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Abstract

Gaze control requires the coordination of movements of both eyes and head to fixate on a target. Using our bio-
logically constrained architecture for gaze control we show how the relationships between the coupled sensorimotor
systems can be learnt autonomously from scratch, allowing for adaptation as the system grows or changes. In-
fant studies suggest developmental learning strategies, which can be applied to sensorimotor learning in humanoid
robots. We examine environmental constraints for the learning of eye and head coupled mappings, and give results
from implementations on an iCub robot. The results show the impact of these constraints and how they can be
overcome to benefit the development of fast, cumulative, on-line learning of coupled sensorimotor systems.
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1. Introduction and Background

Developmental robotics is a field of research that focuses on ontogeny
as the inspiration and primary concept for building and understanding
cognitive learning systems [1]. The fundamental assumption is that au-
tonomous cognitive robots are unlikely to be created by designing com-
plete advanced systems; rather we must find out how to build agents
that are initially less competent but nevertheless have the key ability to
learn and grow cognitively through their own experience.

We are inspired by the enormous cognitive growth and development
manifest in the human infant during the first year of life. If some of the
mechanisms for sensorimotor learning, object and causality detection,
imitation, etc. can be modelled from infant behaviour then it may be
possible to implement these in robots that learn through experience.

In infancy, humans develop through a series of behavioural stages.
These stages are well recorded in developmental psychology, and
show the cycle of learning and generalisation of competencies that will
support the infant during its lifetime. Behaviours rapidly emerge, con-
solidate, are superseded, or fused together creating new and improved
competencies, during a period of intense activity and change. Although
stages and their timings vary between individuals, it is widely recog-
nised that learning progresses through a sequence influenced both by
internal and external factors.

One of the most influential figures in the study of staged growth has
been Jean Piaget, who placed great emphasis on the importance of
early sensorimotor interaction [2]. We believe that sensorimotor inter-
action is also key to learning in robotics, and that algorithms for robotic
learning should be grounded in the sensorimotor period. Not only is it
logical to start learning at the earliest stage, as early experiences are
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likely to aɼect later learning, but a robot’s ‘understanding’ of the world
should be based on its sensor and motor experiences. The sensori-
motor stages identified by Piaget are not only relevant to robotics, but it
seems possible that sensorimotor coordination is a significant general
principle of cognition [3]. This view that grounding and early start points
are crucial for the growth of adaptive intelligence is very well argued by
Smith and Gasser [4] in their “Six Lessons from Babies”.
Hence, in our work we are investigating stages of development as a
driver for robotic learning, with a focus on the sensorimotor stage. We
take inspiration from human infant development, and the emerging con-
trol of the body over the first months of life. Although the infant may
seem slow to gain control of its faculties, it is in fact developing at a
rapid rate, and we believe that the identifiable stages are the manifes-
tation of mechanisms that are key to this process. From spontaneous,
uncoordinated, apparently random movements of the limbs the infant
gradually gains control of the available parameters, and learns to co-
ordinate sensory and motor signals to produce purposive acts in ego-
centric space [5, 6].

