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Fuzzy Control of a Log Carrying Robot on Tree-Filled

Steep-Sloping Terrains
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Mojtaba Ahmadi* flj Abstract

A modular robotic system and its fuzzy logic based controller are proposed for use in logging operations in forest
environments with steep slopes. The Log-Carrying Robot (LCR) concept is composed of two modular wheeled

Department of Mechanical and Aerospace
Engineering, Carleton University,
Ottawa, Canada

robotic agents with individual wheel steering that connect to the ends of a log to a form a centrally controlled robot.
A fuzzy controller specifies the desired direction of travel using four factors: the presence of obstacles, boundaries
limiting the robot's travel space, the heading of the goal position relative to the robot, and the slope of the terrain. The

capabilities of the proposed controller are demonstrated in simulation using a rectangular robot with four individually
actuated and steered wheels. Results indicate that the controller successfully steers the robot towards the goal
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position while avoiding obstacles using only eleven fuzzy rules. Additionally, the simple rules are shown to be effective

at automatically compensating for sloped terrain by avoiding direct travel down hills, as well as adapting for various
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l1.

Logging operations are generally separated into three phases: felling,
a process where trees are cut and transformed into logs; transporting
the log to a landing area where logs are temporarily stored; and loading
logs onto trucks to be transported from the landing area to a mill [1, 2].
The objective of the work being presented is to propose a new robotic
concept and suitable control strategies that enable transporting felled
trees through difficult terrains to the landing area by turning each log
into a mobile robotic system.

Introduction

Current solutions to transporting logs to the landing area include us-
ing vehicles known as ‘forwarders’ or ‘skidders’ to carry or drag logs to
the landing area, cable systems which drag logs to the landing area, or
as is often the case in steep and challenging terrain, using helicopters
to transport logs to the landing area [2]. The latter solution involves
high costs and difficult operating conditions for forestry workers. For-
warders and cable logging may have lower operating costs, but they
have a significant environmental impact and require large initial invest-
ments. Both systems cause damage to the terrain and remaining trees,
increasing the time needed for forest regeneration [1]. Forwarders and
skidders also require additional paths to be created, leading to more
underdeveloped trees to be cut [1].

The proposed approach is an intelligent multi-agent robotic system with
each robotic agent connected at one end of the log; the goal of the
robotic system is to transport felled logs from the forest to the land-
ing area (the goal point/area of the robot). To allow the LCR to travel
in forested areas, as well as to avoid the need for logging paths, the
vehicle must have a small profile and high maneuverability. Addition-
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ally, the control strategy must be capable of adapting to different log
lengths and mitigating the effects of sloped terrains. Such a system
could potentially replace current methods at lower cost and cause a
smaller environmental footprint.

The controller presented in this paper introduces a novel navigation
controller capable of fulfilling these requirements. Various machine-
level designs and locomotion systems can be considered, such as
wheeled agents, legged agents, or leg-wheel designs, each having dif-
ferent advantages with respect to criteria such as ability in negotiat-
ing irregular terrains, stability, robustness, or power requirements. As
this paper is primarily focused on high-level navigation issues, the ap-
proach we describe is adapted to suit our proof-of-concept LCR design.
Should any other locomotion platforms be designed, the controller can
be adapted to the constraints imposed by the kinematics of the new
locomotion platform.

1.1. Mobile Robot Planning and Control

The principal objectives of any autonomous mobile robot controller or
path planner are to avoid obstacles and navigate the robot towards a
goal position. In addition, the navigator may also be required to sat-
isfy other objectives and constraints such as finding the fastest route
to the goal, satisfying kinematic and dynamic constraints, or avoiding
challenging terrain.

