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VisGraB: A Benchmark for Vision-Based Grasping
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We present a database and a software tool, VisGraB, for benchmarking of methods for vision-based grasping of
unknown objects with no prior object knowledge. The benchmark is a combined real-world and simulated experi-
mental setup. Stereo images of real scenes containing several objects in different configurations are included in the
database. The user needs to provide a method for grasp generation based on the real visual input. The grasps are

then planned, executed, and evaluated by the provided grasp simulator where several grasp-quality measures are
used for evaluation. This setup has the advantage that a large number of grasps can be executed and evaluated
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l1.

Grasping previously unseen objects based on visual input is a chal-
lenging problem. Various methods have been proposed for solving the
problem, as will be discussed later, but it is difficult to compare them
and evaluate their strengths and weaknesses. This is due to the fact
that methods are often tested on different data and with different hard-
ware setups in different labs, which makes it difficult, if not impossible,
to repeat the experiments under the same conditions. It is furthermore
difficult to quantify results thoroughly, because of the time consuming
nature of the experiments. For these reasons, we propose a mixed
real-world and simulated benchmark framework.

Introduction

A database of stereo images is provided and the generated grasps are
evaluated using a simulated environment, [8, 15], see Figure 1. This
setup allows for extensive experimental evaluation, supporting com-
parison of different methods, while considering noise and uncertainty in
the real stereo images. Our previous work used a part of the database
as a proof of concept, [27]. In this paper, we present a large database
along with software tools to evaluate the generated grasps.

The proposed benchmark focuses on grasping unknown objects in re-
alistic, everyday environments without prior knowledge. The grasp-
generation methods have to deal with the fact that the visual obser-
vation provides only partial and noisy information of the scene and that
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while dealing with dynamics and the noise and uncertainty present in the real world images. VisGraB enables a fair
comparison among different grasping methods. The user furthermore does not need to deal with robot hardware,
focusing on the vision methods instead. As a baseline, benchmark results of our grasp strategy are included.

grasping of unknown objects - vision-based grasping + benchmark

no prior object models are available. This poses a challenging but im-
portant problem that needs to be solved if to advance in autonomous
robotics. The problem is currently actively studied in the robotics com-
munity and different methods have been proposed. For instance, to
deal with the noisy and incomplete data coming from robotic sensors
and to provide a reduced set of potential grasps, shape approximations
using shape primitives have been used in [11, 14]. A less restricted
strategy for grasping unknown objects in the real world based on a hi-
erarchical edge representation of the scene has been presented in [28].
In [27], this method has been extended to include surface information.
Other approached apply learning methods to gain grasp experience
and apply this in grasping unknown objects, for instance, based on
the parameters of a superquadric representation of the object [7, 26],
shape context [3], or features of edge elements [2]. Training can be
performed on simple geometrical shapes [6], synthesized objects [31],
or using human expertise [7]. In [12], a publicly-available database with
a large number of performed grasps has been created, which can be
used to train machine learning algorithms for grasping novel objects.

The presented database contains original stereo images, where no ob-
ject hypotheses are generated beforehand. This means that the grasp-
generation methods provided by the users of the benchmark need to
be able not only to deal with the grasp-generation process but also
with generating object hypotheses, if the grasp generation method re-
quires that. Methods such as [27, 28, 31], works directly on images
without the need to explicitly generate object hypotheses. There are
also several methods that perform figure-ground segmentation at first,
such as using a bottom-up segmentation method based on color and
depth [30] and the additional use of a table plane detection [3]. Other
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Figure 1. The benchmark pipeline. The real stereo images (a) are input to the user’s grasp-generation method (b). Our method is given as a baseline example. The
grasp-generation method proposes a grasp hypothesis, either as (c-i) a set of desired contacts, C = {C1 , G, C3} (implicitly coding the approach side),
(c-ii) by choosing one of the hand pre-grasps and the desired hand pose, or (c-iii) by directly setting the joint angles and hand poser. Based on the grasp

hypothesis, the hand pose, Xnand, and configuration, q = {qo, S

, g6 } are determined by the provided software (d), and the grasp is executed by the

dynamic simulator (e). Note that b) shows the object representation specific to our baseline method (see Section 4).

methods do not need a segmentation of the scene, because they use
single image points for pinch grasps, e.g., [31].

