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Abstract

Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the
generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-
tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating
individual networks for a given task are lacking. This study presents an approach where the connectivity and oscilla-
tory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic
simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its
feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real
robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the
biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have
been observed to succeed in fitness simulations during evolution.
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1. Introduction

The field of humanoid robotics has received an increasing interest over
the last few decades [1, 2]. In contrast to conventional robotic designs
working in specialized environments (e.g. highly customized robotic
arms in assembly lines), robots with anthropomorphic features are ex-
pected to be more adept in a growing number of environments in which
they are to perform, as most of the real environments have been de-
signed to suit human anatomy and needs [3]. Humanoid designs are
also desirable from a human–robot interaction point of view: humans
tend to interact and communicate better with human-like entities [4].

Bipedal locomotion is a principal part of the research eɼorts in the field
of humanoid robotics. The main motivation for studying bipedal loco-
motion, and walking robots in general, is that it is in many ways superior
to conventional wheeled approaches on real terrain [5] and in situations
where robots need to accompany, or replace, humans. Another mo-
tivation for the research on bipedal walking robots is to gain a better
understanding of the physiology of human locomotion [1].

It has been suggested that bipedal walking mechanisms are more flex-
ible in coping with obstacles in complex environments when compared
with other walking mechanisms (quadruped, insectoid etc.) [6]. But
this comes with the cost of substantially reduced stability, which in turn
asks for more sophisticated control approaches. While stability is the
main incentive for designing better control methods, it is also of note
that recent research has made progress with control methods focused
on reducing the impact of falling in case the locomotion system fails
[7, 8]. Techniques applied so far to bipedal walking include model-
based control, such as inverted pendulum dynamics [9], the commonly
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used zero moment point (ZMP) control [10], and biologically inspired
control methods using neural networks [11–14].

In this study we present the results of applying genetic algorithms (GA)
for the evolution of central pattern generator (CPG) type neural net-
works controlling bipedal locomotion. CPGs, with a firm basis in neu-
rophysiologic experiments [14, 15], describe rhythmic motor patterns
in terms of oscillatory outputs from units of mutually inhibiting neurons.
CPG networks are mathematically modeled using a set of coupled dif-
ferential equations with a given connectivity structure and set of param-
eters. In most studies involving CPGs, the networks are tailor-made for
a specific application and the lack of generic methods and design prin-
ciples for creating CPGs with desired behavior is acknowledged in the
field [14, 16, 17]. The main aim in this study is the application of GA
optimization for the creation of CPG networks under fitness evaluations
in a realistic physical simulation. We apply CPG control to a five-link
planar bipedal walking mechanism [11, 18], a minimalistic structure
containing four actuators (corresponding to the hip and knee of each
leg) and touching the ground with rounded extremities without ankles
(Figure 6). Presented mathematical model and simulation are based on
the work by Taga et al. [11]; and by using a minimal set of actuators and
a planar support structure, we aim to restrict this current study to the
smallest set of parameters and two dimensions, comparable to several
existing studies of bipedal walking [12, 19, 20]. We also present a test
of the best evolved network on a physical five-link walking mechanism,
to investigate whether CPG networks evolved using simulations can be
acceptably transferred to real robot hardware.

After presenting background information on CPGs and the five-link
walking mechanism in Section 2, the article continues in Section 3 with
details of the experimental setup including the physical simulation and
the CPG network. This is followed by a selection of obtained results in
Section 4, and the conclusions in Section 5.
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2. Background