Local path planning methods determine the desired path or trajectory
of the robot based on the current state of the robot [3]. As a result, local
path planning methods are more reactive, and rely primarily on sensor
data. The Vector Field Histogram (VFH) [4], for example, uses sensor
data to continuously update a world model used to generate control
commands that steer a robot towards the goal position while avoiding
obstacles. The more recent curvature-velocity method [5] and dynamic
window approach [6, 7] extend the VHF method by directly taking into
account the kinematic and dynamic constraints of the robot's drive sys-
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tem. While these approaches can safely navigate robots in unknown
environments at relatively fast speeds, they remain susceptible to local
minima [7]; in some situations, these approaches can drive a robot to
a rest position different from the goal position.

Behavior-based controllers [8, 10] and fuzzy logic based controllers [11,
16] are also commonly used for autonomous mobile robots. Behavior-
based control architectures consist of a set of task-specific behavior
modules (e.g. goal seeking, wall following, obstacle avoidance, etc.)
that each propose control actions based on their respective sensor
inputs; an arbitration scheme uses the current state of the robot to
determine which behavior module’s control action is to be applied. In
contrast, fuzzy logic based controllers rely on a set of if/then rules that
encode a specific navigation strategy to specify the desired path or
trajectory of the robot.

A fusion of both approaches has also been shown to be effec-
tive [8, 10]; some hybrid approaches use fuzzy logic to represent be-
havior modules, while others use fuzzy logic in the arbitration scheme
to generate weighted control actions that take into account the relative
precedence of each active behavior module [8]. While these meth-
ods have been shown to be effective in experiment [8], their primary
drawback is challenging controller design. In behavior-based control
architectures, the challenge is in avoiding conflicting actions when nu-
merous behavior modules are specified. Fuzzy controller design can
also become challenging when a fuzzy inference system (FIS) is used
to represent a complicated navigation strategy with a variety of objec-
tives; typically, the size of the rule base is proportional to the complexity
of the navigation strategy, and manually designing and tuning such a
rule base is difficult and time consuming.

While it is possible to use reinforcement learning [3, 17, 18] or super-
vised learning [19] to automatically learn the parameters of membership
functions or behavior modules, both techniques may be impractical for
use on many real robots. Reinforcement learning can require a pro-
hibitively long learning period, and the success of supervised learning
is strongly dependent on having sufficient and appropriate input/output
training data. Choosing to carry out the learning phase in simulation can
address some of these concerns. However, there is no guarantee that
a controller learned in simulation will be effective on an experimental
platform. As such, it may only be practical to use learning as a means
for refining an already working control strategy.

The control strategy for the proposed robotic system must be able
to navigate challenging forest environments. These environments are
filled with trees or other obstacles of varying shapes and sizes in ran-
dom locations. Additionally, steep slopes demand that the robot ex-
plicitly avoid unsafe, direct descents towards the goal position. This
work extends the approach suggested in [11] to satisfy these additional
challenges imposed by the forestry application being considered; the
controller chooses the midpoint of one of six, body-fixed sonar scan-
ning cones that best satisfies the goal seeking, obstacle and boundary
avoidance goals as the desired direction of travel of the robot. In ad-
dition, the proposed controller explicitly accounts for the length of the
robot and the need to safely navigate extreme slopes. In contrast to
other fuzzy logic based approaches, the proposed approach requires
only a small number of simple rules. The proposed control strategy
is also advantageous because it doesn’t require a complex arbitration
scheme for choosing (or fusing) the outputs of different behavior mod-
ules.

Section 2 describes the LCR design, and section 3 describes simula-
tion model and motion constraints of the robotic system. A description
of the fuzzy controller and simulation results follow in Sections 4 and 5.
Section 6 concludes the paper and outlines future work.

Servomotor
Gearbox

Wheel

Figure 1. (a) Log carrying robot conceptual design and (b) proposed steering
method for each wheel arm.

| 2. Vehicle concept

This section describes the LCR proof-of-concept design and simulation
model. To meet the requirements of the log carrying forestry applica-
tion, the robot must satisfy the following requirements: (7) Effective
at extreme downhill slopes (up to 60 degrees); (2) Autonomous
navigation; (3) High maneuverability and minimal profile; (4)
Suitable for rough terrain.

