dynamics; (3) memory as having a dis-
tributed structure; and finally (4) activation-based priming as subserved
by the first three points. The DAIM model has been implemented so
as to embody each of these principles in a computational architecture
(Figure 2).
Assuming that this system is embedded within a wider agent cognitive
system with multiple sensory and motor modalities, associations may
be seen to form based on the experiences of the agent between units
of processing in these modalities (i.e. a localist representation scheme)
in a Hebbian manner, which subsequently form the substrate for acti-
vation dynamics. Prior experience as encoded in associative networks,
i.e. memory, thus plays an active role in the generation of ongoing be-
haviour through the mechanism of priming, which is the reactivation
of modality-specific localist representations on the basis of existing as-
sociations. These principles (or variations thereon) have been used to
provide candidate mechanisms for a wide range of cognitive phenom-
ena, from visual recognition and analogies [1, 15], to episodic memory,
language development and social interaction [5]. The application of
these principles to conceptual has recently received support from neu-
roscientific studies which emphasise the distributed nature of concep-
tual representations [14, 18], thus motivating the present investigation.

2.2.1. Mechanisms
The computational implementation of the DAIM model is based on an
extension to an Interactive Activation and Competition (IAC) model of
face learning [7]. An explicit encoding for associations is thus used:
an association is represented by an object (in the context of Object-
Oriented Programming), following the approach taken in [2]. This model
diɼers from standard IAC models (such as [17]), and their learning ex-
tensions (e.g. [7]) in four main respects. Firstly, rather than committing
to defining a hub of connectivity, DAIM allows all pools of property units
(i.e. modalities) to link to other units in any other modality: i.e. point-
to-point connectivity (Figure 2). Secondly, weights are updated incre-
mentally at run time, rather than as a batch process only when certain
activation stability criteria are met (e.g. [7]). Thirdly, there is the capac-
ity to create new associative links at run-time, rather than only enabling
the adaptation of a structure initialised a priori. Finally, in contrast to
standard IAC implementations, in the DAIM implementation used for
this study, mutual inhibition between the units of a modality are not
implemented (although the capacity for this functionality is present).
There are two main mechanisms present in DAIM: activation spread,
and weight update. Activation is taken to be a scalar in the range
[amin, amax ] where amin = −0.2 and amax = 1.0. A resting acti-
vation level is defined, which is the steady-state activation level of a
unit in the absence of stimulation: arest = −0.1. Similarly, weights
(of associative links) are taken to be scalars in the range [wmin, wmax ]
where wmin = −1.0 and wmax = 1.0; the initial weight of associative
links upon creation is defined as winit = 0.2. A new associative link
is created between two units in diɼerent modalities, iff they are the
most active units in their respective modalities, and such a link does
not already exist (see Figure 2). The net activation input to each unit is
derived as follows, where exti is the activation derived from an ‘exter-
nal’ source (input to a modality); ξg = 0.6 is a parameter controlling
the proportion of externally derived activation used; inti is the activa-
tion derived from within DAIM (activation from other modality units); and
ζg = 0.3 controls the influence of inti:

neti =
(
ξg × exti

)
+
(
ζg × inti

)
(3)

This is based on the derivation of the activation spread from within the
DAIM system (inti), which is calculated as follows (on every time-step),

Figure 2. The structure of DAIM: shown is a subset of the structures acquired
during the training process. Associative links are formed between
the objects of modalities as these conjunctions are experienced. For
example, the animal with label ”gorilla” has been encoded as a con-
junction of mammal and 2 legs with this label.

where wij is the weight of an associative link linking unit i to unit j in
another modality, and outj is the activation of the linked unit j :

inti =
∑

j
wij × outj (4)

The calculated neti eɼectively encodes the net eɼect of all inputs to
each individual unit, on each time-step, with the result being ’excitatory’
if neti > 0, and ’inhibitory’ if neti < 0. On this basis, the change in
activation level of each unit may be updated (∆ai), where δg = 0.1
determines the proportional decay in activation level:

If (neti > 0) : ∆ai = neti (amax − ai) − δg (ai − arest )

else : ∆ai = neti (ai − amin) − δg (ai − arest )
(5)

The bounded weight update mechanism is based on that derived by
Burton et al [7], with weight update magnitude being driven by the acti-
vation magnitudes of the linked units, where λg = 0.01 is the learning
rate:

If (aiaj > 0.0) : ∆wij = λgaiaj
(
1 − wij

)

else : ∆wij = λgaiaj
(
1 + wij

) (6)

This weight update mechanism operates under the additional con-
straint (not included in the original Burton et al formulation) that:

if
(
(ai < 0) ∩ (aj < 0)

)
: ∆wij = 0 (7)

This counteracts the eɼect of the negative activation resting value
(arest ) gradually increasing all weights, and allows the learning mecha-
nism to be always switched on and incremental at run-time, in contrast
to the original learning IAC formulation where weight updates are batch
processed when certain activation stability criteria are fulfilled (e.g. [7]).
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2.2.2. What makes DAIM a Developmental Architec-
ture?
As described above, the DAIM model essentially provides an active
associative substrate upon which activation dynamics operate. This
substrate is subject to adaptation (e.g. associative link weight update)
over the course of the interaction of the system as a whole with its en-
vironment: as such, adaptation and activation dynamics are inherently
inter-dependent. It is thus reasonable to ask whether DAIM can be
classed as being a developmental system, rather than ‘merely’ a learn-
ing system. We contend that it is subject to a developmental trajectory,
since a fundamental feature of operation is the creation of the associa-
tive substrate itself based on experience (through the creation of new
associative links), in addition to its subsequent adaptation, which may
be regarded as learning [4].

3. Modelling Conceptual Prototypes

To examine the acquisition of conceptual prototypes by the DAIM
model, a dataset is applied and its classification accuracy with respect
to that of the CS model is compared, by means of a 10-fold cross-
validation procedure. In this context however, such a comparison only
provides limited insight; what is also important is the extent and type
of mis-classifications made. To further explore this issue, an addi-
tional analysis is conducted, specifically examining the prototype-like
behaviour of the DAIM system with respect to the CS benchmark. The
dataset chosen consists of a set of zoo animals. This dataset was cho-
sen for this study due to its general familiarity: animals are readily classi-
fied by humans into groups of classes (mammal, bird, etc), with various
animals viewed as more or less typical of a given class. Reflecting the
functionalities of concepts described above (namely classification and
typicality), this therefore enables the results to be intuitively assessed
as well as quantitatively examined.

3.1. The Zoo Dataset

The data set that is the subject of this study is the zoo animal data set
from the UCI Machine Learning Repository [9], which is a database of
100 named animals, each comprised of 17 properties. The majority
of these properties are binary, such as ‘has hair’, ‘is aquatic’, or ‘lays
eggs’. The other two properties are categorical (animal class, which
takes one of seven values: Mammal, Bird, Reptile, Fish, Amphibian,
Insect, or Invertebrate), and scalar (number of legs; 0, 2, 4, 5, 6, 8). It
can be seen that the distribution of instances over the classes is very
uneven (Table 1), with overlapping classes leading to potential diɺcul-
ties in classification [3]. However, one advantage of using a dataset
such as this is that it enables an intuitive assessment of the system
behaviours, in addition to the quantitative results that are obtained.

3.2. Experimental Procedure

The study reported in this paper has two distinct aspects. In the
first (Concept Identification), the classification accuracy of the DAIM
model is assessed using a 10-fold cross-validation scheme, and com-
pared with the performance of the CS model. The emphasis of this
analysis of classification is not just to assess the eɺcacy of classifica-
tion, but also to assess, in relation to the CS model, where and why
errors occur: this is necessary given the goal of accounting for human
classification competencies with DAIM. The second aspect (Prototype
Functionality) involves a deeper inspection of the manner in which
classifications are made, specifically in relation to the prototype theory

Table 1. Class distribution in the complete zoo animal dataset, the 10-fold
cross-validation results for CS and DAIM broken down by class (classi-
fication accuracy shown, two central columns); and the distribution of
training and probe data used in the prototype functionality case study
(two right-hand columns).