Although the studies discussed all deal with grasping unknown objects,
each used a unique experimental setup; different objects and scenes
were used, as well as different robotic platforms. Some of the studies
have been done entirely in simulation (e.g., [6, 7, 12, 26]), whereas
others are performed in the real world (e.g., [2, 28, 31]). Moreover,
the studies use different measures to evaluate the grasp performance;
[12, 14, 26] used a measure based on the grasp wrench space [10],
the time to generate the first good grasp is used in [6], and other studies
grasp and lift the object in order to determine grasp success [27, 30,
31], or amore fine-grained grasp classification [2, 28]. We use all these
quality measures in our benchmark.

In this paper, we propose VisGraB as a standardized benchmark for
grasping unknown objects based on real-world visual data. We test the
performance of the grasp-generation method by executing the grasps
in a dynamic simulator, lifting the object, and evaluating the result us-
ing different quality measures: success rate, fine-grained grasp classi-
fication, time to successful grasp, and a measure based on the grasp
wrench space. By enabling the comparison between different grasping
methods, we aim to provide a better insight into the different method-
ologies and their outcomes.

We see the use of a grasp simulator as a good solution to obtain a stan-
dardized comparison between methods. Although a grasp simulation
on an individual grasp level will not be completely identical to reality due
to the inherent complex nature of the physical processes, methods are
likely to be ranked correctly on a more general level. This is supported
by our recent work [21], where we tested the same methods using
VisGraB and two real robotic setups. Methods that tested successful
in simulation performed well in reality and reversely, poor performing
methods in simulation performed poorly in reality as well. We therefore
believe that the simulation is a valid tool to evaluate grasping methods.
Furthermore, in [8], thousands of grasps with a parallel griper have been
compared between our simulator and a real system. Simulator and re-
ality agreed on the clearly stable and clearly unstable grasps. Differ-
ences were found for just-stable and just-unstable grasps. However,
we do not see this as a problem, since we aim to aid the development
of robustly stable grasping method.

In other fields, benchmarking is quite common, for instance,
for object categorization and image segmentation [9, 13], for
stereo-correspondence algorithms [32], and for validation of 3D-

reconstruction methods [33]. The wish for a standardized test for
grasping has also been put forward in [34], where a benchmark is pre-
sented for the evaluation of grasp planners. However, different from
our aims, the benchmark in [34] focuses on grasping known objects
based on full and detailed geometrical information about the objects.
We, on the other hand, propose a benchmark for grasping unknown
objects in complex scenes based on real, incomplete, and noisy visual
Observations.

In summary, the main contribution of this paper is a standardized
benchmark for vision-based grasping of unknown objects, so that dif-
ferent grasp generation methods can be systematically tested and
compared. VisGraB includes: 1) A database with real stereo images
and simulated models of a large number of scenes containing objects
to be grasped, 2) software for the easy access of the database and use
of the simulator, 3) the execution of the grasp hypotheses in a dynamic
simulation, 4) an evaluation of the grasps based on static and dynamic
quality measures, and 5) tools to display the results. Using this bench-
mark allows users to focus on the vision aspects of grasping, without
having to deal with the robotic hardware.

The paper is organized as follows: We first describe the benchmark
with the database, the dynamic simulator, and the grasp quality mea-
sures in Section 2. In Section 3, a description of how to use the bench-
mark is given. Next, in Section 4, we give a baseline performance for
the benchmark using our method described in [27]. The paper ends
with a discussion in Section 5.

|2. The Benchmark

The benchmark consists of a database containing real visual input, a
grasp simulator including a dynamics engine to evaluate the grasps,
and several software tools for easy access to the database and use of
the simulator, as well as evaluation and presentation of the results. The
benchmark contains a total of 432 scenes with a variety of different
objects and with different backgrounds. The database includes real
stereo images of all the scenes, as well as the 3D models of the scenes,
which will be used by the simulator to evaluate the grasps.