The design is shown in Fig. 1(a), and consists of two, two wheeled
robots. Each robot has a supporting frame, a tree hoisting and locking
mechanism, and individually actuated wheels. Each wheel is mounted
on actuated arm, as shown in Fig. 1(b), allowing each wheel to be
steered independently. The log acts as a link that connects each unit
to form the complete system. Position data is gathered from a GPS
system, and obstacle distance data is provided by six sonar sensors
mounted on one of the units. During operation, one unit would act as
master and the other as a slave. The two units would communicate
with each other using a wireless communication protocol, and an on-
board PC on the master would determine desired direction of travel and
the actuation commands to be sent to both the master’s and slave’s ac-
tuators.

|3. Simulation model

The objective of the simulation is to model the key aspects of naviga-
tion in a forested environment including: randomly assorted obstacles,
varying log lengths (which, by extension, leads to varying robot lengths)
and the average variation of the slope of the terrain. Given that other
terrain features such as bumps, depressions or general terrain rough-
ness do not directly affect the robot’s high-level navigation strategy, a
planar dynamic model is sufficient for testing the high level navigation
strategy.

The robot model, as shown in Fig. 2, consists of a rigid rectangular
body with four independently actuated and steered wheels subject to
external forces at the locations of the four tires. These external forces
include propulsion forces, cornering forces, and rolling resistance. The
simulation model was generated using Matlab”™, Simulink”™, and the
SimMechanics™ blockset.

The planar vehicle model is shown in Fig. 2. The vehicle is free to move
and rotate in the plane, where the X-Y plane is the global coordinate
frame attached to the plane of travel; i.e., if the robot is traveling on a
sloped plane, the X-Y coordinates correspond to the axes defining the
slope and not a global coordinate frame. Tires are connected to the
main vehicle body via actuated revolute joints.
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Figure 2. Four wheel steered vehicle mode.

The inputs to the model are the tire forces mentioned above as well as
gravitational force G. Tire forces are defined in the tire’s reference frame
with axis T, and T, and are individually computed for each tire. Driving
force D and rolling resistance R act along T, and simulate actuator
force and terrain resistance, respectively. Driving force and rolling re-
sistance are computed using (1) and (2) where s is the vehicle's speed,
Kis a terrain specific constant and H is a user defined gain which affect
the velocity control of the vehicle. Cornering forces C act along T, and
are computed using (3) [20]; in (3), «a is the tire steering angle, 6 is the
vehicle's orientation, B is the direction of the vehicle's velocity, w is the
vehicle's yaw rate and E is a user defined constant. Variables 6 and B
are computed with respect to the absolute reference frame. Given the
planar modeling assumption, static friction limits are not considered for
the T, and T,. However, when the robot is on a slope, the Y-axis com-
ponent of the gravitational force can exceed the Y-axis wheel forces,
resulting in side slip down the slope.

Slopes are simulated by projecting the gravity vector G on the Y axis
in accordance to the slope angle ¢. The variable m is the vehicle
mass, and L is the vehicle half length. SimMechanics™ computes the
model’s response to the input forces and provides vehicle data such as
velocity.

D = Hs (1)

R=Kmg (2)

C=Ea—(B-0) -~

G = cos(¢)] + sin(@)k (4)
Li=C )
T,=D-R (6)

An ideal suspension is assumed because terrain irregularities are not
considered. The effects of tire slippage and other terrain aspects such
as local surface height variations and underbrush are also not consid-
ered in this simulation.
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Figure 3. Six sensing areas are defined around the robot.

3.1. Sensing

During simulation, obstacle distance data is generated assuming
6 range sensors with non-overlapping, 60° sensing cones and 6m
ranges are mounted at the center of the robot. These sensors provide
the distance from the robot's geometric center to the closest obstacle
within a sensing cone. An illustration of the sensor arrangement can
be seen in Fig. 3. In addition, the controller requires that the robot's
position, velocity, orientation and the terrain slope be known. This data
can be measured with a combination of GPS, inertial navigation system
(INS) and inclinometer data.