Class Dataset
number

CS
success
rate

DAIM
success
rate

Prototype
Training
(number)

Prototype
Probe
(number)

Mammal 41 1.00 1.00 39 2
Bird 20 1.00 1.00 16 4
Fish 13 1.00 1.00 12 1
Invertebrate 10 0.70 0.95 10 0
Insect 8 1.00 0.69 8 0
Reptile 5 0.60 0.70 4 1
Amphibian 3 1.00 0.33 3 0

Overall 100 0.95 0.94 92 8

of human concept competencies. To this end, an additional split of
the dataset is made, with the intention of comparing the classification
performance of specific animal instances (Table 1). A detailed descrip-
tion of the procedures used for these two aspects may be found below
(Section 3.2.3). The training and testing1 procedures used for both
parts of the study are the same, and so are described first for both the
DAIM and CS models. Given the modelling nature of this study, the
precise parameters used are of reduced significance compared to the
mechanisms and functionality under test, where parameters are cho-
sen through empirical selection: this means of parameter selection is
consistent with that used in established IAC formulations, e.g. [7, 17].

3.2.1. Procedure for CS

The training of the CS model involves presenting the properties of all
training instances to the system sequentially: there is no order eɼect.
A conceptual space is set up based on the animal ‘class’ property such
that each presented animal instance is projected to a point in this space
so that a distance (and hence typicality) measurement can be deter-
mined between the instances and prototypes. It should be noted that
the property ‘number of legs’ is normalised prior to training, to main-
tain equivalent ranges across all properties. Learning in the CS model
is thus supervised, as the subject of the classification (animal class)
is provided with the instance to be learned. These explicit prototype
representations enable the classification of novel stimuli: during the
probe phase, the probe instance properties are presented to the CS
system, projected to the animal class conceptual space, and similarity
measures to the prototypes present derived (see Equation 2).

3.2.2. Procedure for DAIM

For the DAIM model in this study, each of the animal instance prop-
erties constitutes a modality, with the features of each property (i.e.
true/false, name, number of legs, animal class) constituting themodality
units (please refer to Section 2.2 for the relation to the theory). Training
in this case is thus unsupervised as all properties are treated equally.

1 The term ‘probe phase’ is used to denote the testing part, following its
use in psychology studies to indicate the part of the experiment where
knowledge acquired over the course of the study is assessed.

203



PALADYN Journal of Behavioral Robotics

The training procedure takes into account the temporal and iterative
nature of the learning mechanisms (specifically weight update). Train-
ing takes the form of a sequence of instances to learn, where the order
of the sequence may be seen as an analogue to the diɼering experi-
ence of multiple agents within the same environment (see Figure 3):
the properties of an instance are presented to the system for 5 time-
steps (during which time associative links are created and updated),
followed by a period of 20 time-steps in which there is no input to the
system (to ensure all activation decays before the next instance pre-
sentation). This presentation occurs as follows: an activation value of
1.0 is applied to all of the modality units corresponding to the proper-
ties of the animal instance; all other units receive no activation (i.e. 0.0).
For the probe trials, the properties for each of the probe instances are
presented to the system for 10 time-steps, followed by 60 time-steps of
no input (Figure 3). The length of the probe stimulation is suɺcient for
the activations on the animal class properties to reach a steady state
(see Figure 4). These steady state activation levels are then normalised
and the resultant values are used as the basis of the results reported
below.

Figure 3. Training and testing DAIM: a sequence of animal instances are pre-
sented to DAIM (Training phase), separated by periods of no input.
During the Probe phase, the properties of the animal instance are
presented to DAIM; the activations on the class modality are read out
(e.g. see figure 4). DAIM is trained multiple times with diɼerent animal
instance orderings in the Training phase; see text for details.