2.1. Central Pattern Generators

Neurophysiologic studies on animals suggest that their nervous sys-
tems incorporate specialized oscillatory neural circuits, termed central
pattern generators (CPG) that are responsible for most of the rhythmic
movements produced by the organism, including locomotion [15, 21].
These neural circuits are capable of producing high-dimensional rhyth-
mic output for motor control of muscle groups while receiving only sim-
ple low-dimensional input signals from the central nervous systemmod-
ulating their activity [? ]. In addition to this reduction of dimensionality
of control signals, another defining characteristic of CPGs is that they
are capable of sustained rhythmic activity without any dependence on
oscillations in their input. In experiments on living animals, it has been
shown for numerous cases that these neural circuits produce sustained
rhythmic activation patterns even when they are in isolation from exter-
nal stimuli [22].
In the field of robotics, CPGs implemented as neural networks
have been applied to the control of legged locomotion for bipedal,
quadrupedal, and other designs. Studies about CPG controlled bipedal
locomotion have often been inspired by the seminal work of Taga [11],
and now have grown to involve a diverse range of subjects such as
adaptive dynamic motion [23], sensory-motor coordination [24], super-
vised learning of periodic behavior [16], and nonlinear dynamics of CPG
control [25]. CPGs have also been successfully applied to non-legged
cases such as serpentine locomotion [26] and swimming [27]. It has
also been demonstrated that CPG controllers can be implemented as
analog electronic circuits [20]. Important advantages of legged robotic
locomotion with CPGs are: being biologically inspired and suited for
distributed implementation, having few control variables, and exhibiting
stable limit cycle behavior resistant to perturbations, as compared to
classical control approaches such as the widely used zero moment
point (ZMP) method, finite-state machines, or heuristic control [14].
Mathematically, CPGs are modeled as systems of coupled diɼerential
equations, similar to models for other continuous-time artificial neural
networks. A CPG network is composed of oscillatory units, an ar-
rangement of two mutually inhibiting neurons each becoming active
in turn. An oscillatory unit has a natural frequency and amplitude of
oscillation on its own (depending on oscillation parameters), but when
several such units are interconnected, and in turn, bound to an external
input, they tend to tune in to the frequency of the presented input. By
connecting these oscillatory units in diɼerent ways, networks with com-
plex frequency and phase relationships can be constructed, which are
very suitable for the control of walking mechanisms. Several nonlinear
oscillatory units have been used in CPG research, including the Hopf,
Rayleigh, van der Pol, and Matsuoka oscillators [17]. In this study, we
use the half-center oscillatory model by Matsuoka [28, 29] due to its
simplicity, existing wide use in CPG robotics research [17], and espe-
cially its use for bipedal locomotion by Taga et al.[11] that forms the
inspiration for our approach. The details are given in Section 3.

2.2. Five-link Planar Bipedal Walking Mechanism

It has been recently demonstrated that anthropomorphic mechanisms
even without any actuation can stably walk down slopes in three-
dimensions, by a controlled release of stored gravitational potential en-
ergy [30]. These so-called passive dynamic walkers suggested that
bipedal gaits on level ground or upward slopes can be studied with
a smaller number of actuators than previously considered. These ob-
servations fall under the newly developed concept of morphological
computation [31], recognizing the role of mechanics in contributing

Figure 1. The simulated five-link model. Black: right leg, gray: left leg. Link
1 is illustrated as an extrusion for ease of angular notation, but is
in fact simulated as a point mass in the 2-dimensional plane, i.e. a
linear connection between links 2 and 3 extending in the dimension
perpendicular to the figure.

to some aspects of the control processes involved in locomotion, or
movement in general.
The five-link mechanism (Figure 1), lacking feet and having only four
actuators (two for the hips and two for the knees), is one of the sim-
plistic approaches for studying bipedal locomotion. This mechanism is
often planar, that is, restricted to run in two dimensions by means of
an attached lateral boom [18, 32], as is the case in this study. This
has the advantage of making the physical simulation and mathematical
analysis of the gait less complicated, providing insight on some of the
central processes that occur in the lateral plane during bipedal locomo-
tion. Mechanisms of this type have been used on many occasions to
study bipedal walking [17, 18, 20, 23, 30] and running [32]. The five-
link mechanism that we use in this study as a physics simulation and
constructed hardware is comparable with the one used by Lewis et al.
[18], and also by Geng, Porr, and Wörgötter [13] and Pratt et al. [19], in
terms of general structure and the arrangement of lateral support. The
mechanism is described in detail in Section 3.