The general pipeline of the benchmark is illustrated in Figure 1. Based
on the stereo images (Fig. 1a), the user's method generates grasping
hypotheses (Fig. 1b). The hypotheses can be provided in different for-
mats (Fig. 1¢). Given a grasping hypothesis, the software provided

55



PALADYN Journal of Behavioral Robotics

Figure 2. The 18 objects used in the benchmark.

with the benchmark determines the pose of the hand and the joint con-
figuration (Fig. 1d). The grasp is then executed by the simulator and
the quality of the grasp is displayed to the user (Fig. 1e). Details on the
database are given in Section 2.1. Section 2.2 describes the grasp sim-
ulator, and the possible grasp representation are given in Section 2.3.
Finally, Section 2.4 describes the evaluation of the grasps.

The benchmark, including stereo images, the modeled 3D scenes, and
the simulation software can be found on the VisGraB website [20].

2.1. The Database

The 18 objects used in the database are displayed in Figure 2. The
objects are part of the KIT ObjectModels Web Database'. 3D mod-
els of all objects are available for the grasp simulation. The objects
have various shapes, sizes, colors, and textures. We recorded scenes
with one object and with two objects. In the single-object case, we
recorded the 18 different objects in eight different poses, four where
the object stands upright, and four where the object lies down. In the
double-object scenes, we have 9 combinations of objects, where the
objects are in eight different configurations, four where the objects are
placed apart, and four where the objects touch each other. All scenes
are recorded in two conditions, placed on a non-textured and on a clut-
tered/textured table. This gives in total 2% (18 x8 + 9 x 8) = 432
scenes. Some example scenes are given in Figure 3, top row.

The scenes are modeled in 3D, in order to test the user-generated
grasps in simulation. The models are obtained by calculating the 3D
point cloud of the scene using the dense stereo algorithm provided
in OpenCV, and subsequently registering the 3D object models to the
point cloud using rigid point-set registration [25]. Where necessary, the
registration was corrected by hand. A few scene models are shown in
Figure 3, bottom row.

The object models, taken from the KIT ObjectModels Web Database,
have been scanned using a laser-range finder and are of high quality,
with sub-millimeter errors. Errors in the positioning of the objects and
the table in the scene are in the order of a few millimeters.

With the database, the vision-based grasping methods are tested for

the ability to generate grasps on objects with a variety of different
shapes, sizes, colors and textures. Furthermore, the robustness to the

pose of the object, the complexity of the scene and the clutter in the
scene is tested.

2.2. The Grasping Simulator

The grasps are performed in simulation using RobWork?, see Figure 1.
RobWork is a framework for simulation and control of robot systems
[15, 16, 24], with a special emphasis on object grasping and manipula-
tion [5, 17, 18]. The grasp simulator has been evaluated and compared
to real systems in [4, 8] and has been used, for instance, in [1, 19, 27].
For the dynamics simulation and constraint solving, RobWork relies on
Open Dynamic Engine (ODE), one of the most used physics engines
for robotics. In addition, RobWork performs its own, more accurate,
contact calculation for improved grasp simulation. We provide the Rob-
Work grasp simulator as a part of the VisGraB benchmark and created
an easy-to-use interface, which allows the user to work with VisGraB
without having to learn the details of the simulator. Our benchmark
methodology is based on open xml formats and can hence be used
with other grasp simulators, such as Grasplt [23] and OpenGRASP
[22]. However, as motivated above, RobWork provides a good grasp
simulation that has the additional benefit that it is developed by us,
allowing good integration in VisGraB and swift application of updates
and improvements. RobWork is distributed under the Apache 2.0 li-
cense and is supported on both Windows and Linux-based operating
systems.

Using the RobWork grasp simulator including a dynamics engine allows
us to not only look at static quality measures of the grasp, but also to
determine the actual grasp success by observing the dynamical and
physical consequences of the grasp. In our definition, a stable grasp
is a grasp with which the object can be lifted without slipping from the
hand. We therefore propose a method where the object is lifted after
it has been grasped. We hence define the lift-quality measure as an
important measure for the stability of a grasp, but also provide a static
quality measure based on the grasp wrench space. The quality mea-
sures are explained in Section 2.4.1.