3.2. Steering Constraints

The robot'’s four individually actuated and steered wheels allow for in-
creased maneuverability. However, only a combination of car-like mo-
tions and spin steering are considered in this study. Car-like steering
motion is generated by fixing the rear wheel steering angles and varying
the front wheel steering angles; when traveling backwards, the reverse
strategy is applied. This type of motion is used whenever obstacles
are identified to be far (i.e., when the risk of collisions is low). When car
steering is active, the reference velocity of the robot is set to a prede-
fined maximum value. As shown in (1), the reference velocity is tracked
using a proportional controller.

Spin steering is initiated whenever the distance to the closest obstacle
falls below a user-defined threshold. It involves slowing down the robot
to a stop, and turning the front and rear wheels in equal but opposite
directions to allow the robot to rotate about its centre. Spin steering
is activated to avoid collisions in situations where the robot is traveling
too fast to maneuver around obstacles using car-like steering.

| 4. Fuzzy controller

The goal of the fuzzy controller is to navigate logs of different lengths to
a goal position/area (denoted by X,ef, Yrer) and to ensure that the LCR
avoid obstacles and is capable of traveling down steep slopes when
traveling to the goal position. The overall control strategy is summarized
in the control loop diagram shown in Fig. 4.

The output of the fuzzy controller is a desired direction of travel that is
selected by evaluating a scalar we call “traversability” for each of the
6 sonar scanning cones illustrated in Fig. 3. Traversability is a mea-
sure of the desirability of traveling along any of the directions contained
within a sensing cone. It is evaluated based on four factors: the pres-
ence of obstacles around the robot, the distance to the boundaries lim-
iting the robot’s allowed travel space (permitted field of operation), the
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Figure 4. Control Strategy block diagram.
orientation of the goal position relative to the robot's current orientation, 13 Close Moderate Far
and the slope of the terrain. The cone with the highest traversability is 0.8 |
ultimately used to determine the desired direction of travel of the robot. 06
Since the controller assigns no particular preference to any one direc- 0.4
tion contained within a cone, the midpoint of the cone with the highest 0.2 A
traversability is taken as the desired direction of travel. The desired di- 0 T T T
rection is then decomposed into corresponding steering commands for 0 50 100 150

each of the robot's individually actuated wheels.

In the current implementation, the fuzzy controller only specifies the
desired orientation of the robot — the desired forward speed is kept
constant and is selected in accordance to the sonar sensor range to
ensure that the robot has sufficient time to stop in the event that an
obstacle is detected at the boundary of the range. However, a similar
rule base could be used to automatically assign the desired speed of
the robot if necessary.

4.1. Input Fuzzyfication

A Mamdani-type FIS evaluates the traversability of each sonar cone.
The membership functions for input fuzzyfication are shown in Fig. 5.
The five inputs to the FIS include: (1) the distance to the nearest ob-
stacle within the cone. Smaller obstacle distances have the effect of
reducing the traversability of the cone; (2) the distance of the cone’s
midpoint to the motion boundary. Motion boundaries restrain the areas
within which the robot can travel. These can simulate borders limit-
ing the current logging area or boundaries constraining the robot to
a user defined path; (3) the absolute value of the angle between the
cone centerline and the line joining the centre of the robot and the goal
position. Small angles correspond to high cone traversability as they
indicate that the robot is heading in a direction that brings it closer to
the goal; (4) the smallest obstacle distance in the cones the robot will
travel through to reach the midpoint of the cone being evaluated. An
obstacle at a distance close to or below the robot's half-length corre-
sponds to low traversability. As discussed below, the rules associated
with this input help avoid collisions that may result during spin steering;
(5) the difference between the desired effective slope and the effective
slope E; that would result from traveling along the direction specified
by the cone’s midpoint. Effective slope is the slope angle of a path
along a particular heading angle 6 as define by (7). As seen in Fig. 6,
a path directly down a slope, or along the Y-axis, has an effective slope
equal to the terrain slope ¢ and results in the highest possible value for
effective slope (the extreme effective slope). A path perpendicular to
the slope, or along the X-axis, has an effective slope of 0°. Traversabil-
ity is increased if traveling along the direction specified by the cone’s
midpoint brings the robot closer to tracking the desired effective slope.

