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Stereo bearings-only tracking of a wheelchair from a robot
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Abstract

This project deals with technical assistance for people of reduced mobility. The goal of this work is to have a mobile

platform with an embedded prehensive arm (MANUS®) track a wheelchair. The use of this mobile unit in relation to
the patient’s wheelchair is carried out on a master-slave basis. This study, therefore, has a plural-disciplinary nature:
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Science for the Engineer, Human, Social and Clinical Sciences. To ensure the tracking of the wheelchair by the mobile
platform, we applied a stereo bearings-only tracking (BOT) paradigm to a single moving target. The observer, the

mobile platform (robot), is equipped with two omnidirectional vision sensors, that each provides output with which
we compute two bearing angles. Having two bearing angles makes it possible to track a manoeuvring target. In this
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paper we will show how we take advantage of the multi-sensor data fusion to improve the BOT process and hence
obtain a more reliable wheelchair tracking.

wheelchair tracking - mobile platform + manoeuvring target - omnidirectional vision + multi-sensor

1.

Introduction

This project (Fig. 1) came into being from a human synergy which grew
out of a definition of problems faced by persons of reduced mobility.
Above all, this project meets a social demand, stemming directly from
demands from people who's mobility is reduced. An interesting speci-
ficity of this project was the composition of a strong pluridisciplinary
team.

The substitution of the prehension by a robotised grasping arm poses
numerous problems for the handicapped person. The obstacles to
overcome are both technical and psychological [1]. Contrary to what
the professionals expected, the use of a totally autonomous robot is
not widely appreciated by tetraplegics [2]. The main reason is that the
patients wish to at least participate in the act of grasping, when this is
an action that they can no longer physically perform themselves. Com-
plete automation of the task renders the patient inactive. A slower but
patient controlled task would therefore be more appreciated. Our differ-
ent trials since the beginning of this project incited the development of
an independent mobile base, with the Manus® arm mounted on it. Two
modes were developed: 1)-the automatic tracking of the wheelchair
and 2)-the remote controlled mode (i.e. tele-operation). The main ob-
jective of this part of the project was to develop the base for the Manus
arm, with functionalities that will allow it to track and avoid obstacles so
that it can be used as described above.

This paper proposes a single approach to solve the problem of track-
ing the kinematics (typically position and velocity) of a moving target
observed by a moving robot. In our work, we consider the wheelchair
(target) in relation to the mobile platform (robot). The tackled problem is
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Figure 1. Overview of the project.

the target tracking with several cameras in motion. The difficulties are
linked to the continuous changing of the camera’s position, variation of
the appearance of the target in motion and alteration of the light condi-
tions. We track a moving object with sensors, which measure only the
bearings (or angles) of the target. The target motion analysis method
(TMA) is required in order to estimate and analyse the motion of a tar-
get. In this paper we propose a multi-sensor Bearings-Only Tracking
(BOT) to estimate the 2D-location of a single target.

The Bearings-Only TMA paradigm has attracted much interest over the
last 30 years; considerable research has been actively conducted for
this kind of system [3]. The BOT technique estimates the target trajec-
tory using bearing measurements from an observer. One of the char-
acteristics of the BOT method is the nonlinearity of the measurement
equations and this is why the classical Kalman Filter is not suitable
in this case. To address this problem, several methods exist that are
based on the measurement equation transformation. However, these
methods still suffer from drawbacks.
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The linear Kalman filter theory was applied to Bearings-Only Tracking
by linearizing the nonlinear measurement equation of bearing. In [4],
the extended Kalman filter (EKF) was used in BOT with the nonlinear
equation of bearing measurements, but the EKF remains relatively un-
stable. The pseudo-measurement filter (PMF) was suggested in [5] to
linearize the nonlinear measurement equations but this filter has been
proven to be biased. Hence the modified gain EKF (MG-EKF) theory,
whose gain is a function of only past bearings, was suggested to reduce
interrelation between measurements and its residues and to solve the
problem of the biased estimates caused by measurement noises [6].
In addition, a new system of coordinates, modified polar coordinates
(MPC) was proposed to improve stability and convergence of EKF, en-
gendering the MP-EKF [7].

Our approach combines a tracking filter and a visual target movement
estimator. We have identified the CamShift, more precisely the Omni-
CamShift (OCS) [8], as responding best to our application constraints.
We have chosen different approaches of Kalman filtering (EKF, UKF,
...) to integrate the target state estimation. These filters will be fed by
omnidirectional vision sensors and dead-reckoning sensors mounted
on the mobile platform. In spite of its instability, we chose to imple-
ment an EKF because the presence of two bearing sensors allows an
acceptable convergence.