We use the three-finger Schunk Dexterous Hand (SDH) (see Figure
4), which can be used for both two-finger parallel and three-finger
grasping. The SDH has seven degrees of freedom, allowing for com-
plex and flexible grasping. We denote the joint configuration as q =
{qo. ..., ge}. Although we made the decision to use the SDH, Rob-
Work supports the easy use of other grippers.

The objects in the scene are modeled as rigid bodies, and are not de-
formable. They all are assumed to have the same friction properties.
The simulation uses a Coloumb friction approximation, with the follow-
ing friction coefficients: y = 0.6 for object-finger contact, y = 0.8 for
finger-finger contact, and p = 0.4 for object-table contact.

A grasp is performed by first placing the hand in a suitable grasp con-
figuration generated by the user’s vision algorithm and using the util-
ity functions provided by the benchmark, see Section 2.3.2 and 2.3.1.
The simulation is then started and a grasp-control policy guides the fin-
gers from the start configuration qqpen towards the closed configuration
Jeosed- When the fingers achieve a static configuration, it is either be-
cause of contact forces or because qeiosed is reached. Next, the system
attempts to lift the grasped object. After lifting, the quality of the grasp
is determined as explained in Section 2.4.1.

The grasp control policy is fairly simple, but can directly be used on
the interface of the real hardware of the SDH as well. The policy does

1 http://wwwiaim.ira.uka.de/ObjectModels

2 http://www.robwork.dk
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Figure 3. Examples of scenes included in the database. The top row gives the rectified left camera images and the bottom row gives a view on the modeled scenes
used for grasp simulation. Examples of the different conditions are given.

not rely on specific sensor feedback other than the joint angles. It re-
quires two joint configurations of the hand qepen aNd qclosed, as well as
the maximum allowed joint torques Tyax. The user moreover needs to
provide Xpand, Which is the 6-dimensional Cartesian pose of the hand
base (position and orientation in 3D). The control policy will close the
fingers from qqpen toward qosed Using a PD controller on each joint.
The torque used by the PD controller will be limited by T,,.x Which al-
lows for a rough balancing of the contact forces. As such the simulation
only need a few parameters to execute a grasp:

(Xhand ’ qopen 1 Qclosed Tmax) ('I )

These parameters make out the grasp configuration and should be
the output of the grasping strategy that is being benchmarked. How-
ever, many vision-based grasp strategies do not include grasp control
specifics such as inverse kinematics or explicit modeling of joint force
limits. To accommodate the need for varying levels of grasp control,
the benchmark provides two utility functions that ease the generation
of grasp configurations, which are outlined in the next section.

2.3. Grasp Utility Functions

To simplify the generation of grasps, we provide three grasp utility func-
tions as part of the benchmark: based on grasp contacts (Fig. 1c-i),
based on hand pre-shapes (Fig. 1c-ii), and based on the the joint con-
figuration (Fig. 1c-iii).

2.3.1. Grasp contacts

The grasp parameters can also be generated by providing two or three
desired grasp contacts. See Figure 1c-i for an example of three con-
tacts. A contact C; = {cpos, Cqir} Indicates the position, Cps =
{cxs ¢y, .}, where the tip of the finger should be placed and the con-
tact direction, ¢4y = {c41, €42, €43}, which determines in which direc-
tion the contact force should work. The inverse kinematics are solved
by the utility function provided in the benchmark:

C Land (Xhandr qopenr closed Tmax) (2)

where C = {C;, C,} for two-finger grasps and C = {Cy, C;, C5} for
three-finger grasps.

The inverse kinematics algorithm does not require the grasp contacts
to be in a specific order or even to be part of the inverse kinematics
solution. In the latter case, the algorithm generates inverse-kinematics
solutions that are close to the desired configuration. However, configu-
rations with too high deviation from the target configuration are reported
as failed grasps.

