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Abstract

Layout planning in a manufacturing company is an important economical consideration. In the past, research
examining the facility layout problem (FLP) generally concerned static cases, where the material flows between
facilities in the layout have been assumed to be invariant over time. However, in today’s real-world scenario,
manufacturing system must operate in a dynamic and market-driven environment in which production rates and
product mixes are continuously adapting. The dynamic facility layout problem (DFLP) addresses situations in which
the flow among various facilities changes over time. Recently, there is an increasing trend towards implementation of
industrial robot as a material handling device among the facilities. Reducing the robot energy usage for transporting
materials among the facilities of an optimal layout for completing a product will result in an increased life for the robots
and thus enhance the productivity of the manufacturing system. In this paper, we present a hybrid genetic algorithm
incorporating jumping genes operations and a modified backward pass pair-wise exchange heuristic to determine its
eɼectiveness in optimizing material handling cost while solving the DFLP. A computational study is performed with
several existing heuristic algorithms. The experimental results show that the proposed algorithm is eɼective in dealing
with the DFLP.
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1. Introduction

The facility layout problem (FLP) is the determination of the most
eɺcient physical arrangement of a number of facilities within a
manufacturing plant to minimize a given objective while satisfying some
constraints. A typical manufacturing plant has a number of facilities
interacting with each other. A facility is an entity that assists in one
dedicated task [1]. For example, such a facility may be a department, a
machine tool, a work center, a manufacturing cell, a machine shop, or a
warehouse. The FLP is a combinatorial problem of high complexity and
the runtime for solving it quickly increases with the number of facilities
to be laid out. Layout planning in a manufacturing company is not only
a computationally diɺcult task, but also has a significant economical
contribution towards the manufacturing system.

Huge deployment of robots in manufacturing industries is very common
these days [2]. 90% of all robots used today are found in factories
and they are referred to as industrial robots [3]. This is mainly for
the economic benefits by reducing operating cost through material
handling [4]. In addition, other advantages of robots in manufacturing
systems include improving product quality and consistency, coping
with complex production system, increasing production output rates
and manufacturing flexibility, reducing material waste, and minimizing
human involvement in the production system. In fact, the overall
performance of the robots in a manufacturing plant mainly depends
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on the optimal arrangement of facilities on the manufacturing layout.
Adapting the FLP to robotics, an eɼective facility layout design reduces
manufacturing lead time for the robots and increases the throughput,
hence increases overall productivity and eɺciency of the plant.

To stay alive in business under global market competition, every
company strives to reduce its costs. Material handling (MH) cost
constitutes the major part of total operating costs. For a given layout,
MH costs are determined based on the sum of the product of materials
flow, distance, and transportation cost per unit per distance unit for
each pair of facilities. It has been estimated that MH costs are between
20% and 50% of the total operating cost and between 10% and 80% of
the total cost of manufacturing a product [5]. Therefore, even small
improvements in MH costs can create a major impact on lowering the
total operating costs. Thus, the most common objective considered
in FLPs is the minimization of MH costs. Therefore, to reduce product
costs and improve the eɼectiveness of the manufacturing process, it is
essential to have an optimal arrangement of facilities.

Over the years, extensive research has been conducted on the
FLP. Unfortunately, most of the research conducted on the FLP is
typically focused on the static FLP (SFLP), where the material flows
between facilities in the layout have been assumed to be fixed over
time [6, 7]. However, most manufacturing facilities today operate in a
dynamic and market-driven environment in which production rates and
production mixes are continuously adapted. Layouts are constantly
changing, either in response to customers’ demands for changes in
product designs and functionalities or to keep pace with technological
innovations. The introduction of new products/machines and the
removal of others, as well as the realization of an increase or decrease in
throughput volume can render the existing layout completely unreliable
in yielding improved productivity. MH costs are no longer constant
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over the planning horizon, creating the need for radical modifications
in layouts. It is therefore often necessary to analyze and redesign
the current layout to accommodate the constant changes in flow and
demand. The dynamic FLP (DFLP) extends the SFLP by taking into
account the changes in material flow over the planning horizon and the
cost of rearranging the layout.