3. Experimental Setup

Our study is based on a reimplementation of the mathematical model
of the five-link walking mechanism and its coupled CPG controller intro-
duced in the seminal work of Taga et al. [11]. Using our implementation
of this mathematical model, we set up a physics simulation enabling
realistic fitness evaluations of evolving CPG networks that control the
simulated walking mechanism. The walking mechanism itself that we
use is comparable to those in several existing studies [12, 13, 19], most
notably by Lewis et al. [18]. While the study of Lewis et al. is also based
on a mechanism with four actuators coupled to a CPG network simi-
lar to ours, it is concerned with the implementation and hand tuning
of a particular CPG network (with a given connectivity structure) on a
custom VLSI chip, whereas our study is concerned with the automated
design of a CPG network (including the parameters and connectivity)
through evolutionary computation.
In this section we present descriptions of the CPG network, walking
mechanism, and physics simulation that we use, followed by the details
of the evolutionary algorithm and hardware implementation.
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Figure 2. Matsuoka’s half-center model, as employed in the current study. Note
that the inputs fi and zi to each neuron, both shown here to be exci-
tatory, may either be excitatory or inhibitory.

3.1. CPG Controller

The basis for the CPG controller used in this study is the half-center
oscillatory unit known as Matsuoka’s oscillator [28, 29]. The model is
described by the following set of equations:

τu̇1 = u0 − u1 − wy2 − βv1 + z1 + f1 ,

τu̇2 = u0 − u2 − wy1 − βv2 + z2 + f2 ,

τ ′v̇1 = −v1 + y1 , (1)

τ ′v̇2 = −v2 + y2 ,

yi = max(0, ui), i = 1, 2 ,

where ui is the inner state, vi is the variable of self inhibition, yi is the
output of the ith neuron, u0 is a constant excitatory input to the oscil-
lator, τ and τ ′ are time constants, β is the coeɺcient of self inhibition,
and w is the weight of inhibitory connection between neuron 1 and
neuron 2 (Figure 2). The value of parameter u0 has an eɼect on the
oscillation amplitude, and the values of τ and τ ′ determine the natural
oscillation frequency of the unit oscillator in the absence of an oscilla-
tory input from other sources (which might be introduced by zi and fi,
as described further below).
One such oscillatory unit is responsible for the control of one mechani-
cal joint in the walking mechanism, making a total of four unit oscillators
in our setup with the five-link mechanism. Neuron 1 and neuron 2 of
an oscillatory unit are respectively denoted flexor and extensor neu-
rons for that joint, drawing on an analogy with the anatomy of muscular
action in real joints. The output y = y1 − y2 of the oscillatory unit
(Figure 2) is used as the angular speed of the corresponding joint, after
a linear scaling that is described in the following section.
zi in Eq. (1) represent the total input from other CPG unit oscillators
in the controller network to the ith neuron of this unit oscillator, which
might be excitatory (positive) or inhibitory (negative). This can bewritten
as

zi =
∑

j
wijyj , (2)

Figure 3. An illustration of the concept of entrainment between the CPG net-
work and the walking mechanism in the environment.

with yj representing the output of the j th neuron in the set of remaining
unit oscillators in the network, and wij is the connection weight existing
in-between.
Often, the input to the components of an oscillatory unit is arranged
such that z1 = −z2, meaning that an internal network connection hav-
ing the eɼect of, say, promoting the flexion movement of a joint (or
equally, inhibiting the extension movement), should excite the flexor
neuron and at the same time inhibit the extensor neuron of the cor-
responding oscillatory unit. The condition z1 = −z2 is not implicitly
imposed in this study, and the GA implementation is free to determine
the connection paths and types of connection to each of the neurons
in a unit oscillator independently.
fi in Eq. (1) represents the total feedback input to the ith neuron, in
a similar fashion to zi described above. Feedback paths provide a
means to maintain an adaptive mutual coordination, called entrain-
ment, between the CPG network and the walking mechanism subject
to physics of the environment [11]. This is achieved by a cyclic and con-
tinuous modification of oscillation characteristics and phase relations
of the CPG network by the external inputs; and in turn, the commands
sent by the CPG network moving the walking mechanism within the
environment; and again, the eɼect of this on the CPG network through
feedback (Figure 3). Feedback pathways between the mechanism and
the CPG network are described in the following section.