2.3.2. Hand pre-shape

It is common to use hand pre-shapes in grasp planning, where the
pre-shapes are either generated using simple heuristics or by expert
users. For the SDH we have chosen three general hand pre-shapes,
see Figure 4. The figure shows the opening and closing positions. The
2-finger parallel grip is shown in left left column, the 3-finger ball grip
in the middle column, and the 3-finger cylinder grip in the last column.
Given the desired pose of the hand base, Xp.n¢ and the identifier for
the specific hand pre-shape, k, the utility function calculates the grasp
parameters:

(Xhandr k) = (Xhandr qopenr closed Tmax) (3)

The complete description of the pre-shape configurations including
Tmax 1S available on the VisGraB website [20].
2.3.3. Joint configuration

The user can also use his or her own inverse-kinematic solver to acquire
the hand pose, Xpand, and joint configuration when the fingers are in
contact with the object, q. The simulation parameters are then obtained
with the utility function:

(Xhandr CI) = (Xhandr qopenr Qcloseds Tmax) (4)
2.4. Experimental Evaluation

To test the quality of the user's grasp-generation method, we apply
the following experimental procedure: The user provides a list of grasp
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Figure 4. The hand pre-shapes. The top row depicts the qopen configurations
and the bottom row the qclesed configurations. From the left to the
right: 2-finger parallel grasp, 3-finger ball grasp and 3-finger cylinder
grasp.

configuration for every scene in the database. All grasps are then per-
formed by the simulator and the results are returned.

In a single experimental trial, the quality of the generated grasp is tested
as follows: the hand is placed in the correct pose, Xpang. It then
closes from the opening configuration, qepen, to the closing configu-
ration, qciesed. The object is grasped when the hand settles in a stable
configuration and the fingers touch the object. However, this does not
necessary mean that the grasp is stable. To test the stability of the
grasp, the hand attempts to lift the object. We discriminate the follow-
ing results:

Stable grasp: The object was grasped and held after lifting, with little
or no slippage of the object in the hand.

Object slipped. The object was grasped and held after lifting, but there
was considerable slippage of the object in the hand.

Object dropped: The object was grasped, but after lifting, the object
was no longer held by the hand.

Object missed: The object was not grasped by the hand.

In collision: The initial hand configuration produced a situation where
the hand was penetrating the object(s) and/or the table.

Invalid grasp contacts: The inverse-kinematics solver could not find a
joint configuration to reach the desired grasp contacts.

Simulation failure: The simulation failed due to physics-engine failure.

We consider the grasp to be successful when the result is either object
slipped or stable grasp. In both cases, the object is in the hand after
lifting. The two situations are discriminated based on the amount that
the object slipped in the hand during lifting. The slippage defines the
lift-quality measure, In case of the double-object scenes, the results are
given for the object that is closest to the hand.

2.4.1. Grasp quality measures

In case the object is lifted successfully, we calculate the grasp quality
using two quality measures: the /ift quality, Quy;, and the grasp wrench-
space quality, Qgws.

The lift quality is a dynamic quality measure that represents the ability
of a grasp to hold the object stable during lifting, that is, with the object
slipping from the hand as little as possible. The lift quality is a value

s,EGA,

Figure 5. lllustration of the surface-based Elementary Grasping Actions used

by the benchmark method [27]. The grasps are targeted at the red
surface. sEGA is an two-finger encompassing grasp, sEGA3 is
a two-finger side pinch grasp, and s3EGA1 is a three-finger encom-
passing grasp.

between 0.0 and 1.0 and it is inversely proportional to how much the
object moves with respect to the hand during lifting:

|Ih — of

Qi =1-
' [[h]]

()

where h is the 3D displacement of the hand during liting and o is the
3D displacement of the object during lifting.

The grasp wrench-space measure Qqus is a static quality measure
based upon the grasp wrench space (GWS), which reflects the min-
imum perturbating wrench that the grasp can counterbalance, given
the forces of the fingers and the Coulomb friction coefficients [10, 23].
The GWS is determined by the friction cones of all n contact points.
For a given contact i, the direction of the friction cone is determined by
the contact force f;, and the width of the cone is based on the Coulomb
friction coefficient, p. To calculate the GWS, the cone is approximated
by a set of m force vectors, f; ;, which are equally spread around the
surface of the cone. For each force vector, a six-dimensional contact
boundary wrench is defined as:

W['j =

fi)
BN
7'd[><f[’/-

where d; is the vector from the torque origin to the ith point of con-
tact and r is the maximum radius of the object from the torque origin.
The cross product d; x f; ; is the torque T;;. The GWS is then com-
puted as the convex hull over the union of each set of contact boundary
wrenches:

W = ConvexHull (U(va1 e ,wi,m)) (7)

i=1

Finally, the grasp quality measure Qqus is determined by the distance
from the origin to the nearest facet of the convex hull, which reflects the
maximum perturbating wrench that the grasp can counterbalance.