A material handling system ensures the delivery of material to the
appropriate facilities. The selection of the material handling equipment
is important in the design of a modern manufacturing system and
can include robots, automated guided vehicles, conveyor systems,
or others [8]. Recently, there is an increasing trend towards
implementation of industrial robot as a material handling device for
manufacturing plants [9]. In a typical manufacturing process, a robot
is used for transporting materials between facilities involved in the
repetitive sequence of operations required to produce manufacturing
product. The fact that the productivity of a manufacturing system is
dependent on the performance of industrial robots is widely known [10].
In the manufacturing layout where robots are used, it is possible to save
the energy used by the robots if the facilities are placed in an optimized
way. A great advantage of industrial robots is their versatility, and robots
can easily cope up with the constantly changing nature of the modern
DFLP. This is because; industrial robots have a high flexibility to adapt
to the large fluctuations of transportation sequence and an ability to
carry out various amounts of materials [11]. As mentioned earlier, the
MH cost is a function of the distance the material is moved between
facilities in a manufacturing plant. To reduce this cost, it is essential to
have an optimal arrangement of facilities which can minimize the total
distance travelled. Similarly, the necessities of having an optimal layout
is of the same importance for the industrial robot where the material
flows between facilities aɼect the sequence of transportation made by
the robot between facilities [12]. Consequently, minimizing the MH cost
(i) enhances the production rate and profit of the manufacturing system,
(ii) saves the robot energy usage, and (iii) increases the life of the robot.

Problems related to facility layout are computationally diɺcult. It is one
of the classic computer science problems and has been shown to
be NP–hard [13, 14]. In an n–facility, t–period DFLP, the maximum
number of diɼerent layouts is (n!)t. We would have to evaluate
1.93 × 1014 possibilities for even just a 6–facility, 5–period DFLP. The
inherent diɺculty of the DFLP is in the large number of combinations of
facilities for every period of the planning horizon that is representative
of practical production systems. Due to the combinatorial nature of
the problem, exact approaches have been successfully applied only
to small problems, but they require high computational eɼorts and
extensive memory requirements. As a result, many researchers are
led to near-optimal heuristics and meta-heuristics for searching through
the huge search space (like large scale DFLPs). Interested readers
should consult [13, 15] for a detailed review. Among those approaches,
the genetic algorithm (GA) has found a wide application in research
intended to solve the DFLP due to its capability to generate feasible
solutions in a minimum amount of time [13].

The GA [16] is a robust search and optimization technique that starts
with a population of randomly generated candidate solutions and
uses probabilistic rules to evolve a population from one generation
to the next. GAs have been known to oɼer significant advantages
against conventional methods in developing near-optimal solutions
by using simultaneously and inherently parallel search principles and
heuristics. GAs have been widely applied for optimization in many
fields, including engineering, physical sciences, social sciences, and
operations research. Consequently, GAs have been successful
in obtaining near-optimal solutions to many diɼerent combinatorial
optimization problems. Generally speaking, the GA outperforms other
heuristic and meta-heuristic methods due to its capability to generate

feasible solutions in a minimum amount of time, and seems to have
become quite popular in solving both SFLPs and DFLPs [13, 17].

In this paper, we propose a GA for solving the DFLP using a modified
version of backward pass pair-wise exchange heuristic [18]. In fact, this
approach extends our previous approach to the DFLP [7], which was a
hybrid GA based approach incorporating jumping gene operations [19,
20]. The proposed heuristic is based on Urban’s steepest descent
pair-wise exchange heuristic for the DFLP [21]. Experimental results
show that Urban’s method provides good solutions. However, it is only
forward pass in nature. Thus, the quality of the layouts for later periods
is completely dependent on the quality of their preceding layouts. The
introduction of backward pass approach can be an option to remove
this limitation. We implemented a modified backward pass pair-wise
exchange heuristic that fits into framework of the DFLP and the GA. The
central idea for incorporating jumping genes operations is to fine-tune
solutions during evolution in the form of a local search. It is particularly
eɼective for long chromosomes that are customary in large DFLPs.

The remainder of this paper is organized as follows. Section 2 reviews
the relevant literature for the DFLP. Section 3 justifies the importance
of the modified version of backward pass pair-wise exchange heuristic
for the DFLP, as well as the implementation of this heuristic. Section 4
oɼers a brief overview of the jumping genes operations and their eɼects
on the DFLP. Section 5 presents the mathematical formulation for
the DFLP adapting to robot as a material handling device. Section 6
outlines the implementation of our proposed DFLP approach. Section 7
presents and analyzes the experimental results. Finally, this paper ends
with conclusions in Section 8.