E; = abs((cos(6 — A))* ¢ (7)
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Figure 5. Input membership functions.
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4.2. Adapting to different robot lengths

As seen in Fig. 5, the membership functions for obstacle distance are
made a function of the robot's half-length, L. This allows the controller
to adapt to different lengths by ensuring that obstacles will be consid-
ered ‘close’ or ‘far’ at different distances when the length of the robot
changes. For example, an obstacle distance of 4 m will be considered
‘close’ for a 6 m long robot, but ‘far’ for a 2 m long robot.

The traversability of a cone is also made dependent on the obstacle
distances in the surrounding cones. Not accounting for obstacles in
surrounding cones is likely to result in collisions during spin steering. In
Fig. 7, when considering only the obstacle distance, and goal location,
cone 4 would appear to have the highest traversability. However, the
close proximity of the obstacle in cone 2 would initiate spin steering;
as such, the robot would likely collide with the obstacle in cone 2 as it
rotates towards cone 4 from cone 1. Thus, the rules associated with
‘smallest obstacle distance in path’ have been designed to avoid such
collisions. For the scenario in Fig. 7, these rules would avoid poten-
tial collisions by ensuring that the traversability of cone 4 is sufficiently
reduced. Similar to the membership functions for ‘obstacle distance’,
the membership functions for ‘smallest obstacle distance in path’ are
also made a function of the robot’s half-length, L. This means that for a
given obstacle arrangement and robot orientation, the rules associated
with ‘smallest obstacle distance in path’ will more quickly reduce the
traversability of a cone as the length of the robot is increased. This is
necessary because collisions due to spin steering are more probable
for longer robots.

4.3. Adapting to different terrain slopes

Tracking a desired effective slope gives a means for avoiding exces-
sive acceleration on extreme slopes as it forces the robot to avoid a
path directly down a steep slope. This is similar to how a skier moves
downhill at an angle that constantly varies with respect to the steepest
direction in a zigzag-like pattern. The choice of the desired effective
slope to be tracked by the controller is dependent on surface contact
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Figure 8. Output (traversability) membership.

properties, vehicle loading and the actuation system capabilities. With
proper selection of the effective slope for the vehicle, an appropriate
balance between using gravity to accelerate the vehicle downwards to
reduce power requirements and avoiding excessive strain on the brak-
ing system can be reached.

4.4. Rule Description and Output Defuzzuyfication

All 11 of the fuzzy rules that evaluate each cone’s traversability consist
of simple and direct connections between a single input and its cor-
responding traversability. Output (traversability) membership functions
are shown in Fig. 8. The rules used by the controller include:

1. If obstacle distance is close then traversability is low

2. If obstacle distance is moderate then traversability is
moderate

3. If obstacle distance is far then traversability is high

4. If offset from desired direction is close then traversability
is high

5. If offset from desired direction is moderate then

traversability is moderate

6. If desired direction offset is far then traversability is low
7. If distance to boundary is close then traversability is low

8. If smallest obstacle distance in path is close then
traversability is low

9. If offset from desired effective slope is close then
traversability is high

10. If offset from desired effective slope is moderate then
traversability is moderate

1. If offset from desired effective slope is far then
traversability is low

Complicated composite rules such as those applied in the approaches
described in [12, 13, 16] are not necessary because the controller only
evaluates the traversability of each cone rather than using sensor data
to directly specify the desired direction of travel. In the latter approach,
the rules naturally become more complicated as the multitude of dif-
ferent situations (e.g., all the possible obstacle arrangements, terrain
slopes, boundary distances, etc.) the robot could potentially face must
be accounted for within the rule base.
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Table 1. Model parameters used for simulation.