In the first part, we present the context of our robotics assistance and
the used perception system which permits to track the wheelchair, i.e.
a stereo omnidirectional sensor. In the second part we address the
problem of vision wheelchair recognition. In the third part we deal with
the multi-sensor Bearing-Only Tracking. Finally we discuss the simu-
lation and experimental results and we conclude on the perspectives
inherent to our research.

l2. The mobile platform

2.1. Context overview

This work deals with technical assistance for persons of reduced mo-

bility. The mobile platform is built with a wheelchair frame. The reader
interested by this robotic assistance can find details in [9].

()
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Figure 2. Two prototypes of our assistive mobile robot (a) and (b) which allow

us to manage the clinical evaluations. We show on (c) the MANUS®
prehension arm equipped with the sensors permitting the automatic
prehension.
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Two functional specificities have been integrated into the robotised as-
sistance. The first is the automatic mode; the mobile platform follows
the patient's wheelchair whenever the patient does not wish to use it.
The second is a remote controlled mode for the grasping arm MANUS®
and for the mobile base, used when the patient wishes to carry out a
task involving grasping. Our assistance has to be able to function with
all types of existing wheelchairs. All the sensors have to be mounted
exclusively on the mobile base.

2.2. Sensors involved in this paper

The mobile platform is mounted with two classical kinds of sensors.
The INS (Inner Navigation System) is made up of dead-reckoning
sensors. The EPS (External Position System) is a stereoscopic vision
sensor used in a goniometric mode.

2.2.1. The Inner Navigation System (INS)

Through odometry, we can determine the position (x, y) and the
bearing @ of a vehicle navigating on a flat surface, in relation to
its reference point, i.e. that of the robot in its initial configuration.
This technique is based on the integration of elementary move-
ments of the wheels measured by incremental sensors. As the
radius R of the wheel is known, and also the number n impulses
delivered by the resolution sensor a during time-span At, it is pos-
sible to compute the distance Ad that the wheel covered: Ad = Rna.

Yo A
YR
ng e
0
y M
E Ny
x X

Figure 3. Parameters of a robot with differential wheels.

The evolution model of a ground robot shows its movement within a
reference frame Ry by the movement of its wheels. In our test case,
the robot has two independent motorised wheels that are diametrically
opposed and whose common axe caries the origin M of reference
point R, which is attached to the robot (Fig. 3). The configuration of
the vehicle at time k is defined by (xk, y«, 6k).

A simple and sufficiently effective description of the dead reackoning
trajectory is to use ADj for the distance, 6y for the direction and A6,
for the rotation. The well-known equation (first order) of dead-reckoning
is given by:
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Xk1 :xk—i-Achos(Qk—i-%)

Yk+1 = Yk + ADj sin (Qk + %)
And the state equation of robot is defined by:

T
Xrabot = [Xrubotr Yrobots erobot}

When we take the proposed hypothesis into account for the dead reck-
oning equation, this method engenders too many errors. However, it is
not necessary to analyse the errors because, as we will show further on,
we are faced with a relative framework: the position of the wheelchair
is estimated in relation to the robot's position.

2.2.2. The External Position System (EPS)

In the figure 4, we can see the configuration of the two omnidirectional
vision sensors.

Figure 4. The mobile platform.

Main vision applications in mobile robotics use the classical pinhole
camera model. Thus according to the lens used, the field of view is
limited. Nevertheless, it is possible to enlarge the field of view by using
cameras mounted in several directions [10], but the information flow is
very important and time consuming. Other applications [11] use only
one camera, with a rotation motion, in order to sweep a large space.
The disadvantage of such a system is that the camera’s movement
takes time; and what's more, a mechanical slack can appear in the
course of time. To get wide-angle pictures another possibility exists:
omnidirectional vision. These kinds of sensors allow acquiring scenes
with a 360° field of view [12]. There are two major classes of omnidi-
rectional vision systems. First of all, systems made of a mirror and a
camera are called "catadioptric systems” [13] [14]. The second one is
composed of a classical camera with a fish-eye lens; such mountings
are called "dioptric systems” [15]. We focus on the first class.