2. Constraints on Learning

2.1. Infant development

At birth the infant has limited torque in the neckmuscles. With the eɼect
of gravity, movements of the head are very limited. The eyes however
have low gravity and inertial eɼects, with a high power to weight ratio.
This allows the eye motor system to be very active, although vision is
poor, so the neonate initially make saccades in the direction of auditory
stimuli [7].
The newborn makes relatively few saccades, either to stimuli in the pe-
riphery of the visual field, or in response to acoustic stimuli. Although
they can be distracted by visual stimuli, they tend to fixate on a single
target. When they do saccade, they are slow to trigger, and often sev-
eral saccades are required to fixate on a target [8, 9]. Saccades are
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also more often horizontal than vertical [8], and made to near objects
rather than distant ones.
The head starts to make some unsupported movements during the first
month. However, the muscle strength is only suɺcient to hold the head
for a few seconds at a time [10, 11].
At this age infants tend to fixate on object edges, rather than internal
features [12], and are incapable of remembering anything about them
[13]. Faster and more accurate saccades appear after 7 weeks [14].
The frequency of saccades increases, and fixations are focused within
objects, rather than on their edges [12]. This coincides with an in-
crease in visual acuity during the second month [15], and an increase
in the field of view from around 20 degrees at 6 weeks to 40 degrees
at 10 weeks [16]. The infant can follow moving stimuli to mid-line [17],
although the infant still shows very little head movement during gaze
shifts of up to 30 degrees amplitude [18]. The accuracy of saccades
continues to improve and, correspondingly, the number of saccades
required to fixate reduces, with near adult performance observed at 7
months [9].
By the third month, the head muscles are gaining strength and learning
to contribute movements to gaze shifts. The head consistently con-
tributes to gaze shifts greater than 30 degrees, whilst only contributing
25% of the time to 10 degree gaze shifts [18].
By the 4th month, the infant can follow objects smoothly with their eyes,
and rotate their necks freely [17]. Gaze control continues to improve,
until the 6thmonth, by which time the infant is visually insatiable, moving
head and eyes to search for, and fixate on, novel stimuli [11].
This gradual development of neural structures reduces the initial com-
plexity of learning in a noisy and dynamic environment. In eɼect, these
limitations ’constrain’ and help to focus the infants learning into man-
ageable stages. As the infant develops, both in muscle tone and visual
acuity, the gaze control is refined, finally learning how to coordinate eye
and head movements to fixate on and track objects in its environment.
An extensive review of early infant development covering both the psy-
chological and neurological literature can be found in [19].

2.2. Application to robotics

When creating a system of staged development on a robotic platform
we are interested in both the manifest improvements in sensory abil-
ities and motor control, and the underlying neurological changes that
support these advancements. The infant development literature serves
both as a foundation for developing robot behaviour, but also as a
benchmark for evaluation. By taking account of the available modalities
and subsystems of a given robot, it is possible to map such prototype
infant data onto a developmental sequence for the robot. We have
performed such a mapping using the iCub humanoid robot [20] and
produced a comprehensive chart of the general developmental possi-
bilities for the sensorimotor systems of the iCub [21].
Sensorimotor learning is conducted based on our mapping framework,
and utilises the modulating influence of a dynamic constraint network
to shape the developmental sequence following our approach towards
constraint based learning [22]. There are various kinds and sources of
constraints, but there are two main types and here we consider these
as two alternate implementation strategies for robotic systems.
The first, type A, is derived from the limitations of immature neurological
and physiological structures. Such limitations include the poor muscle
tone that prevents the newborn from lifting its head at birth, and the lack
of acuity and depth of the visual field. These are hard constraints that
limit the ability of the infant and are only removed from the relevant sys-
tems when suɺcient physical growth or maturity has been achieved.
Although normal infants develop at diɼerent rates, their trajectories are
similar, and tend to follow a common timeline, with certain stages ap-
pearing before others.

Such constraints can be imposed on the system using a sequence ta-
ble, such as those in [21], which are extracted from the infant data.
Constraints can be released when suitable levels of competence have
been achieved and we use thresholds on internal state variables to trig-
ger their removal in a semi-structured manner [22]. Hence, a robot built
using Type A constraints can be expected to follow the general infant
timeline, with variances reflecting its own particular circumstances.
The second type of constraints, type B, reflect external eɼects that re-
strict or enhance development in more complex ways. Such eɼects
may include interaction with carers, the level of stimuli in the environ-
ment, and the number of opportunities to practice. There are many
experiments that have shown how the order of training on diɼerent se-
quences of experience can aɼect learning rates and the acquisition
of competencies, for example the experiments by Needham et al. [23]
use a ‘sticky mitten’ to ease the constraint on grasping thereby enabling
greater interaction with objects.
Such constraints cannot be lifted according to a sequence table, be-
cause they are dependant on the experiences of the individual, and the
environment it is exposed to. In this case, constraints are overcome by
development of competency through learning.
We have studied both types of constraints in our work. Our work on
type A constraints, has focused on using thresholds on metrics, such
as novelty and habituation, to trigger their removal in a semi-structured
manner [22, 24]. Our work on type B constraints explores the possibility
of behavioural stages emerging internally when suɺcient structure has
been created to support another stage of behaviour [25].