Parameter Value
H 0.5 [N/(m/s)]
K 0.3
E 0.1 [N/rad]

Tree Radius 0.3 to 0.8 [m]

The min and max operators are used for implication and aggregation,
and the centroid method is employed for output defuzzyfication. Dur-
ing defuzzyfication, the rules associated with ‘obstacle distance’ and
‘smallest obstacle distance in path’ are weighted three times more
strongly than the remaining rules. This is done to ensure that obstacle
avoidance takes precedence over the remaining goals and constraints.

4.5. Artificial Obstacles

Since the robot is only aware of the obstacles in its immediate vicinity,
it is possible for the robot to get trapped in a repeating loop [7, 13].
As shown in Fig. 9, a goal position located behind a large U-shaped
obstacle is one example of a scenario that generates this kind of be-
havior. To prevent the robot from traveling in repeating loops in these
types of situations, the robot's position is kept in memory. If the robot
travels over the same position twice (within a tolerance bound), an ar-
tificial obstacle is generated directly behind the robot. This location is
stored in memory, and sensor data is then altered to indicate an ob-
stacle in the position of the artificial obstacle anytime the robot revisits
the surrounding position (within the same tolerance bound). These al-
tered sensor readings provide a disturbance that lets the robot explore
different paths that ultimately help it escape the repeating loop.

|5. Simulation results

Numerous simulation test cases were run to determine the controller's
ability to navigate the robot under different conditions. In all of the fol-
lowing figures, a small circle at one end of the rectangle representing the
robot specifies the front end of the robot. Only different arrangements
of varying diameter circular obstacles were considered during testing.
The model parameters used for the simulation are listed in Table 1.

5.1. U- Shaped Obstacle

In this test, a U-shaped obstacle arrangement is placed between the
goal and the initial position as shown in Fig. 9. Since the robot is only
aware of the of the obstacles in its vicinity, it initially cycles between
moving away from the wall to avoid obstacles and heading directly to-
wards the wall again when the obstacles lie just outside the sensors’
range; as shown in Fig. 9(a), the robot will continue this behavior indefi-
nitely unless artificial obstacles are present. In Fig. 9(b), artificial obsta-
cles were generated anytime the robot traveled to the same position
twice (artificial obstacle positions are denoted by *' symbols in Fig. 9).
This artificial obstacle then remains in memory. When the robot is within
sensor range of the artificial obstacle, the sensor data is modified to in-
clude the presence of the artificial obstacle in the controller. The robot
ultimately reaches the goal position once the artificial obstacles have
provided sufficient influence to allow it to escape the U-shaped ob-
stacle. In the case where several LCR's are acting in the same area,
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Figure 9. U-Shaped obstacle test conducted without artificial obstacles (a) and
with artificial obstacles (b), with learned artificial obstacles (c).
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Figure 10. Covered goal test.

artificial obstacle positions could be communicated between robots so
that problematic areas, such as the U-shaped area, are avoided without
repeating the same process. This concept was tested by running an
additional test where the robot was given knowledge about the artificial
obstacles generated in the previous test. The result shown in Fig. 9(c)
indicate that the robot exits the U-shaped obstacle significantly quicker
than its predecessor. Hence, artificial obstacles may be communicated
between robots to progressively increase the efficiency of their paths
towards the goal position. As expected, additional testing indicated
that more artificial obstacles were required as the size of the U-shaped
obstacle was increased.

5.2. Covered Obstacle

This test required the robot reach a goal position surrounded by obsta-
cles on three sides. As seen in Fig. 10, the robot successfully navigated
around the obstacles to reach the goal position. Accordingly, this test
indicates that the controller can successfully avoid obstacles and reach
the goal position. However, this test also reveals that the controller is
not guaranteed to generate the shortest or fastest path towards the
goal. The results in Fig. 10 indicate that the robot is prone to traveling
too far to avoid obstacles and then overcompensates by heading di-
rectly towards other obstacles in order to take the most direct route to
the goal position. This motion also highlights a spin-steering manoeu-
vre. To point towards the goal, the robot stops and turns in place, before
turning back. Given that the robot does not have any forward motion,
it can easily turn in place and change its heading without colliding with
obstacles.