3.2. Walking Mechanism and the Physical Simulation

The five-link planar walking mechanism considered in this study con-
sists of four actuators and the five links in-between: two actuators in
the hip and two in the knee joints, two links for each leg, and the fifth
link connecting the two legs. The mechanism has no supporting feet
and no ankle joints, and touches the ground on two points at the end
of its legs, which are rounded in the hardware implementation. The
omission of feet is made possible by the increased stability of the two
dimensional model: as long as the center of mass of the system lies
between the two points of contact between the mechanism and the
ground, any movement of the system ends in a stable state.
The mathematical model for physics simulation of the five-link mecha-
nism is identical to that used by Taga et al. [11], with the simplification
of omitting ankle actuators and joints, leaving four actuators in total.
This is a design choice we make for seeking the simplest bipedal walk-
ing mechanism we can make subject to evolutionary optimization. Our
implementation of this model essentially involves numerical integration
of Newton–Euler equations describing the five rigid bodies constitut-
ing the mechanism in two dimensions and an impact model between
the feet and the ground profile described as a spring–damper system,
which is adapted from the model used by Raibert [33].
Figure 1 presents an overview of the model. Angular relationships of
the constituent links of the mechanism are all given with respect to Link
1, the link between the two hip joints standing at angle θ1 measured
from the vertical. The thighs, Link 2 and Link 3, stand at θ2 and θ3
with respect to Link 1; and the shanks, Link 4 and Link 5, stand at
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θ4 and θ5 measured from the corresponding thighs they are attached
to, respectively. The CPG controller network, described previously, is
tied to the walking mechanism by the coupling of the output yi from
the corresponding oscillatory unit of the CPG network (Figure 2) as the
angular speed θ̇i of each joint:

θ̇i = min(max(yi,−1), 1)ωmax , (3)

where, before driving the joint, the output yi is scaled such that its
absolute value is bounded by the maximum attainable rotational speed
ωmax of the joints, dictated by the servo motor specifications of the
hardware implementation (Section 3.4).
The mass of Link 1 connecting the hip joints is denoted m, and the
link is simulated as a point mass on the simulation plane. m1 and l1
denote the mass and the length of thighs and m2 and l2 denote the
mass and the length of the shanks for both legs. For both thighs and
shanks, the center of mass is assumed to be halfway through their
length. kg and bg represent the elasticity and damping coeɺcients of
the ground impact model. In total, the implemented physics model has
nine parameters describing the walking mechanism and its interaction
with the environment, with the addition of gravitational acceleration g
and the maximum rotational speed ωmax of the joints.
The functionp(x) defines the ground profiley = p(x), which provides a
simple means to describe the environment the mechanism is simulated
in, and makes it possible to define any form of terrain including slopes
and simple obstacles. Even more complex cases can be introduced
by defining p(x) as a Fourier series with appropriate parameters.
The feedback pathways from the walking mechanism to the CPG con-
troller network are based on six diɼerent features, which are the de-
viation from the vertical of each of the four joints and the state of the
two feet. The feedback pathways are described by the following set of
equations:

Left hip:

f1 = a1(θ1 + θ3 − π)− a1(θ1 + θ2 − π) + a1tr , (4)

f2 = −f1 ,

Right hip:

f1 = a1(θ1 + θ2 − π)− a1(θ1 + θ3 − π) + a1tl , (5)

f2 = −f1 ,

Left knee:

f1 = a2tr(θ1 + θ2 + θ4 − π) , (6)

f2 = −f1 ,

Right knee:

f1 = a2tl(θ1 + θ3 + θ5 − π) , (7)

f2 = −f1 ,

where tl represents whether the left foot is on the ground (tl = 1)
or not (tl = 0); and the same holds for tr corresponding to the right
foot. The presence and strength of feedback to hips and knees are
regulated by two coeɺcients, a1 and a2, and the values of these are
included in the GA optimization process. This minimalistic approach
has been observed to produce results comparable with former studies
of this kind, involving greater numbers of coeɺcients (up to four for
each feedback pathway) [11].