There are many advantages to using omnidirectional vision. Firstly, in
one acquisition, we obtain a full view of the environment with no me-
chanical system. Secondly, even if the interpretation of omnidirectional

picture is difficult for novices, we can provide with only few computa-
tions a "classical perspective view” of the scene. Finally, providing a
picture in a chosen direction is instantaneous.

The omnidirectional vision system we use is made up of a digital colour
video camera and a hyperbolic mirror. Fig. 5 shows an omnidirectional
view of an environment with a wheelchair in the field of view.

a Wheelhair

Figure 5. (left) an omnidirectional view of a scene with a wheelchair in the field
of view. (Right) “Un-warped” picture of the white area from the omni-
directional view.

| 3. The wheelchair recognition and bearing
measurements

3.1. Initialisation (target-wheelchair)

We wished to achieve the greatest possible degree of flexibility regard-
ing in the use of the robotised assistance. We therefore did not want to
restrict our method to the use of one wheelchair in particular. Our con-
struction of the model accommodates not only the wheelchair, but also
the patient. The figure below (Fig. 6) shows omnidirectional images:
they illustrate the extraction of the background and the extraction of
the model (patient + wheelchair).

Figure 6. Stereo target Initialisation.

Once the model is computed, a histogram representation is calculated.

3.2. The OmniCAMShift recognition and bearing
measurements

As the wheelchair is not equipped with any particular marker, we have
totrackitasitis. Inthis way, we use the CAMShift algorithm, which per-
forms a tracking, by using an image of the object to track. The Contin-
uously Adaptive Mean Shift (CAMSHhift) algorithm [16], is based on the
mean shift algorithm [17], a robust non-parametric iterative technique
for finding the mode of probability distributions including rescaling.
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We have named “Omnicamshift” the calculation of a CAMShift directly
in an omnidirectional image. We have also applied some specificity
linked to the sensor used (fast rotation...). The next figure (Fig. 7) shows
an example of the OmniCAMSHhift application (for the interested reader,
more details can be found in our earlier works in [8]).

Previous Location
Estimated Location

Final Location

Estimated Rotation

Computed Angle for
the Triangulation

Figure 7. Wheelchair recognition using OmniCAMSHhift: The estimated rotation
is used to initialise the next target matching.

Once the wheelchair is identified in both omnidirectional images, com-
puting the relative position of the wheelchair becomes a minor feat with
the two bearing measurements deduced (Fig. 8):

(Xtarget-Ytarget)

Left (Xrobot-¥robot)

Sensor

Right
Sensor

Figure 8. The bearing measurements.

| 4. Stereo bearing-only tracking with
Kalman filters

4.1. Problem formulation

The multisensor bearings-only method involves a slight modification to
the original problem, where a second static sensor sends its target
bearing measurements to the original platform.

\\//—
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Conceptually, the basic problem in bearings-only tracking is to esti-
mate the trajectory of a target (i.e., position and velocity) from noise-
corrupted data. For the multi-sensor case, these bearing data are ob-
tained from two sensors from a single-moving observer. The target
state in Cartesian coordinates at time k is:

.
tgt tgt tgt . tgt . tgt
X = (ng Tha a1 ) (3)
tgt  tgt .tgt . tgt "
where (x,” ,y, ) and (x,”, §, ) are the position and speed of the

target. In the same way, the observer state vector at time k is defined
by:
Xlgbs —

obs obs .obs :obs\T
(Xk Y y )

Xk K

(4)

The observer state being known, we introduce the relative state vector
defined by:

Xe =X =X =0 ye % g0 (5)
Throughout this paper, we will be concerned with the tracking (estima-
tion) of this relative state vector.

The state equation

To solve the problem, it is supposed that we have some information
about the target trajectories. So the target dynamics can be mathe-
matically written as:

tgt
Xy

% =F X + w

(6)
The process noise structure is represented by the Q matrix. The ma-
trices F and Q are specified below. Depending on the application, a
wide variety of target dynamics has been considered in the literature
(see [18]). We have chosen to work with model (6) as it is sufficient
for our application. We study the motion of the target in relation to the
observer and we introduce the motion equation of the observer:

XPv = F XQ” — uy (7)
where uk represents the known motion of the observer at time k.
Combining equations (6) and (7), the relative motion equation of the
target is obtained by:

Xiw1 = F Xe + up + wy (8)
The observation equation

The available measurement at time k is the angle from the observer's
platform to the target. The target state is connected to the angular
measurement via the following equation:

Yk

zx = arctan ( ) + Vi 9)

Xk
where v, is a zero-mean independent Gaussian noise with variance

02. The covariance matrix is R = /g% where / is the identity matrice
of dimension 2 and:

7 = h(Xk) + v (10)

is the true bearing angle with h(X)) = arctan (Z—kk )

This equation (10) is generally called measurement equation.
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The equations (8) and (10) form the framework of the BOT filtering
method. One can notice at this point that we are confronted to a
nonlinear problem of filtering.