The controller's limited knowledge of the environment is the primary
cause of selecting an inefficient path, and this issue is common to most
local path planning and control methods; by only relying on data about
the immediate surroundings, the controller does not have enough fore-
sight to plan a better trajectory. Using sensors with a larger range or a
supervisory controller that generates a series of intermediate waypoints
from a coarse map are potential solutions to this problem. Wall follow-
ing behaviors [13] can also be used to generate reference trajectories
that allow the robot to follow to closely follow the wall, rather than taking
a less direct path to avoid the wall as in Fig. 10. Finally, increasing the
number of membership functions may also help smooth the motion of
the robot around corners.
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5.3. Large Goal Area and Constrained Path

The robot would likely be traveling to a landing area (instead of a goal
point), where a large open space is available for temporary log storage.
Rather than defining the goal as a point as in previous tests, a rect-
angular goal area was considered in this test. As seen in Fig. 11, the
robot successfully reaches the goal area without taking an excessively
long path towards it.

The constrained path test is meant to assess the controller’s effective-
ness in an environment where only one possible path is available. Such
a situation may simulate the environment created by a small path in the
forest or the landing area where stacks of trees have created limited
paths for the robot to travel in. As seen in Fig. 12, the robot success-
fully navigates through the passable area to reach its goal. This test also
demonstrates the robot's reverse driving ability. As it reaches the end
of the first corridor, it changes driving direction and continues the rest
of its trip to the goal traveling in reverse. Thus, difficulties associated
with re-orienting the front end of the robot in tight spaces is avoided
because the robot is able to negotiate the environment equally well
traveling forwards or backwards.
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5.4. Adapting to Different Lengths

This test illustrates the controller's ability to adapt to different robot
lengths (or log lengths, in the case of a robotic locomotion system
for transporting logs). The obstacle field was randomly generated
and three different robot lengths were tested. Since the key mem-
bership functions associated with obstacle distance automatically vary
with the length of the robot (see Section Ill), the controller successfully
accounted for the changes in the robot’s length and ensured that the
goal was reached without any collisions; this result can be observed in
Fig. 13(a), (b), (c) where the 2 m, 4 m and 6 m long robots each suc-
cessfully navigate to the goal in the same test environment. For com-
parison purposes, the 6 m long robot was retested with fixed mem-
bership functions tuned for a 2 m long robot. The results shown in
Fig. 13(d) indicate that the long robot takes a very aggressive path
through the obstacle field that eventually results in collision stopping
the robots’ motion. Accordingly, the results in Fig. 13(d) reinforce the
importance of parameterizing membership functions with respect to the
robot’s length.

At longer vehicle lengths the controller had difficulty generating a di-
rect path to the goal. As seen in Fig. 13(a) and (b), the 2 m and 4 m
long robots found a path through the obstacle field and successfully
reached the goal. However, Fig. 13(c) shows that the 6 m long robot
traveled around the field to reach the goal. In general, more conser-
vative trajectories will naturally emerge for longer robot lengths. This
occurs because the membership functions are automatically varied in
a manner such that the distance at which an obstacle is considered
‘close’ increases when the robot's length is increased. Thus, for a given
orientation, obstacle density, terrain slope, and boundary location, the
traversability value of any cone will drop rapidly as the length of the
robot is increased. In some situations, this feature is advantageous be-
cause the probability of collisions increases when the robot's length is
increased.
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Figure 14. Sloped surface vs. flat surface behavior, (a) 45° slope, (b) 0° slope,
(c) 0° slope with obstacles, (d) 45° slope with obstacles.