3.3. Genetic Algorithms

For optimizing the parameters of the CPG controller network, includ-
ing the internal connectivity structure and the presence and strength of
feedback pathways from the walking mechanism, we employ a stan-
dard genetic algorithms (GA) implementation. Fitness evaluations of
the population are done in the physics simulation of the five-link mech-
anism with a set of parameters not subject to evolution, arranged to
match dimensions and masses of the physical parts forming the hard-
ware implementation (Section 3.4).
We use a fitness function measuring the horizontal displacement of
Link 1 (Figure 1) between the beginning and the end of the evaluation.
During fitness evaluations, we use a time integration step of∆t = 10−5

s in the simulation. Each fitness evaluation lasts until either: (1) the gait
becomes unstable1 and fails; or (2) the maximum length of time that
we set as 10 s (or 1000000 time steps, given ∆t) has passed. At
the start of each fitness evaluation, the mechanism is released with a
straight upright posture (θ1 = θ4 = θ5 = 0, θ2 = θ3 = π), from
slightly above the ground.
We impose several restrictions on where connections might be present
between the oscillatory units in the CPG network, with the aim of mak-
ing use of the expected symmetry in the system (the bilateral symmetry
of the walking mechanism and the expected behavioral symmetry of
the human-like gait). We achieve this by the connectivity matrix pre-
sented in Figure 4. It shows, for a certain neuron (a row), the weights
of incoming connections from other neurons (columns) in the network.
This essentially reduces the network connectivity parameters to be op-
timized into the weight set w1 to w8.
In addition to these, for each evaluated individual, the encoded weights
w1 to w8 are modified by a set of corresponding multipliers w∗1 to w∗8 ,
which are filtered with the Heaviside step function to become either 0
or 1, providing a simple way for the evolution process to turn a given
connection “on” or “oɼ”. That is

wi ← wiH(w∗i ) , (8)

H(n) =
{

0, if n < 0 ,
1, if n ≥ 0 .

(9)

The parameters a1 and a2 describing the feedback pathways are also
coupled with parameters a∗1 and a∗2 in the same manner. We introduce
these “on/oɼ” multipliers to provide evolution with another layer of direct
control over the network topology between the nodes, a GA technique
adapted from the concept of non-expressed genetic code, i.e. intron,
in genetics [34]. The connection weight between coupled flexor and
extensor neurons is given by w , which is the same for every oscillatory
unit.
Note that the connections between the hip and knee unit oscillators of
a side are unidirectional, as in Taga et al. [11]: There might be an eɼect
on knee unit oscillators from the corresponding hip unit oscillator on its
side, but not the other way (correspondingly, the connectivity matrix in
Figure 4 is asymmetric).

1 Gait stability can be proved by demonstrating stability of cycles in
a phase space formed by θ1 . . . θ4 in Figure 1 by analyzing Poincaré
sections of motion [25]. Here in GA evaluations we use a simpler def-
inition by using “stable” to mean that the individual has not fallen to
the ground (i.e. all of the five links in Figure 1 remain above ground
profile p(x)) anytime during fitness evaluation.
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Figure 4. Internal connectivity matrix of the CPG network. LH: left hip, RH: right
hip, LK: left knee, RK: right knee, F: flexor neuron, E: extensor neuron.
Knee neurons can be inhibited by the hip neurons on the same side,
but the hips cannot be inhibited by the knees.

In total, the encoding scheme describing individuals consists of 25 real
numbers coding the parameters of the CPG network; the presence,
strength, and nature (i.e. inhibitory or exhibitory) of internal connectivity
between diɼerent oscillatory units; and the presence and strength of the
feedback pathways described in the previous section. The encoding
scheme includes: w , u0, τ , τ ′, and β as the internal parameters of the
unit oscillators; w1 tow8 andw∗1 tow∗8 , the elements of the connectivity
matrix andmultipliers; anda1, a2, a∗1, anda∗2, the feedback coeɺcients
and multipliers. The values of τ and τ ′ are directly used in the hip unit
oscillators, whereas in the knee unit oscillators, these values are taken
as τ/2 and τ ′/2, resulting in an oscillation frequency twice that of the
hip joints, as is the case in a real human’s gait [11]. We use random
initialization of all encoded variables in the initial population.