3. Gaze Architecture

We now briefly describe our architecture for gaze control, and its bio-
logical grounding. For a full description we refer the reader to [24].
The architecture (Shown in Figure 1) begins at the point a visual stim-
ulus has been selected for fixation, and the desired gaze displacement
is known. In the human, gaze shifts are encoded topographically in
the deep layers of the superior colliculus as single movements, rather
than individual movements of the eye and head [26]. They are also
initially encoded in retinal coordinates, before being transformed into
body-centred coordinates further downstream [27]. Correspondingly,
we encode the gaze shift as a single displacement in retinal coordinates
on the retinal map.
Current thinking suggests the output of the superior colliculus is then
processed on two separate pathways in the brainstem corresponding
to the control of the eyes and neck [28]. We use two mappings (see
below) to convert the gaze displacement, in retinal coordinates, to sep-
arate relative motor commands for the eye and head.
Although eye and neck movements are triggered separately, there is
some cross coupling between the two [29]. Gaze shifts are not made
up of a particular ratio of eye and head movements, but the amplitudes
of both can be accurately predicted given knowledge of the initial po-
sition of the eye in the socket and the size of the gaze shift. We use a
model by Wang and Jin [30], which calculates the gaze decomposition
for saccades made in response to unexpected targets, to modulate
the contribution to the gaze shift made by the head. Whilst a reduced
head displacement is sent to the neck motor system, the full gaze dis-
placement is sent to the eye motor system. This is necessary as the
eye moves much faster than the head, and saccades usually reach the
target well before the head has made its contribution. An eye counter-
rotation mechanism is triggered during head movements to ensure the
eye does not overshoot and continues to fixate the target as the head
completes its movement post-saccade.
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There is continuing debate about the feedback process involved during
the saccade process, with current thinking pointing to gaze-error and
motor-error feedback loops [29, 31, 32]. Our architecture is based on
a model proposed by Freedman [32], in which the gaze displacement
signal is split into eye and neck components before being subjected to
the error feedback signal.
The architecture uses a series of maps [22] to represent sensorimotor
spaces relating to the visual, proprioceptive, and motor control of the
eye and neck. These maps are 2-dimensional structures representing
the topological neural maps in the cortex. Each map is covered by of a
set of overlapping receptive fields, characterising groups of neurons
sensitive to stimuli in that region, which eɼectively partition the space
into regions of equivalence (see Figure 1): stimuli occurring within a field
are treated as having occurred at the same point on the map. Fields in
diɼerent sensorimotor spaces are linked bymappings, which represent
neuronal connections, allowing the location of a visual stimulus to be
mapped to the motor movement required for fixation.
These saccade mappings are learnt through the coactivation of fields,
based on the following simple process:

1. A stimuli, selected for attention, excites a field on the retina, fs,
corresponding to its visual location

2. The robot makes an eye movement, me in an attempt to fixate
on the stimulus

3. If the saccade results in fixation, the field covering the motor
movement me is mapped to the initial stimulus location, fs

4. Else, return to (1)

An important issue is that another biological constraint prevents learn-
ing of the head-retina mapping directly. Whenever the head is moved,
a hard-wired reflex action causes the eyes to counter-rotate to main-
tain fixation, resulting in no change in the retinal input. Thus, in learning
this mapping we must incorporate knowledge about the impact of eye
movements on visual stimuli (see [24] for a detailed description of the
process). The result is that an accurate mapping of head movement to
retinal change requires prior learning of an accurate saccade mapping.
This creates an interesting set of constraints on learning, that form part
of our experiments.
With the mappings learned, as will be described in the following sec-
tions, the architecture can be used to make eye-head gaze shifts to
fixate on visual targets in the following way:

1. A stimuli, selected for attention, excites a field on the retina cor-
responding to its visual location

2. Mappings from the stimulated field are followed to correspond-
ing fields on the eye-saccade and head-movement maps, and
in doing so are converted into relative motor movements, which
are then sent to the motor systems

3. The proportion of the gaze shift to be made by the head is calcu-
lated based on the size of the gaze shift and the initial position of
the eye. This then modulates the head displacement command
before it reaches the motor system

4. The dynamics of the motor system result in the eye reaching the
target before, or early during, the head movement

5. Whilst the head completes its movement the eye counter-
rotates to maintain fixation. A limiter on the eye counter-rotation
stream (not shown) prevents counter rotation until the eye has
acquired the target. This enables long saccades, where the eye
may not be able to reach the target until suɺcient head contri-
bution has been made

Whilst we have previously demonstrated the ability of this architecture
to learn and perform gaze shifts [24], a key question is how environ-
mental constraints impact on the learning of the mappings between
the retinal and motor spaces. This is the focus of the remainder of this
paper.

4. Experiments and Results

4.1. Experimental setup

The experiments presented in this paper focus on the type B constraint
when applied to learning gaze control on an iCub robot, and how this
interacts with the presence of a type A constraint. The type B constraint
is produced from external factors in the environment, in this case the
number of visual targets from which the eye control can be learnt. In
the constrained scenario, a single target is presented directly in front of
the robot, while in the unconstrained case, three visual targets are pre-
sented spread out across the space that can be fixated using just the
eyes, whilst the head remains centred. The eɼect of the constrained
scenario is to limit the maximum size of saccades that can be learnt
whilst only moving the eyes. During these experiments a type A con-
straint is used to delay the onset of head learning. Once the head
constraint is lifted the eɼect of the type B constraint disappears.
The visual targets are plain coloured cubes that can easily be identified
in the images received from the iCub cameras using colour blob detec-
tion. They remain static in the environment, whilst the eyes (cameras)
move to a new random starting position before each saccade. A vis-
ible object is then selected at random as the target for the saccade.
The central area of the camera images are designated as the foveal re-
gion, with a diameter of approximated 10% of the image width. Objects
appearing within this fovea are considered to be fixated.
Both the eyes and head have the use of two degrees of freedom during
the experiments, although the head joints are locked until the type A
constraint has been released. In the eyes, the degrees available are tilt
and version (i.e. panning of both eyes), whilst the head uses yaw and
pitch. This gives rise to a set of two dimensional mappings from the
2D image frame to the two motor dimensions. The motor space was
represented in terms of the relative movements required to bring the
target to fixation.
The experiments are run over a one hour period, with the timed release
of the head constraint varied in ten minute intervals across diɼerent
experiments. The eye learning progresses quickly, and is capable of
learning a functional mapping in the first 5-10 minutes. However, the
development of the head sensorimotor mapping is considerably slower,
learning individual links less frequently from saccades. As a result, this
stage of the learning requires more time, with initial trials showing that
a one hour period of learning split between eye and head development
gives rise to a mapping that is suɺciently populated that it can be suc-
cessfully applied. With further development, the head mapping fills out
to give a strong combined gaze control system. An analysis of the ef-
fects caused by a type A constraint on learning with no environmental
constraints is presented in [24].

4.2. Map development

The map shown in Figure 2 is the retina coverage learnt from a single
target, with the head constrained throughout, while the map shown in
Figure 3 is the retina coverage learnt from three available targets, with
the head constrained. Only the retina maps are shown, to highlight
the coverage of the visual space. After 60 minutes, the maps have
become saturated in the regions that are currently reachable, showing
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Figure 1. Our gaze control architecture (described fully in [24]). Eye and head control is learnt through a pair of topographic mappings linking stimuli in retinal
coordinates to the corresponding motor movements required for fixation. Stereotypical head contributions are calculated from the initial eye position and
size of gaze shift using formulae from Wang and Jin [30]. An eye counter-rotation mechanism adjusts for movements made by the neck to ensure the eye
maintains fixation during head movements.