2. Literature review

Rosenblatt [22] was the first to address the basic DFLP and sketched
out a method based on the dynamic programming (DP) to solve the
DFLP. However, this approach is not practical for large problems.
Since then, researchers have been developing a large number of the
DFLP approaches, considering both exact and heuristic approaches,
recognizing their importance. Comprehensive surveys are found in [13,
23, 24]. Urban [21] proposed a steepest-descent, pair-wise exchange
heuristic for the DFLP. Modifications of this heuristic have been carried
out by Balakrishnan et al. [18]. Balakrishnan et al. [25] proposed a
network programming model by adding the constraint of a budget for
the total rearrangement costs over the entire finite horizon. Given
that exact approaches are computationally intractable while solving
large FLPs, most existing solution approaches are based on heuristic
due to their ability to generate feasible solution in the least possible
computational time. Since Conway and Venkataramanan [26] first
examined the suitability of the GA for the DFLP, it has become very
popular among researchers. Though their algorithm was applied only
to 6 and 9 facilities, it performed better than the DP. Balakrishnan
and Cheng [27] refined the GA approach presented by Conway and
Venkataramanan [26] employing a nested loop GA. Balakrishnan et
al. [28] further extended the existing GA applications for the DFLP
to a hybrid GA. A recent application of the GA using new crossover
and mutation operators can be found in [29]. Kaku and Mazzola [30]
applied the tabu search heuristic to the DFLP in a two-stage search
process. Erel et al. [31], Baykasoglu and Gindy [32], and McKendall et
al. [33] applied the simulated annealing (SA) for the DFLP, and obtained
encouraging results. More recently, McKendall and Shang [6] applied
a hybrid ant colony algorithm and Rezazadeh et al. [34] applied an
extended particle swarm algorithm for the DFLP. In this paper, we
compare our proposed algorithm with the recent approaches so far
available in the literature and get very promising results.
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3. Modified backward pass pair-wise
exchange heuristic

The heuristic used in this work is influenced by Urban [21].
Urban’s heuristic is a steepest descent pair-wise exchange heuristic
incorporating the principle for forecast windows for solving the DFLP.
The forecast window is the number of periods being considered when
the pair-wise exchange is performed. The length of the forecast
windows (m) varies between 1 and the number periods in the planning
horizon. This procedure combines the SFLP and the DFLP into one.
An initial layout is given only for the first period of the planning horizon.
Using this layout and pair-wise exchanges, one set of multi-period
layouts is obtained for the given planning horizon in each forecast
window. The flow data for one or more periods are combined and used
to determine a layout for the current period. For instance, when m =
1, the flow data for period 1 is used to improve the given initial layout
by pair-wise exchanges. Then, pair-wise exchanges are used again
to determine a “good” layout for period 2 using the newly generated
improved layout for period 1 along with the flow data for period 2.
After obtaining a layout for each period in the planning horizon for
m = 1, m is set to 2. Similarly, for m = 2, the flow data for time
periods 1 and 2 are combined to find an improved layout for time
period 1 using pair-wise exchanges. The flow data for time periods
2 and 3 are used to obtain a layout for time period 2 and so on.
The length of the forecast window is incrementally extended until it
equals the entire planning horizon, and the layout of the last period
is improved. Therefore, there will be m layouts for m forecast windows
and the solution with the minimum MH cost is selected. This heuristic
decreases the computational complexity and usually obtains good
solutions even for large size problems. Interested readers are referred
to [18, 21] for the details.

Algorithm 1 Modified backward pass pair-wise exchange
heuristic

set F1 = total MH cost for the current chromosome
for i = P down to 1 do

f1 = MH cost for the current period
for j = 1 to n − 1 do

k = j + 1
construct a new layout for period i by swapping j and k
f2 = MH cost of the changed layout for this period
if f2 < f1 (considering rearrangement cost also) then

store the new layout for this period in D
end if

end for
if there is any element in D then

find the exchange that produces the lowest MH cost for this
period
store the layout for this period in D̄

end if
end for
if there is any element in D̄ then

calculate F2 = total MH cost for the changed chromosome
if F2 < F1 then

replace the current chromosome with it
end if

end if

However, Urban’s heuristic is naturally a forward pass heuristic. Once
a layout for a period is determined, it is never changed in subsequent