The bearings-only tracking problem for this multi-sensor case then has
to estimate the state vector x; given a sequence of measurements
Zy ={z, 2}, ..., zx, 2 }.

4.2. Tracking algorithms

This section describes two recursive algorithms designed for tracking
a manoeuvring target using bearings-only measurements. We opted
for an absolute state of the target, in which case the movement of the
observer, provided by the dead-reckoning data, is taken into account
in the observation equation.

4.2.1.

The chosen state model is an application of conventional filtering, where
we follow the track of a moving object using sensors that measure only
the angle they make with respect to this object. We study an electrical
wheelchair (the target) and two angle measurements from omnidirec-
tional vision sensors that are placed on an autonomous mobile platform
(the observer). The prior can be expressed as follows:

Filters initialisation

XkZ(Xk Yk Xk gk)T (1)

After discretization, the dynamics of the chair reads:

10 At O Xk—1

_ 01 0 At Yk—1
Xk = 00 1 0 ),(k_1 + Wg_q (12)

00 0 1 i

where wy_1 is a centred white Gaussian noise and a covariance matrix

A2 0 1A 0
0 A 0 Iap
= 3 2 13
0 ineg o At o |7 (13)
0 A 0 At

where q is the spectral density of the state noise wy_1. Itis a constant
in the case of a Gaussian white noise.

The observation model associated with the TMA can be defined as
follows:

Z =6 o 6] (14)
where i is the number of sensors.
and
0L = hi(X,) + v} (19)
with
hi(Xy) = arctan (i::ﬁé) (16)

where S! and S_f/ represent the position of sensor i at time k, computed
from the dead-reckoning of the mobile platform. (in our case, i = 2).
This observation model h(.) is nonlinear. Thus we calculate a linearized
Jacobian matrix H.

() (s-5t)

pe | Cemst ms)” (st e os))°
ye—S§ (%—5%)

(i) o) (s o5’

(17)

00

4.2.2. EKF algorithm

The EKF has been widely used in many applications where the math-
ematical model is non-linear. One can find numerous references about
the implementation of this traditional filter in [4]. In simple terms, the
objective in our case is to linearise the measurement equation (10 and
14) by a Taylor expansion. However, due to numerous hypotheses
on linearisation and due to the transformation itself, the EKF is well
known not to be an optimal solution. The convergence (i.e. the solu-
tion) is thus only reliable when the system is not far from a linear system.
Another problem with the EKF is that the estimated covariance matrix
tends to underestimate the true covariance matrix. Finally, the linearisa-
tion (Jacobian computation) is not necessarily easy to calculate, which
can render the implementation of the filter algorithm quite difficult. To
palliate these problems, a new version of the Kalman filter has been
implemented: the UKF (Unscented Kalman Filtering).

4.2.3. UKF algorithm

It is clear that when the prediction and the update functions are highly
non-linear, the Extended Kalman Filter can give a particularly poor per-
formance. The Unscented Kalman Filter (UKF) uses a deterministic
sampling technique known as the Unscented Transform (UT) to pick a
minimal set of sample weighted-points (called sigma points) around the
mean. These sigma points are then propagated through the non-linear
functions and the covariance of the estimate is recovered. The result is
a filter, which captures the true mean and covariance more accurately.
For this reason, the UT is commonly used to estimate the statistics of
the random variables that undergo the non-linear transformations. In
addition, this technique removes the requirement to analytically calcu-
late Jacobians (linearisation).

|5. Simulation results and discussion

In this section, we present a performance comparison of the two track-
ing algorithms described in the previous section. The comparison will
be based on a set of 20 Monte Carlo simulations for one scenario.

5.1. Criteria of comparison

We are interested in the accuracy criteria of the filters. One type of error
is analysed: RMSE (Root-Mean-Square Error).

The following notations are adopted in this paragraph: X is the exact
state vector to estimate, its estimation is X and the error estimation
X = X — X. For each scenario, the total number of independent
I\/I,?nte Carlo trials is denoted M. The index i therefore represents the
i trial.