Figure 2. Retina eye map from learning with a single target for 60 minutes with-
out any head movement

the full scope of what can be learnt from the visual targets available.
The scale on the two maps are the same, so the diɼerence between
them illustrates the additional coverage obtained when three targets
are available and spread out across the visible space. The reason for
the restriction, caused by only having a single target available to learn

from, is that the maximum horizontal saccade that can be made is only
half the range of the motors, whilst in the case where three targets are
present, almost the full horizontal range of the motors can be learnt.
Similarly, most of the fields fall in the top half of the retina map due
to a vertical oɼset of the target. Clearly, diɼerent arrangements and
numbers of targets would give rise to diɼerent initial mappings, when
learning with only the eye movements enabled.

Figure 3. Retina eyemap from learning with three targets for 60minutes without
any head movement
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Themapping resulting from learning with a single target is concentrated
within a small area, whilst the learning from three targets initially devel-
ops a wider coverage of fields spread out over a larger area. Both
mappings have their advantages; the constrained learning developing
a mapping with a detailed and focused coverage across a smaller area,
whilst the less constrained learning develops a mapping with a wider
coverage. This wider coverage can help when the head learning is
enabled as the extra coverage increases the probability of finding an
existing eye link to learn the retina displacement. However, having a
more constrained mapping means the links will have been tested and
refined more frequently.

!"##$%

&'(#)**+

Figure 4. Graph showing the number of movements taken to fixate on a tar-
get. Only the first 50 saccades are shown, with no head movement
involved. Best viewed in colour.

Figure 4 shows the number of steps taken to fixate on the target. In
both the single target and three target experiments, the first saccade
consists purely of random motor movements until the target is fixated.
This can take a large number of steps, however once the target has
been fixated, each step taken can be used to learn a link in the map-
ping by chaining together the motor movements made and the position
of the target at each step. In this case, almost 40 steps were required
on both initial saccades, however after this point, the number of steps
reduces significantly as existing links are more likely to be encountered
and reused. When a single target was present and the whole 60 min-
utes was spent using only eye movements, a total of 672 saccades
were completed. The average number of steps for the first 100 sac-
cades was 2.37, whilst the last 100 saccades had a step count average
of 1.53. Even towards the end of the hour there is still learning occur-
ring in the system, either where gaps are found in the mapping, or links
are being refined. An example of the early motor movements can be
seen in Figures 5 and 6, showing the first saccade randomly explor-
ing the space, whilst the others quickly encounter existing fields that
are able to bring them either directly to, or close to, the target. Note
the motor movements have been adjusted relative to the target, so the
target appears at (0,0) in this relative motor space.

In the case of the learning based on three targets, the area that can be
learnt with eyes alone is greater. This means that the initial exploration
can discover more gaps in the maps, requiring more learning early on.
Over a 60 minute period of eye only movements, 803 saccades were
completed to three targets. The average number of steps from the first
100 saccades was 2.45 showing slightly more steps taken to fixate on
the initial targets, however the average over the last 100 saccades was

Figure 5. Motor movements for fixating on a single target. Movement tracks
are taken from saccades 1, 3, 5 and 8 showing the rapid early devel-
opment. Movements are relative to the target location.

just 1.08 showing a high percentage of single step saccades towards
the end.

While the environment constrains the scope of learning using just the
eyes, the release of an internal constraint can counteract the environ-
mental constraint. In this case, when the head starts to move, the range
of positions in which the target can appear on the retina increases. This
allows the eye saccade system to then continue learning the areas of
the map that were previously unreachable. Figure 7 shows this eɼect
when the constraint on head movement was released after 10 minutes
of eye learning, followed by a further 50 minute period of learning with
both systems enabled. Similarly, in Figure 8, the retina maps learnt from
three targets are shown. Interestingly, the final coverage from learning
with a single target includes areas that were not learnt with three tar-
gets in the same time frame, even though the single target formed one
of the three targets used in the second scenario. This could be be-
cause additional eye motor babbling occurs when the head constraint
is released, increasing the exploration in these previously inaccessible
areas, whilst the mapping learnt from three targets already has a good
coverage meaning there is always a link nearby that could be used to
bring the target close to the centre for a two step saccade, reducing the
amount of random babbling and opportunities for learning new links.