3.4. Hardware

With the intention of conducting a preliminary test about whether results
we have from evolution in simulations can be acceptably transferred to
real robot hardware, we construct a hardware implementation of the
five-link mechanism. As with the physical simulation described previ-
ously, this mechanism needs to be run in two dimensions, and this is
achieved, as in many previous studies [13, 18, 32, 35], by an attached
lateral boom freely rotating around a pivot (Figure 5). The boom, of ap-
proximately 1.5 m of hollow and lightweight plastic, restricts the move-
ment of the mechanism to a spherical surface approximating motion in
two dimensions, given the boom radius is suɺciently large compared to
the mechanism. This support has minimal eɼect on the vertical stability
of the mechanism in the sagittal plane (the plane perpendicular to hip
joint axes, dividing the body into left and right halves) and the dynamics
are assumed to approximate the two-dimensional simulation.
The body of the robot is constructed out of hard plastic parts as found
fit for the purpose. Four standard servo motors are used as actuators
(rated with ωmax = 5.51 radian/s, see Section 3.2), with the motors
in hip joints having a range of movement of 180◦, and the motors in
the knee joints 90◦ (Figure 1). The rounded tips of the legs making
contact with the ground are covered with rubber tape for increasing
the grip and avoiding slippage. The resulting mechanism, including the
boom, is comparable to the one used by Geng et al. [13], and to the
commercially available five-link robot “Red-Bot” used by Lewis et al.

Figure 5. The five-link planar walking mechanism and the accompanying sup-
port structure.

Figure 6. The constructed five-link walking hardware. The mechanism is about
20 cm (7.87 inches) high and weighs slightly more than 200 grams
(0.44 pounds

[18] and other studies. The finished mechanism (Figure 6) is about
20 cm (7.87 inches) high and weighs slightly more than 200 grams
(0.44 pounds).
The hardware is driven by a dedicated interface circuit attached to the
host computer (running the CPG controller and GA evaluations), based
on the Parallax Basic Stamp 2TMmicrocontroller. It communicates with
the host computer using RS232 serial communications protocol.

4. Results and Discussion

4.1. Simulation and GA

At first, we tried a hand-tuning approach to see if a stable gait walk-
ing on level ground can be produced by manual adjustment of CPG
parameters, using previous results by Taga et al. [11] as the starting
point. This proved to be very hard to achieve, and in the very rare cases
where the mechanism could be made to walk, the gait seemed unnat-
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Table 1. GA parameters used in the evolution of CPG networks.

Parameter Value / description

Population size 2001

Chromosome
encoding 25 real numbers directly encoding CPG parameters

Selection Tournament, with size 8, probability 0.75

Crossover Two points, with probability 0.8

Mutation Simple one-point, with probability 0.3
1Made up of individuals reproduced from previous generation and
individuals created by crossover (determined by the crossover prob-
ability). Elitism was used (the best individual was always kept).

ural, and eventually destabilized into a fall after just three or four steps
in all cases.

Moving on to GA experiments, with the parameter set summarized in
Table 1, we observe stable gaits after just a few generations of fit-
ness evaluations. After approximately 10 generations, the best fitness
asymptotically reaches a plateau that should be determined by limiting
factors such as the maximum speed of the actuators and the mass
and dimensions of the mechanism, after which improvements are mi-
nor. Figure 7(a) gives a plot of the best and average fitnesses during
a typical GA run, with the simplest fitness measure promoting the dis-
tance moved2.

The best gait evolved on level ground is represented in Figure 8. The
CPG parameters resulting in this gait are given in Table 2 and the CPG
network structure of the individual is given in Figure 9. The resulting net-
work uses six connections out of the possible sixteen. The snapshots
in Figure 8 are 5.55× 10−2 s (55 ms) apart (cf. the time resolution of
the simulation 10−5 s, or 0.01 ms) and each step (either left or right)
takes approximately 0.83 s. The horizontal distance attained by this
gait is 137.44 cm in 10 s, giving a speed of approximately 0.13 m/s.
Scaling this up to average human dimensions (by a factor of 168/20,
from the 20 cm height of the mechanism and an average human height
of 168 cm [36]) gives a speed of 1.09 m/s, which is significantly close
to the typical human walking speed of approximately between 1.2 m/s
and 1.5 m/s [37]. The multiple foot contacts during the gait indicate a
degree of bouncing occurring due to the spring–damper model of the
ground that we employ. We also note that: (1) all cycles shown in the
figure are not exact replicas of previous ones (evidenced by the ground
contact points in each cycle) and (2) still, in the long run, the gait is
sustained. This provides evidence for the concept of entrainment that
we discussed in Section 3: the variations in the system are kept under
control by the continuing mechanical interaction of the mechanism and
the environment, in contrast with an exact execution of a set trajectory
in heuristic control approaches. This gait has also been tested in sim-
ulations with slightly inclined or declined (up to 5◦) ground profiles p(x)
with success.