The Root Mean Sqguare Error (RMSE) is the most well known measure
of accuracy. It is defined by:
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M
( i

i)’ (18)

% 1 i _ i i
RMSE(X)kz v (= R)" + (v -

i=1

5.2. Presentation of the scenarios of simulation

We propose two scenarios in order to study the two estimators. The
initialisations of constants are indicated in the table 1.

Scenario 1 (Fig. 9) is representative of our system, the mobile plat-
form (observer) really follows the wheelchair (target), their trajectories
are very close and similar. The simulation time is 80 seconds.The
wheelchair and the mobile platform execute manoeuvres in the inter-
vals 14 — 18 seconds, 38 — 42 seconds, 42 — 44 seconds, 45 —
49 seconds,49—52 seconds, 52—57 seconds,66—68 seconds
and 76 — 80 seconds; between each manoeuvre they maintain their
course.

Scenario 2 (Fig. 10) represents a standard BOT case. At the start, the
wheelchair and the mobile platform are distant from each other and
their dynamics of trajectory are very different. The simulation time is
40 seconds. The mobile platform executes manoeuvres in the inter-
vals 8 — 10 seconds, 20 — 24 seconds and 32 — 34 seconds
and the wheelchair executes a single manoeuvre in the intervals 20 —
24 seconds; between each manoeuvre they maintain their course.
We used identical parameters in experimental conditions, namely dead-
reckoning data every 20 ms, an omnidirectional image (i.e bearings
measurements) every second. The accuracy of bearings measure-
mentsis 0 = 0.1 rad, or ~ 5.7 degree.

Table 1. Constants of the manoeuvering target scenarios.

Scenario 1 Scenario 2

xbs(0)  Om 0m
y°bs (0) 0m 0m
x°b5(0) 1 ms 0.9 m/s
§°’(0) 0.05m/s 1.2 m/s
x19t0) 0.5 m 40 m
y!9t(0) 025 m 10 m
x1910) 1 mls —0.7 m/s
§t9t(0) 0.06 m/s —1 m/s

5.3. Single sensor case

It seemed interesting to study our first mobile platform wheelchair
(observer-target) for the single-sensor case to show the contribution of
an additional sensor especially when manoeuvring the wheelchair. For
this case, we analyse our estimators for the scenario 1 of simulation.
We can observe that from the first wheelchair movement, the two fil-
ters fall short (see Fig. 11) and they can't at any time reconverge to
the actual state of the target. Furthermore, the precision errors keep
increasing until the end of the test run. The estimation of the target in a
context where it is very near to the observer can not be obtained with
just one angle. This is resumed in table 2. The precision criteria prove
that the performance of our filters is poor in this case.
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Figure 9. The first bearings-only tracking scenario with a manoeuvring target.
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Figure 10. The second bearings-only tracking scenario with a manoeuvring tar-
get.
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Figure 11. EKF and UKF results for the single-sensor case.

Table 2. Performance comparison for the single-sensor case.

RMSE
mean max
EKF 44.97 76.16
UKF 43.02 75.61
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Figure 12. RMSE in the single-sensor case.

5.4. Mulii-sensor case

Here, we consider our system presented in sections 2 and 3. Our
mobile platform with its stereo omnidirectional sensors tracks the
wheelchair.

The advantage of a supplementary sensor can be clearly seen in this
case (see Fig. 13). We now obtain a first-rate estimation of our mobile
wheelchair from the mobile platform and the precision errors in table 3
confirm this result. The filters only waver slightly at each movement of
the wheelchair, because the omnidirectional sensor renders our filters
more robust. We can also observe that in the present case, which is
very non linear, the UKF and EKF render a similar outcome.

151

sk —— Mobile platform._|
~—— Wheelchair

X (m)

Figure 13. EKF and UKF results for the multi-sensor case (scenario 1).

Table 3. Performance comparison for the multi-sensor case (scenario 1).

RMSE

mean max
EKF 0.67 2.68
UKF 0.67 2.68

For scenario 2 that contains a better dynamics of the wheelchair and
the mobile platform and that presents a distance configuration of the
two objects, the results are satisfying in terms of estimation (see Fig. 15

—EKF

RMSE (m)
&

0.5

| .
0 10 20 30 40 50 60 70 80
Time (s)

Figure 14. RMSE for the scenario 1 in the multi-sensor case.

and Tab. 4). In this case we also obtain equivalent performances be-
tween the UKF and the EKF.