The graphs shown in Figures 9 and 10 show the percentage coverage
of the retina map as the number of links learnt increases. Within each
scenario, the eye only learning (solid lines) follows the same curve, with
a final coverage of just under 50% reached from learning with a single
target, compared to almost 80% coverage obtained when three targets
are available. When the head constraint is released (dashed lines), this
has very little impact on the rate of learning or coverage learnt from
three targets, however when only a single target is available it makes a
noticeable impact. The percentage of coverage increases dramatically
after the release of the head constraint, ultimately learning a greater
coverage than that gained from three targets.
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Figure 6. Motor movements for fixating on three targets. Movement tracks are
taken from saccades 1, 3 and 5 showing the rapid early development.
Movements are relative to the target location.

Figure 7. Retina eye map from learning from a single target for 10 minutes with
just the eye, then a further 50 minutes with the head moving.

Although these graphs do not show the timing at which the links are
learnt, they do give an indication of the rate of learning. Initially when
no links are present in the mappings, the opportunity to learn new links
is very high. As time passes and the maps become more populated,
so the number of steps taken to fixate on the target is reduced, limiting
the number of links that can be learnt per saccade. As a result the rate
of learning decreases. Where three targets are present, the learning is
able to cover up to 80% of the mapping, however with a single target
and only eye movements being made, less than 50% of the mapping
is reachable. Once the head constraint is lifted, further regions of the
maps are eɼectively opened up, giving rise to an increase in the rate of
learning as the large gaps in the map require more steps to fixate on
the target once again.
The amount of coverage in the eye mapping when the head constraint
is released aɼects the performance of the headmap development. Low
coverage of the retina map slows down the learning of the head map-

Figure 8. Retina eye map from learning from three targets for 10 minutes with
just the eye, then a further 50 minutes with the head moving.

Figure 9. Graph showing the percentage of map covered as more links are
learnt, based on learning with a single target for 60 minutes with the
head constraint being released after 10 minute intervals across diɼer-
ent trials (solid lines represent eye-only phase). Best viewed in colour.

ping, as additional time after the release of the head constraint is re-
quired to improve the eye mapping. However, in both scenarios, when
the head mapping was released early, after 10 minutes, the retina and
head maps had slightly greater coverage by the end of the 60 minutes.
In the case of the head gaze maps (see Figure 11), this was 15.7%
coverage learnt from a single target compared to 13% learnt with three
targets. Although these numbers seem low, the links that are learnt
can be used straight away. However, the frequency in which existing
links are encountered increases as the coverage increases.

4.3. Map comparison

The mappings that were generated were tested to assess their cover-
age of the visual area. A set of 100 initial eye and head motor configu-
rations were selected, with a single target in front of the iCub. The map-
pings were then queried to find links from where the target appeared in
the image to fixate on the target using a single step saccade. The first
50 positions had the head centered and only the eyes were allowed
to move to fixate on the target, whilst the second half also changed
the initial position of the head and if a matching head link existed then
a combined eye and head saccade was used to fixate on the target.
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Figure 10. Graph showing the percentage of map covered as more links are
learnt, based on learning with three targets for 60 minutes with the
head constraint being released after 10 minute intervals across dif-
ferent trials (solid lines represent eye-only phase). Best viewed in
colour.

Figure 11. Head gaze maps after learning for 10 minutes of eye only learning,
followed by 50 minutes of learning with both eye and head systems
enabled. Left: single target scenario, Right: three targets scenario

Tables 1 and 2 show the number of saccades that resulted in fixation
based on the available links during the two phases of testing.

On average, the mappings learnt with three targets present were able
to complete more saccades in both phases of the testing. An interest-
ing point is in the combined eye and head saccades, during the second
phase of the testing. The number of successful combined saccades,
in the mappings learnt using three targets, peaks where the head con-
straint was released after 20 minutes. As the links are more spread out
when learning from three targets, it takes longer to gain a good cov-
erage and reuse existing links to check their accuracy, both of which
are needed to learn the head mapping. After 20 minutes of eye only
learning, the eye mapping has a good coverage with reliability, and still
have time to learn a good head mapping, leading to this trial giving the
best overall results for the eye and head mapping.