Given that the learning mechanism in DAIM is incremental (as a result
of the associative link creation and weight update mechanisms), the
order of data presentation during learning influences the learned infor-
mation, and hence the behaviour of the system. To assess the eɼects
of varying presentation orders on the ability of the system to correctly
classify probe instances, in each case the order of the training set was
randomised to form ten separate training sets. Each of the ten resulting
trained versions of the DAIM model may thus be regarded as having a
diɼerent experience in the environment. In the probe phase the weight
update mechanism was disabled to ensure that comparisons could be
made across the probe animal instances on a common basis. For both
aspects of the results, we now describe what the training and probe
sets are constituted of.

3.2.3. Two Aspects of Investigation

The first aspect of this study (Concept Identification) looked at the ca-
pacity to identify concepts of CS and DAIM, bymeans of a 10-fold cross
validation procedure. The zoo dataset was randomly partitioned, with
the same partitions being used for both DAIM and CS. Furthermore, the
order of the training set of DAIM for each fold was further randomised
as described above. Therefore, a total of one hundred DAIM simu-
lations were run, with results derived from each of the trained DAIM
instances. A winner-takes-all mechanism was used on the produced
activation values (based on magnitude, see e.g. Figure 4) to determine
the classification result: see Section 4.1.

Figure 4. Example activation profiles for the ‘Animal Class’ property during the
probe phase of one DAIM run, showing four probes (the properties of
Dolphin, Herring, Lion and Ostrich). ‘Resting’ activation level is -0.1;
rising activity is due to activation spread on the substrate of created
associations between properties. Steady-state activation levels re-
main constant for at least 3 time-steps. These activation levels are
normalised for the results.

The second aspect of this study (Prototype Functionality) is a closer
examination of the prototype-like functionality exhibited by DAIM, using
CS as a benchmark. For this, both models were trained on a further
and separate partition of the zoo dataset. Eight animal instances were
set aside for probe trials: lion, dolphin, seasnake, herring, ostrich, para-
keet, penguin and pheasant. The remaining 92 instances were used as
training data. For DAIM, this involved generating 10 randomly ordered
training sets. The distribution of animal classes used in the training
and probe sets for this procedure are shown in Table 1. The choice
of instances to use as probes was based on the utility in illustrating
the functionality of similarity to prototype judgements that are required
for the typicality property of human concept competencies: this is dis-
cussed in Section 4.2.

4. Results

To elucidate the performance of DAIM with respect to CS, we first ex-
amine the classification performance (Section 4.1). Whilst the cross-
validation procedure provides an overall perspective, we also examine
how the DAIM activation levels allow similarity ratings between diɼer-
ent classes to be made, by looking at classification performance of a
sub-set of the zoo dataset. We then more closely examine the ability
of DAIM to make typicality judgements between multiple instances of
the same (correctly classified) class (Section 4.2), using birds as a case
study.

4.1. Concept Identification

The first assessment that is made is the classification accuracy of the
CS andDAIMmodels. The results show a high overall classification rate
(Table 1): 95% for CS, and 94% for DAIM. The breakdown of accuracy
by class is also instructive, showing that the classes for which there
are many examples (e.g. mammals and birds, both with 100%) have a
higher rate of successful classification than those with fewer examples
(e.g. reptile and amphibian).
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Table 2. Animal instances where CS and DAIM made classification errors, and
how the errors are made: compare with Table 1 for overall correct
classification rate. For DAIM, results of 10-fold cross-validation shown.