2 During the course of our experiments, we have also introduced several
other objectives to the fitness measure, such as promoting an upright
posture and putting an upper boundary to the height of the mechanism
from the ground, to prevent jumping. But, in the end, the improvement
provided by these were minimal in all cases, and each additional fitness
objective introduced additional exceptions to deal with.
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Figure 7. Plots of (a) the best and average fitnesses obtained by individual
CPG networks and (b) percentage of unstable gaits, as evolution pro-
gresses.

Table 2. Parameter set of the CPG network producing the best resulting gait.
The values of w1, . . . , w8, a1, and a2 are after threshold operation
with w∗1 , . . . , w∗8 , a∗1, and a∗2.

Parameter Value / description

τ 0.285 (hips), 0.143 (knees)

τ ′ 0.302 (hips), 0.151 (knees)

w −2.120

β 3.078

u0 0.805

w1, . . . , w8 −0.607, 0, 0,−0.311,−1.649, 0,−1.934, 0

a1, a2 0.124, 0.770

The overall result is that the CPG approach to human-like bipedal walk-
ing shows great versatility. Many diɼerent gaits were observed during
the course of GA fitness evaluations, and it was particularly striking that
even in the first generation (where the CPG parameters and connec-
tions are completely random by definition) there were individuals with
stable-looking gaits, even if these were generally not sustained until
the maximum allowed evaluation time of 10 s. A video compilation of
several fitness evaluations with varying degrees of success is provided
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Figure 8. The best evolved gait. Black: right leg, dashed gray: left leg. The dots near the center indicate the trajectory of the center of mass. The orientation of Link
1, hence the whole structure, is represented by the short gray line extruding upwards from the hip. The marks below the ground line represent contacts
by the left foot (gray) and right foot (black). Direction of movement is to the right.

online3, also demonstrating the progress of evolution with passing gen-
erations.

The fraction of unstable gaits in the population drops sharply during
approximately the first 10 generations and stabilizes around 20% (Fig-
ure 7(b)). This level is slightly lower than the mutation rate of 30% re-
sponsible for introducing randomness into the system, again suggest-
ing that a portion of randomness does not result in total gait failure. This
is suggestive of an inherent aptness of the CPG network for the task of
walking. Virtually in all runs (with level and slightly inclined or declined
(up to 5◦) ground profiles), a stable gait was eventually established after
five or six generations of the GA evaluation.

Also, occasionally during the course of GA evaluations, there emerge
successful individuals with parameters a1 and a2 close to zero. This
eɼectively means that these individuals are not making use of the feed-
back pathways, yet still are able to exhibit a stable gait. The existence
of such individuals suggests that—at least on level terrain and with-
out any obstructions—CPG control is capable of producing stable gaits
with or without input from the environment. This is in agreement with
neurophysiological studies of fictive locomotion, providing evidence
that rhythms can be centrally generated without requiring sensory in-
formation [14]. During the GA run that produced Figure 7, there were on
average 4.73 individuals (out of 200) per generation with both {a∗1 = 0
or |a1| ≤ 10−2} and {a∗2 = 0 or |a2| ≤ 10−2} that exhibited a stable
gait.

In addition, for the networks utilizing feedback, another result that we
observe frequently is that knee oscillatory units make use of feedback
more than the hip units do. The best CPG network presented in Ta-
ble 2 is a good example of this, where feedback strength to the knees
a2 is significantly larger than that to the hips a1. This is indicative of a
complex relationship between the controller network, the mechanism,
and the environment. Because the neural connections between the
hip and knee oscillators are unidirectional (i.e. no signal from the knees
reach the hips), our explanation is that feedback received by the knees
is propagated up to the hips through mechanical means. This pro-
vides strong evidence for the concept ofmorphological computation,
which states that materials forming the body and their action under the
physics of the environment can take over some of the processes that
had been conventionally attributed to control [31].