Meanwhile in the single target scenario, most of the combined sac-
cades come from one early mapping, where the head constraint was re-
leased after just 10 minutes. This illustrates the additional time required
to fill out the coverage of the eye-mapping after the head constraint is

Table 1. Number of targets fixated based onmappings learnt with one and three
targets using only the eyes

Trial 1 Target Map 3 Target Map
Eye-Head Targets fixated (%) Targets fixated (%)

0-60 17 (34) 12 (24)
10-50 21 (42) 34 (68)
20-40 29 (58) 26 (52)
30-30 25 (50) 38 (76)
40-20 33 (66) 33 (66)
50-10 30 (60) 38 (76)
60- 0 32 (64) 37 (74)

Table 2. Number of targets fixated based onmappings learnt with one and three
targets using the eyes and the head

Trial 1 Target Map 3 Target Map
Eye-
Head

Targets
fixated (%)

Combined
saccades (%)

Targets
fixated (%)

Combined
saccades (%)

0-60 15 (30) 0 (0) 15 (30) 2 (4)
10-50 21 (42) 5 (10) 18 (36) 2 (4)
20-40 16 (32) 1 (2) 25 (50) 4 (8)
30-30 21 (42) 2 (4) 30 (60) 3 (6)
40-20 22 (44) 2 (4) 24 (48) 2 (4)
50-10 24 (48) 2 (4) 30 (60) 1 (2)
60- 0 20 (40) 0 (0) 32 (64) 0 (0)

released, and still have time to be able to learn a good coverage in the
head mapping.

5. Conclusion

We have compared the learning of the gaze control when restricted
by a type B constraint. When learning with only a single target visi-
ble, there was a clear limitation on the area of the eye mapping that
could be learnt, a restriction that was then lifted by the movement of
the head, allowing the eye mapping to continue developing whilst start-
ing to learn the head mapping. This eɼect slowed the rate of learning in
both mappings, resulting in the learning taking longer to reach a similar
level.
The diɼerence in field distribution, and hence coverage, can be both
an advantage and a disadvantage. In one case, a densely populated
mapping over the focal region is generated with a more sparse cov-
erage of the surrounding regions where less detail is required. On the
other hand, the less constrained learning initially generates a more even
mapping that covers a larger area without specialising at any particular
point. In terms of biological development, this is an example of a critical
phase in learning, illustrating the relationship between the sensorimotor
mappings of the eye and head when developing gaze control.
The literature on infant development has inspired the two categories
of constraints, A and B, that can be identified as influencing the de-
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velopmental trajectory. The timing of the release of head learning is
used to illustrate type A constraints where a clearly defined sequence
is given for the order in which the development proceeds. Meanwhile,
the availability of objects within the environment is used to simulate type
B constraints.
Regardless of the structure of the environment, both cases produce
mappings that are capable of combining links from the eye and head
mappings to direct the gaze at desired targets. In the case of the con-
strained environment, the release of the head constraint is required to
learn the full eye mapping, while in a less constrained setting, the same
mapping can be learnt with just the eye movements. If the release of
the head constraint is delayed, this will significantly delay the time taken
to gain the full coverage of the eye mapping. However, whilst the head
learning is constrained, a good coverage can be developed around the
foveal region where a detailed mapping is required, allowing a sparser
peripheral mapping, where less detail is required, to be learnt later.
Overall, the limitations on the learning can be internal to the system,
as considered in [24], or they can be external to the system as shown
here. When only the eye is moving in a constrained environment, the
focus is on a single object directly in front of the robot. From this point,
only small motor movements are ever required to build up a mapping
that is suɺcient to cope with this environment. Without modifying the
physical environment, the introduction of the head frees up a much
greater range of motions, allowing for larger saccades to be learnt to
the single object and potentially making additional targets, that were
previously out of visual range, reachable.
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