Animal
Class

Number
in class

CS errors DAIM errors

Mammal 41 no errors no errors
Bird 20 no errors no errors
Fish 13 no errors no errors
Invertebrate 10 two animals classi-

fied as insects, one
as reptile

scorpion classified
as both invertebrate
and reptile

Insect 8 no errors confused for inverte-
brate in 32% of cases

Reptile 5 seasnake classified
as fish, and tortoise
as bird

seasnake classified
as fish

Amphibian 3 no errors confused for reptile
in 66% of cases

An examination of how the mis-classifications are made is also instruc-
tive (Table 2). For example, for DAIM, classification accuracy of am-
phibians is low, with only one from three instances being correct. How-
ever, DAIM consistently identified the other two amphibians as reptiles,
which is a closer characterisation of amphibians than, say, mammals
or birds. Similarly, the errors made for insects were due to classifica-
tion as invertebrates. Finally, of the five reptiles present in the dataset,
only one was consistently classified as a fish: this is the case of the
seasnake, which is further explored below (Section 5). Given the un-
even distribution of animals across the classes, it may be seen that
(as is naturally expected) the mis-classifications occur more for those
classes with fewer instances (Table 2). For CS, a similar pattern of
errors occurs, with for example invertebrates classified as insects or
reptiles, and seasnake classified as a fish. Taken together, these re-
sults support the notion that DAIM approximates the behaviour of CS
in quality (the types of errors made) as well as quantity (overall classifi-
cation rate).
Going further than examining where mis-classifications were made, we
may examine how the identification of one animal class over another
is achieved: in terms of concept prototype theory, this indicates how
the learned prototypes relate to one another. For this question, we re-
examine a subset of the zoo dataset (see right side of Table 1). For the
CS model (Figure 5) the classifications of lion and herring are clear, in
that the correct class has a far greater typicality rating than the other
classes. Similarly, dolphin is correctly classified as a mammal, although
the typicality rating for fish is comparable. Finally, seasnake is incor-
rectly classified, with fish and amphibian being identified to a similar
extent instead.
For the DAIM model, the results show the mean normalised activation
values across ten randomly ordered runs (see final paragraph of Sec-
tion 3.2, and Figure 6). Firstly, it can be noted that there is a high
level of consistency of results across the 10 training set orders (as ev-
idenced by the small 95% CI’s), indicating that while there is an order
eɼect, it does not disrupt classification accuracy. In accordance with
the CS results, lion, herring and dolphin are correctly classified. How-
ever, seasnake is not classified correctly, with similar activation values
for mammal, fish and invertebrate. This is quantitatively the most di-
vergent result in comparison with those derived from the CS model,
although qualitatively, the fact that seasnake is misidentified, with a

Figure 5. Conceptual Space model classification results for four animals. Five
of the seven available animal type categories are shown, for the pur-
pose of clarity. All animals are classified correctly, except seasnake
(Reptile): this is classed as a fish, although the rating for amphibian
is similarly high.

Figure 6. DAIM model classification results for four animals. The same five
categories are used as in Figure 5. The results show the mean of ten
randomly ordered datasets (see main text for details): the error bars
show 95% confidence intervals. As for the CS model, all animals are
classified correctly except seasnake.

number of possible (indeed intuitively plausible) alternatives present in
both cases. Additionally, it can be noted that the relative magnitude of
the activation of mammal for seasnake and herring is higher for DAIM
than for the CS model.

4.2. Prototype Functionality

The second assessment that can be made is the degree to which the
respective models are able to determine the typicality of novel input an-
imal instances to a prototype. Assuming that classification is correctly
performed, the question here is whether the two models can produce
a measure of how close a presented animal instance is to a learned
concept prototype. This measure of typicality is explicitly implemented
in the CS model (cf. Eq. 1), but not for DAIM, where all information is
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Figure 7. Comparing the relative typicality of four birds, for both DAIM and CS.
All four were correctly classified as birds by both models; this shows
that for both models parakeet and pheasant are more typical birds
than penguin and ostrich.

maintained in a distributed state: any such assessment must be made
on the basis of relative activation levels (e.g. Figure 4).