— Mobile platform |
|| — Wheelchair
—EKF
—— UKF

Y (m)

20
Time (s)

Figure 16. RMSE for the scenario 2 in the multi-sensor case.

We note that for our system as presented here and in which the mobile
platform has to be able to track the wheelchair from a short distance
(approx. 1 m), the stereoscopic omnidirectional vision rendering two
measurement angles, is perfectly adequate. The stereoscopic omni-
directional vision system is used for both detecting and tracking the
wheelchair.
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Table 4. Performance comparison for the multi-sensor case (scenario 2).

RMSE

mean
EKF 3.91 10.90
UKF 3.93 10.73

max

In all simulations we have been done, EKF and UKF show equivalent
performances. However, we know that the reliability of the EKF de-
creased when the modelisation of the system moves away from the
linear hypothesis (Jacobian computation then becomes relatively inef-
ficient) while the UKF is reliable all the time. But the computationally
cost of the UKF is significant and the EKF is the most reliable filter un-
der linear conditions.

| 6. Experimental results and discussion

We explore the results from a real-life test using the EKF and UKF that
were previously mentioned. The experiment was held in the corridor
of our University building (IUT, Amiens, France). The average distance
of the experimental path is about 80 metres. Fig. 17 illustrates the
configuration of the real trajectory. We can add that the floor of this
corridor contains some irregularities that affect the measures from the
dead-reckoning sensors. Moreover, this corridor contains many dif-
ferent light conditions such as: artificial lighting, French windows and
classical windows. This implies that the lighting conditions are not con-
trolled at all and have a partial impact on the recognition rate of our
modified OmniCamShift.

Figure 17. Configuration of the real-life experiment.

The images A to E of the Fig. 17 show the different lighting conditions
during the run. Thus the automatic correction of the white balance in
the image highly perturbs our colorimetric model and consequently the
wheelchair recognition. Furthermore, we can observe that some omni-
directional images do not have a round occlusive contour and are also
blurred. This is due to vibration during the run. The combination of
these processing difficulties clearly indicates that there is a need for an
effective tracking filter. This can palliate the problems that are inher-
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ent to computer vision and assure a continuous wheelchair tracking.
The recognition rate of the wheelchair in the zone labelled 1 in Fig. 18
is about 15% and around 80% in zone 2. Our first comment deals
with the well-known weakness of the dead-reckoning sensors. If we
compare the path plan illustrated in Fig. 17 to the path saved by the
dead-reckoning sensors shown in Fig. 18, we can observe a signifi-
cant shift at each change of direction of our mobile platform. The two
blocks labelled 2, in Fig. 18, are normally meant to be superposed and
this is clearly not the case. Considering such a level of deficiency of
our dead-reckoning sensors, it is obvious that the absolute tracking of
the wheelchair would be a great improvement but the objective of this
paper is the relative tracking of the wheelchair by the mobile platform.

3500(~ 1

3000

25001

2000

Y (em)

1500

1000

500(- \) 4
| , . —— Mobile platform |
[ EKF

. , . , UKF
5500 0 500 1000 1500 2000 2500 3000 3500 4000
X (em)

Figure 18. Wheelchair position give by EKF and UKF in the real-life.

As the objective of this paper is the relative tracking of the wheelchair by
the mobile platform, an absolute position is not necessary. However,
in a SLAM paradigm this relative tracking would need to be reconsid-
ered. These real-life tests have clearly shown that the loss of images
has a minor influence on our EKF and UKF tracking because we don't
observe any divergence of the filters.

| 7. Conclusion

Nowadays, assistive techniques for handicaps are more and more suc-
cessful. Our research is aimed at developing an autonomous robotised
assistance for people in wheelchairs.

This paper focussed on a visual servoing between a wheelchair and
an autonomous mobile platform. We presented a comparative study
of two Kalman filters (EKF and UKF) for the problem of bearings-only
tracking of a manoeuvring target. The tracking filters propose a reliable
prediction when the vision data are absent or inconsistent and allow to
solve the problem of occlusion and alteration of the illumination con-
ditions. The results overwhelmingly show an equivalent performance
between the two filters. It is also important to note the significant con-
tribution in terms of performance when an additional sensor is built into
our system.

For future research, it would seem important to study more robust fil-
ters than the EKF or the UKF, such as for instance a IMM (Interactive
Multiple Model) filter or even a Particle Filter (PF).
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