2.4.2. Analyses and presentation of results

Since different grasping methods may have their own strengths and
weaknesses, we do not summarize the results in a single value. In-
stead, we analyse the data in different ways. First, we give the dis-
tribution of grasping results for the different conditions, see Figure 6.
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Second, we give the average grasp quality measures Qs and ngs
over the successful grasps, i.e., stable grasps and object slipped, see
Table 1.

These two analyses give the average performance, which indicates
how well the method is expected to perform if one grasp of the sug-
gested hypotheses is selected. However, grasp performance can be
greatly improved if the system is allowed to attempt multiple grasps. To
investigate this, we plot the grasp success rate as a function of the num-
ber of grasp attempts as a third analysis, see Figure 7. Here, per scene,
grasps are selected at random from the list of hypotheses and the av-
erages over the different scenes and 20 randomized trials are given.
In the forth analysis, we investigate how many attempts are needed to
achieve a successful grasp, see Table 2. This table gives the propor-
tion of scenes where the method provides a successful grasp, and, if
this is the case, how many grasp attempts are on average needed to
grasp the object successfully.

Finally, to get more insight in the performance of the method for the
different objects, we give the percentage of successful grasps for each
object in the different conditions, see Tables 3 and 4.

Scripts are provided as part of the benchmark to process the results
and to present the results.

|3. Using the Benchmark

VisGraB is easy to use. The user does not need to learn to work with
the grasp simulator, as this is all taken care of by the provided software.
Tools are available to access the database, execute the grasps, evalu-
ate the outcome and display the results. The only thing the user needs
to add is his or her vision-based grasp-generation method, which takes
the images as input and that suggests a list grasp hypotheses as out-
put.

The benchmark can be downloaded from the VisGraB website [20].
Using the benchmark works in a number of steps:

1. Loading the stereo images and the stereo-calibration file.

2. Generating grasps based on the visual information and provid-
ing the grasp configurations, potentially by using the utility func-
tions for hand pre-shapes or grasp contacts.

3. Running the simulation, providing a list of grasp configurations
for every scene.

4. Running the scripts to process and represent the results.

The final benchmark results can then be published on the VisGraB web-
site for comparison. The detailed information about the formats and the
use of the software can be found on the website.

|4. Baseline Method

To set a baseline for comparison and to illustrate the analyses, we used
our grasp-generation method presented in [27] and applied it to the Vis-
GraB benchmark. The grasping method is based on an Early Cogni-
tive Vision system [29] that builds a sparse hierarchical representation
based on edge and texture information. This representation is used to
generate edge-based and surface-based grasps. The method detects
surfaces of the objects in the scene, and generates grasps based on
these surfaces. For the baseline, we use the surface-based grasps
only. The grasp method finds contact points at the boundary of a sur-
face, on which so-called Elementary Grasp Actions are applied, see
Figure 5. Based on two grasp contacts, a two-finger encompassing
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Figure 6. Grasp results. The stacked-bar plots show the average distribution
of all grasps over all scenes. The stable and slipped grasps are con-
sidered successful grasps, where the object is held in the hand after
lifting. The gray area shows the proportion of scenes where the meth-
ods do not suggest any grasps.

grasp, so,EGA;, is generated, as well as two two-finger pinch grasps,
s,EGA;3 one for each contact. Based on three grasp contacts, a three-
finger encompassing grasp, ssEGA1, is generated. For details about
the method, we refer to [27].