A comparison of four birds is conducted. Each bird (ostrich, parakeet,
penguin and pheasant) is presented as one of the eight probes in the
second simulation set of the study. For both the CS and DAIM models,
each of these birds are classified correctly. For the CS model, typicality
ratings are calculated, and normalised across the four values (Figure 7).
For DAIM, the activation values of the bird class for each of the four
instances are taken and normalised. It can be seen that in this case,
parakeet is identified as the most typical bird, and that there is a clear
diɼerence for DAIM between the pair parakeet-pheasant (indicating that
they are highly typical of the bird concept), and ostrich-penguin (being
relatively atypical). A similar qualitative pattern and division of the two
pairs can be seen in the CS results (Figure 7), even though pheasant
is identified as the most typical bird instance.

5. Discussion

The presented results show that there is similarity between the be-
haviours of the CS and DAIM systems for classification of the novel
animal instances, with classification rates of 95% and 94% respectively.
Additionally, there is a qualitative similarity of the DAIM system perfor-
mance in typicality ratings to those derived by the CS model, despite
the fact that the means of calculating and assessing typicality and sim-
ilarity fundamentally diɼer. In a comparison of the bird typicality ratings
from the two models (Figure 7), while the actual order of ratings diɼers
(with parakeet being most typical of a bird for DAIM, and pheasant for
CS), the indication that these are more typical than either penguin or
ostrich is clear (and thus matching intuition). There are a number of po-
tential sources for the diɼerences, including the exponential-based cal-
culation of similarity for CS, and the order-dependent eɼects for DAIM.
However, that such strong similarities exist for both classification and
prototype-based similarity assessments provides support for the notion
that the mechanisms that DAIM makes use of can account for these
two fundamental features of concept functionality. In addition to these
observations, a number of other issues merit further consideration.

5.1. The Case of the Seasnake: Errors and Prototyp-
icality

The case of the mis-classified seasnake raises a number of questions.
That both CS and DAIM fail to classify it correctly may be an indica-
tion that there is some inherent ambiguity resulting from the dataset it-
self. Indeed, if the distribution of animal classes is considered (Table 1),
there are very few examples of reptiles in comparison to mammals for
example. The manner in which mis-classifications were made for both
CS and DAIM reflect to some degree the overlapping properties of the
seasnake with animals from other classes, notably fish. The inclusion
of mammal into this consideration for the DAIM results may reflect the
larger proportion of mammals in the dataset on the incremental nature
of the weight update mechanism (e.g. if the majority of animals
seen are mammals, then the chances are that in the absence
of distinguishing features, a novel animal may also be a mam-
mal). Nevertheless, there is an indication in this behaviour that even
with mistaken classifications, there is the possibility for the outcome (i.e.
the distribution of activity over multiple animal classes) to be of utility in
further processing, by, for example, providing a set of hypotheses that
can be used as the basis for further disambiguation actions.
This eɼect is related to the prototype eɼect, where an assessment can
be made not just with regards to whether a presented example is within
a category or not, but also how close it is to any known category. The
case study with the birds showed that DAIM can achieve this assess-
ment in a manner consistent with CS but using a developmental, unsu-
pervised account: all correctly identified as birds in the first instance, a
distinction could be made between diɼerent birds regarding how typical
they were of the concept. When errors are made, this same mecha-
nism allows diɼerent categories to be identified as potential candidates
(e.g. Figures 5 and 6). As mentioned above, it is this mechanism that
has potentially profound implications for further cognitive processing
(i.e. the consequences for cognitive architecture, Section 5.3).

5.2. Robustness to Varying Experience

The results of the classification task for the DAIM model (Table 1, Fig-
ure 6) indicate that the classification performance is robust to presenta-
tion order within the learning phase. The cross-validation demonstrates
this by showing that DAIM exhibits a high degree of consistency of clas-
sification among the ten randomly ordered datasets for each fold (be it a
correct or incorrect classification). The random orderings of the training
data may be considered in this context as an analogue of the varying
experiences of multiple agents in an environment with equivalent sta-
tistical properties. There were only two exceptions to this consistency:
scorpion (classified as reptile in half of the cases, and invertebrate the
other half), and termite (half insect, half invertebrate).
In the context of developmental systems, the importance of a trajectory
based on experience is typically emphasised. This result supports the
notion that even with unique experiences, there is the capacity for the
statistical regularities of the environments shared by agents to lead to
robust conceptual categories for those agents, in support of coordina-
tion through inter-agent interaction: indeed, such an extension to the
present work is of interest (e.g. [12, 13]).