5.5. Sloped Terrain

This test examined how the robot changed its behavior on sloping sur-
faces. The robot's ability to steer towards the goal on a 45° slope when
no obstacles are present in its path is illustrated in Fig. 14(a); the re-
sulting slalom-like motion is due to the robot tracking a desired effective
slope of 15° along its path. Also, to avoid the extreme effective slopes,
the robot reverses the direction of travel. This allows the robot to con-
tinue tracking the desired effective slope without taking turns (U turns)
that result in the vehicle seeing large effective slopes. In contrast, it
can be seen that the robot takes a very direct path to the goal when
the same test is repeated with flat terrain and a surface slope of 0° in
Fig. 14(b). In Fig. 14(c) and (d) obstacles are added to the surfaces.
On a flat surface, shown in Fig. 14(c), the robot tries to take the most
direct path through the obstacles. In Fig. 14(d), the same obstacles
are placed on a 45° slope. Rather than traveling directly down the
slope, the robot chooses a path that simultaneously tracks an effective
slope of 15 degrees and avoids obstacles. Again, an overall slalom-like
motion can still be seen in the robot’s trajectory; when obstacles are
not obstructing the robot's path, backwards driving is activated when
changing the direction of travel. The actual effective slope and de-
sired effective slope are plotted in Fig. 15 for the ‘slope with obstacles’
test shown in Fig. 14(d). The maximum peaks show when the robot
traveled along the extreme effective slope. This occurs when obstacle
avoidance takes precedence and the robot is forced to deviate from
the desired effective slope. Otherwise the robot successfully stays on
paths close to or below the desired effective slope.

5.6. Large Field

This test subjects the robot to a larger field of obstacles, testing the
controller's ability to find a path to the goal position with a larger gap
between the start position and goal position. As seen in Fig. 16(a), the
robot successfully navigates the field to reach the goal position while
avoiding obstacles; when a 45° slope is added, the robot exhibits the
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Figure 16. Large Field Test, (a) 0° slope, (b) 45° slope.

slalom-like motion shown in Fig. 16(b). These results indicate that the
controller has the ability to successfully and efficiently navigate large,
unstructured environments without requiring intermediate waypoints.
Additionally, these tests further demonstrate the controller’s ability to
automatically balance obstacle avoidance and effective slope tracking.

5.7. Sensor Noise Robustness

In this experiment, the robustness of the controller to sensor noise is
examined. The use of fuzzy sets generally allows for greater noise ro-
bustness, given that small variations in the sensor signal will not cause
large changes in the membership function value. In this experiment,
a random obstacle field with 21 obstacles is generated and the robot
must cross it to reach the goal position. Noise is added to the obsta-
cle distance measurement. This noise can come from a number of
sources, such as the resolution of the sensor, reflections of ultrasonic
signals or readings from other features such as leaves and branches.
The results for two noise levels are shown in Fig. 17. In Fig. 17(a), there
is no sensor noise applied. Fig. 17(b) shows the path taken by the robot
with normally distributed white noise with a standard deviation 0.3 m
on the obstacle distance measurement. This noise level was found to
be the maximum noise level with which the robot could successfully
complete the task without collision. This result suggests that the fuzzy
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Figure 17. Robustness to sensor noise test, (a) 2 m robot crosses a random

obstacle field with no sesnsor noise, (b) 2 m robot crosses a random
obstacle field with normally distributed white noise with a standard
deviation of 0.3 m.

based controller can robustly navigate with a noise level up to 5% of
the maximum sensor range.

|6. Conclusion

A fuzzy controller for an autonomous mobile robot targeted for log car-
rying applications in mountainous terrain is introduced. The controller
operates on the principle of constantly re-evaluating its immediate en-
vironment, and choosing the best direction of travel from 6 possible
choices. Simulation results show that the controller successfully navi-
gates an autonomous mobile robot of adjustable length in a variety of
environments while satisfying the following goals and constraints: goal
seeking, obstacle and motion boundary avoidance, and controlled de-
scent on sloped surfaces. Future work will focus on generating more
efficient methods for exiting repeating loops and introducing more rules
to naturally elicit wall following behaviors. Additionally, the simulation
will be updated to include 3D terrain and suspension system dynam-
ics. New rules for further exploiting the maneuverability of the platform
will also be developed. A robotic platform for validating simulation re-
sults is currently under development.
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