4.1. Results

The grasp results of the baseline method are shown in Figure 6 and
the grasp quality of the successful grasps are in Table 1. The results
indicate that the three-finger encompassing-grasps are most success-
ful, followed by the two-finger encompassing-grasps. Due to missing
visual information about the back of the objects, the two-finger pinch
grasps results more often in collisions or no grasp is suggested. Fig-
ure 7 shows a similar general picture, and indicates that all methods
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Figure 7. The grasp success rate as a function of the number of attempted
grasps.

benefit from successive grasp attempts. For the two and three-finger
encompassing grasps, the performance gets to high levels already for
a few extra attempts. Table 2 indicates that the two-finger encompass-
ing grasp finds a stable grasp faster than its three-finger counterpart,
although it fails to suggest a successful grasp on a larger number of
scenes. In general, the methods are more successful in grasping one
object from the double-object scene then grasping the object in the
single-object scene. However in the double-object scenes there are
more collisions. The results for the scenes with textured and non-
textured background are very similar, which shows that out method
can deal with a higher degree of visual complexity. The grasp success
for the individual objects are given in Tables 3 and 4.

Table 1. The lift quality and grasp wrench-space quality for the textured scenes.
The values are the averages over the successful trials (stable, slipped).

Textured background
SzEGA1 SzEGA3 S3EGA1
Qr Qcws| Qi Qcws| @ Qcws
standing|0.58 0.46 |0.44 0.30 [0.72 0.59
laying|[0.31 031 [0.04 0.03 |0.55 050
all{0.44 039 [0.24 0.17 |0.64 0.55
apart{0.60 0.47 |0.46 035 |0.76 0.63
close|0.68 0.46 |0.45 0.35 [0.74 0.60
all|0.64 0.47 [0.45 035 [0.75 0.62

Single

Double

Non-textured background
s EGA, s2EGA; s3EGA,
Q1 Qcws| Q1 Qcws| O Qcws
standing|0.60 0.46 |051 0.37 |0.79 0.65
laying|0.36 0.31 |0.01 0.03 |0.55 0.51
all|0.48 039 [0.26 020 [0.67 0.58
apart[0.62 050 [0.46 0.40 |0.68 0.55
close[0.51 0.41 {036 035 [0.68 0.52
all|056 0.46 |0.41 0.38 |0.68 0.53

Single

Double

Table 2. The proportion of scenes with a successful (stable or slipped) grasp
(p) and the average number of grasp attempts until a successful grasp

(9a)
Textured background
SzEGA1 52EOA3 S3EGA1
p ga p ga p ga
< [standing| 0.81 1.77 | 061 335 | 0.88 218
g laying| 0.65 2.07 | 0.06 238 | 0.81 3.05
¥ all| 073 191|033 327|084 260
2 apart| 0.78 1721 069 412 | 092 1.64
E close| 0.86 159 | 0.64 379 | 0.89 235
a all| 0.82 1.65 | 067 3.96 | 090 1.99
Non-Textured background
s EGAq sHEGA3 s3EGA,
p ga p ga p ga
<@ |standing| 089 1.80 | 0.72 413 | 094 153
£| laying| 0.65 217 | 0.04 178 | 0.81 504
n all| 0.77 196 | 0.38 4.00 | 0.88 3.15
L apart| 0.81 1.68 | 0.69 4.75 | 081 1.58
3 close| 0.72 175 | 058 494 | 078 1.62
a all| 076 1.71 | 064 484 | 079 1.60

|5. Discussion

We presented VisGraB, a database and a software tool for benchmark-
ing vision-based grasping of unknown objects. The database contains
real stereo images, which can be used by the user to generate grasp
hypotheses. These hypotheses can then be passed on to the software
tool, which contains a dynamic grasps simulator that plans, executes,
and tests the grasp. The database contains a large set of scenes,
with different objects displaying a variety of different shapes, sizes,
colors and textures, and with different backgrounds. By performing
the grasps in simulation, a large number of grasps can be repeatedly
tested. The benchmark facilitates 1) the evaluation and comparison
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Table 3. Percentage of successful grasps for the different objects in the textured
scenes. Results for the single-object scenes are split into standing (s)
and laying (l) object poses and for the double-object scenes into far (f)
and close (c). The pairs in the double-object scenes are: a: 1-18, b:
2-11,¢: 3-7,d: 4-15, e: 6-14, f: 6-8, g: 9-13, h. 10-12, i: 16-17.