5.3. Concepts and Cognitive Architecture

The zoo dataset represents relatively abstract information, and thus
somewhat removed from the basic sensory data that an autonomous
robotic agent would necessarily deal with. However, the study pre-
sented in this paper nevertheless demonstrates how the functionality
of prototype conceptual processing can be achieved from (albeit ab-
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stracted) multi-modal data, and is therefore an informative illustration
of the applicability of the principles of operation that DAIM embodies.
There are two further reasons why the use of the zoo dataset was ben-
eficial. Firstly, using a subject matter that is generally and intuitively
familiar enables the results to be easily interpretable. Since we are
concerned with the formation of concept prototypes in humans, this
is a useful feature when considering the results, in a way that a far
more abstract dataset would fail to achieve. Secondly, this dataset has
been used in another human-centred study, described below, which
provides a useful benchmark in the interpretation of these results in a
broader context.
This same zoo dataset was used to teach a robot animal concepts by a
human tutor through social interaction [13], in an investigation related to
the relatively novel paradigm of socially-guided machine learning [30].
In this work, the robot benefits from active modulation of the interaction
dynamics, enabling it to shape its own learning experience. Tutor and
robot learner engaged in a series of Language Games [28], through
which the learner gradually acquired animal concepts. Through the ex-
pression of social cues, the robot was able to influence the human tutor
into providing a learning experience that was more eɼective, compared
to a control condition in which the robot did not express any prefer-
ences through social cues. This illustrates how robot learning might be
embedded within social interaction that is natural for people to engage
in, demonstrating the integration of multiple cognitive competencies.
The use of the zoo dataset provides learning material that is intuitive
for human tutors; yet, from the standpoint of artificial learning, it is chal-
lenging enough to highlight the merits of social augmentation of the
learning process.
The DAIMmodel is described above as being a system that has a devel-
opmental trajectory in terms of increasing competencies with increasing
interactions with its environment. As part of a wider cognitive system,
the principles upon which it operates enable DAIM to bias, influence
and/or modulate ongoing system behaviours using the mechanism of
priming [5]. In this study it is seen that allowing activation to persist
in multiple units may be beneficial for processing in a wider cognitive
context, particularly where a clear classification fails in the first instance.
By demonstrating that DAIM can account for (at least some central as-
pects of) conceptual functionality in a sub-symbolic manner, there is
a potential reduction in reliance on explicit symbolic constructs. This
indicates that there may be a fundamental mechanistic integration of
conceptual competencies and their development within wider cognitive
processing (e.g. [19]), within an autonomously developmental frame-
work. The human tutor/robot learner study cited above provides one
demonstration of the necessity to consider the fundamental relation-
ship between a particular cognitive competence, in this case concep-
tual processing, and wider cognitive and behavioural processing. This
perspective on broadening the scope of cognition presents itself as a
promising avenue for further investigation.

6. Conclusion

The purpose of this study was to explore whether a developmen-
tal memory system (DAIM) informed by neuropsychological principles
could account for aspects of human-like conceptual processing. Using
a CS model as a benchmark of human performance, the results ob-
tained indicate that the DAIM model can reproduce two fundamental
properties of concepts: categorisation and prototype-based similarity
assessments. It does so using a distributed representation scheme op-
erating on the principles of association and activation dynamics, which
are consistent with, and have been used to account for, a wide range
of other cognitive competencies. This allows conceptual competen-

cies to be viewed in the context of wider cognitive processing and in
the framework of development, a perspective of particular relevance to
the creation of autonomous robotic agents. While there remain a num-
ber of open questions, this study has provided evidence in support of
the embedding of conceptual competencies within the developmental
memory-centred perspective on cognition.
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