3 The video file is available at http://arxiv.org/src/0801.0830v8/anc/
BaydinCPGEvolution2011.avi

4.2. Hardware

To observe whether results evolved under fitness evaluations in sim-
ulation can be acceptably transferred to real robot hardware, we con-
ducted preliminary tests of the evolved CPG networks on the real mech-
anism. The mechanism was run on level ground, and correspondingly,
results evolved for level ground were tried on the hardware. For estab-
lishing stability of the gaits on the hardware, we had to apply a linear
scaling between the output of all unit oscillators running on the com-
puter and the input to the microcontroller sending commands to the
servo motors. Our interpretation of why this was needed is that it com-
pensates for the diɼerence in the speed response of the joints in simu-
lation and the real servo motors. This scaling is the same for all joints,
and therefore does not destroy the phase relations in the CPG output
forming the gait evolved in the simulation. After this transformation, the
runs generally have reproduced, to an acceptable degree, the walk-
ing speed attained by the best evolved gait in simulation, walking with
approximately 0.2 m/s speed (cf. 0.13 m/s in simulation).
One particular drawback in the hardware runs is introduced by the lat-
erally attached support structure. Even if there is an expected degree
of asymmetry caused by the slightly unequal distances covered by the
left and right feet (Figure 5), the impact of this on the gait balance was
larger than what was anticipated. While this can be averted by using a
suɺciently long boom compared to the distance between the legs (with
the disadvantage of introducing more weight onto Link 1, prompting a
change in parameter m in Figure 1), another solution, such as a linear
overhead structure with a pin-in-slot mechanism used by Komatsu and
Usui [23] for a similar five-link mechanism, might prove to be a better
option. This problem can also be addressed with a load compensa-
tion [38] approach, which is not currently taken into account in our
experimental design, that would dynamically apply corrective torques
on the joints.

5. Conclusions and Future Work

We presented an approach where the connectivity and oscillatory pa-
rameters of a CPG network was subject to GA optimization, with fitness
evaluations in a realistic simulation with accurate physics. We applied
this technique to a five-link walking mechanism to demonstrate its fea-
sibility and performance. To observe whether evolved networks can
be acceptably transferred to real robot hardware, we also presented
preliminary tests on a real mechanism. Our results also confirm that
the biologically inspired CPG model is well suited for legged locomo-
tion, since a diverse manifestation of networks have been observed to
succeed in fitness simulations during evolution. We chose the five-link
bipedal mechanism as a simple model for demonstrating our approach,
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Figure 9. (a) The best evolved CPG network structure. Arrowheads denote direction of connections, which are all inhibitory. (b) The connectivity matrix of the best
evolved CPG network. F: flexor neuron, E: extensor neuron, LH: left hip, RH: right hip, LK: left knee, RK: right knee.

but the study is easily extensible to the design of CPG networks con-
trolling more complicated mechanisms.

During GA fitness evaluations, we observed a variety of individuals lack-
ing feedback pathways, but still able to walk. This result indicates that
the CPG approach, together with the structural constraints we imposed
with the connectivity matrix (Figure 4), is inherently able to sustain a sta-
ble gait without any input from the environment; and if an even more
simplistic model of CPG control were needed, it would be feasible to
leave out the feedback terms from Eq. 1. But one should note that a
lack of feedback would be detrimental in any environment beyond the
perfectly regular and planar one we simulated for fitness evaluation,
as there is strong experimental evidence that feedback contributes to
stability and load compensation [39] and is needed to adapt to irregu-
larities in the environment, such as varying ground slope or obstacles.

For future work, as a straightforward addition to this study, we plan
to analyze the performance of our approach under: (1) the presence
of obstacles; and (2) in dynamically changing environments. Regard-
ing the evolutionary optimization of CPG controllers, our approach can
be combined with novel CPG control approaches. The most notable
among those we consider is the predictive and reactive tuning tech-
nique by Prochazka and Yakovenko [40] that introduces a regulation of
CPG phases by rules combining sensory input, which, we envision, can
be represented and optimized as individual genetic programming (GP)
trees.

Regarding the physical characteristics of the walking hardware in this
study, we consider the possibility of modifying the five link mechanism
to walk in three dimensions without any support structure, by using wide
feet ensuring lateral stability as used by Collins [30]. It would be also in-
teresting to approach the bipedal walking problem from an evolutionary
robotics perspective [41], by including the physical parameters of the
mechanism (e.g. the sizes and masses of the links) in the evolutionary
process to optimize bipedal walking hardware designs in environments
with diɼerent characteristics.
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