Textured background

Single-object scenes

sHEGA| |soEGA3 | s3EGA,

s L s L] s L
1 [50% 10%|12% 8% [76% 31%
2 |28% 74%| 4% 0% |77% 86%
3 |17% 32%|21% 6% | 9% 19%
4 148% 15%|38% 0% |37% 21%
5 |57% 38%|50% 0% |33% 12%
6 |45% 44%| 9% 0% |67% 12%
7 |23% 76%|43% 0% |35% 64%
8 |33% 44%| 0% 0% |31% 13%
9 |23% 9% |16% 0% |38% 55%
10(87% 29%|31% 4% [97% 61%
11[60% 47%|20% 0% [59% 73%
12(54% 60%| 5% 0% |76% 47%
13(54% 38%|22% 0% [59% 58%
14(74% 4% |46% 0% |86% 35%
15(14% 19%|12% 0% [63% 41%
16[90% 50%|64% 0% [82% 65%
17(33% 25%| 0% 0% [13% 0%
18(13% 0% | 0% 8% [53% 0%

Double-object scenes

sHEGA| | s2EGA3 | s3EGA,

f f fc
a|b58% 87%| 0% 0% |84% 85%
b[21% 48%| 0% 0% |40% 55%
c| 0% 32%|36% 33%|45% 31%
d|37% 48%|24% 23%|42% 24%
e|52% 66% |43% 30%|76% 61%
f |44% 54% |20% 25%|43% 39%
g|31% 33%|15% 27%|68% 36%
h|53% 76%| 8% 9% |76% 55%
1 158% 50%|10% 8% |67% 31%

of different vision-based grasp-generation methods in a standardized
fashion, and 2) a focus on the vision methods instead of on the robotic
hardware. We presented an example as an illustration of the use of the
benchmark.

In addition to what we presented here, the VisGraB framework can be
used for evaluating a variety of tasks related to grasping, for example
grasping known objects can be tested using the KIT object models,
and learning methods can be evaluated on their generalization abilities.
Although in VisGraB, we focus on the generation of grasp hypotheses
from a pair of stereo images and outsource the grasp execution to the
grasp simulator, RobWork can simulate visual and tactile observations,
allowing implementations of closed-loop grasp execution.

We strongly encourage the use of the benchmark to test your vision
based grasp-generation methods and to compare it to other methods.
We are very open to extend the benchmark based on future needs from
the community.

\\//—
VERSITA

Table 4. Percentage of successful grasps for the different objects in the non-
textured scenes. Results for the single-object scenes are split into
standing (s) and laying (I) object poses and for the double-object
scenes into far (f) and close (c). The pairs in the double-object scenes
are: a: 1-18, b: 2-11, ¢: 3-7, d: 4-15, e: 5-14, f: 6-8, g: 9-13, h:
10-12,i: 16-17.

Non-textured background

Single-object scenes

52EGA1 52EGA3 53EGA1

s l s l s l
1 172% 25%| 7% 0% |93% 30%
2 |37% 69%| 4% 0% |85% 88%
3 |34% 51%|23% 0% [49% 10%
4 169% 5% |28% 0% |53% 12%
5 152% 21%|31% 0% |[48% 13%
6 |43% 19%| 8% 0% |66% 6%
7 |41% 63%|23% 0% |46% 61%
8 [25% 50%|13% 0% |21% 0%
9 |48% 33%|10% 0% |85% 61%
10({86% 19%|17% 0% |99% 72%
11(70% 46%|20% 0% |89% 74%
12(33% 54%| 6% 0% |74% 47%
13(70% 29%|21% 15%|91% 56%
14173% 13%(24% 0% |87% 39%
15(45% 14%|10% 0% |86% 19%
16|78% 44%(66% 0% |91% 53%
17119% 0% |16% 18%[19% 0%
18(13% 10%|50% 0% [57% 20%

Double-object scenes

SzEGA1 SZEGA3 S3EGA1

f c f c f c
al71% 79%| 3% 3% |93% 82%
b|42% 24%| 2% 0% |44% 53%
c[29% 4% |17% 4% |16% 28%
d|[38% 45%|18% 18% |38% 54%
e |66% 63%|27% 21%|83% 48%
f177% 55% |18% 22%|38% 51%
g|25% 44%|12% 17%|64% 80%
h|57% 20%| 7% 3% |63% 19%
1135% 26%[19% 19%|74% 27%
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