periods. Thus, the quality of the layouts in the later periods, and
consequently the final solution, depends on the preceding layouts
greatly. An improvement that works backward, starting from the final
solutions, to search for better solutions was proposed by Balakrishnan
et al. [18, 23]. In this technique, Urban’s heuristic is used to solve
the DFLP for each m. Then a backward pass pair-wise exchange is
performed on each of these m solutions. The best of these solutions
is selected as the final layout. In this work, we employed a new
backward pass approach with modified pair-wise exchange for solving
the DFLP. Unlike Urban [21] and the improved version proposed in [18],
we employed pair-wise exchanges only in the backward pass. This is
because, we obtain our solutions in the forward pass using the GA.
And, according to the GA theory, the final solutions obtained by the
GA (forward pass, in this case) should be optimal after completing the
evolutionary cycle [35]. Existing results also justify this claim [13, 17].
Therefore, employing the pair-wise exchanges for the forward pass is
nothing but mere waste of computational time and eɼort.
Since the final layout is almost optimal, we set the length of forecast
window (m) equal to 1 in the backward pass (similar to [23]). That
means, material flows from diɼerent periods are never added in
performing pair-wise exchanges. In a traditional pair-wise exchange, a
large number of comparisons are also required. An n–facility layout has
nC2 possible pairs. And for large DFLPs with long planning horizons,
this number will be huge. Instead of comparing every gene of a
chromosome, we also employed a new pair-wise exchange procedure.
We only exchange the genes with a common boundary, if the exchange
provides a lower MH cost for the layout (considering rearrangement
cost also). The idea behind the modified pair-wise exchange is
that the layouts performing in the backward pass is already almost
optimal. Therefore, the backward pass will never generate a layout that
produces a higher MH cost than the current cost. If MH cost can not be
reduced, no pair-wise exchange will take place. As discussed earlier,
certainly it will save the computational time and eɼort. The general
outline of our proposed pair-wise exchange heuristic for the DFLP is
given in Algorithm 1. Here, P and n denote the number of periods in
the planning horizon and the total number of facilities, respectively.

4. Jumping genes genetic algorithm
(JGGA)

Mimicking the jumping genes operations in biological chromosomes
discovered by Nobel Laureate Barbara McClintock, the jumping genes
genetic algorithm (JGGA) is a novel evolutionary algorithm (EA) that
has recently been proposed [36]. The most important feature of the
JGGA is its capability to exploit local search heuristics by emulating
a genetic phenomenon of horizontal transmission in which genes
can jump from one position to another either within its own or to
the other chromosomes. Every conventional genetic operator in the
GA employs only vertical transmission of genes from generation to
generation. However, the jumping genes operators introduce a kind
of horizontal transmission. Indeed, the jumping genes operations are
better ways for exploration and exploitation than the usual genetic
operators only. Therefore, these operations create more chances to
achieve better convergence and diversity, as well as to avoid premature
convergence [19, 20]. Recently, many successful applications of the
JGGA have been reported in the literature [37–40].
Its success is mainly due to the two newly designed computational
operations — the copy and paste & the cut and paste to emulate the
jumping behavior (transposition process) into an EA framework. To
implement these operations, some consecutive genes are selected as
a transposon. The actual implementation of the cut and paste operation
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(a) same chromosome.

(b) different chromosome.

Figure 1. Cut and paste transposition.

is that the transposon is cut from the original site and pasted into a
new site (Fig. 1). In the case of the copy and paste operation, the
transposon replicates itself, with one copy of it inserted into a new site,
while the original one remains unchanged at the same site (Fig. 2). For
the detailed description of the JGGA, the reader may refer to [41]. It is
well known that GAs are not very eɼective for fine-turning the solutions
that are already close to the optimal solution as crossover and mutation
may not be suɺcient enough to generate feasible solutions. Hence, it
is necessary to integrate some local search strategies in the GA for
enhancing the solutions. In addition, it should be noted that as the
length of a chromosome increases with the size of the DFLP, GAs
might suɼer from premature convergence in a large search space. To
tackle this, the jumping genes operations oɼer a local search capability
to exploit solutions around the chromosomes, while the usual genetic
operators globally explore solutions from the population.

5. Problem formulation

Traditionally the FLP has been presented as a quadratic assignment
problem (QAP) [17, 42]. In this formulation, n equal area facilities are
assigned to n locations with the constraint that each facility is restricted
to one location and one facility should choose only one location. The
objective of the DFLP is to obtain layouts for each period in the planning
horizon such that the sum of the rearrangement and MH costs is

(a) same chromosome.

(b) different chromosome.

Figure 2. Copy and paste transposition.

Figure 3. A 3 × 3 DFLP instance with 9–facility, 3–period.

minimized. Consequently, the DFLP can be formulated as an extension
of the SFLP by selecting a static layout for each period and then
deciding whether to change to a diɼerent layout in the next period
or not. If the rearrangement cost were negligible, the optimal solution
would have been to combine the optimal static layout for each period of
the planning horizon. However, in reality, layout rearrangement incurs
costs. Hence, the DFLP is not just a series of the SFLP. Since the
total cost will be calculated based on the entire planning horizon, the
layout for each period influences the layouts for the other periods. So,
the DFLP involves selecting a static layout for each period and then
deciding whether to change to a diɼerent layout in the next period.
Fig. 3 presents a 3 × 3 DFLP instance with 9–facility and 3–period.
In this example, facilities 2, 5, 8, 6, 9, 1, 4, 3, and 7 are assigned to
locations 1, 2, 3, 4, 5, 6, 7, 8, and 9 respectively in period 1, and so
on.
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Solving a complete layout problem with all the details in an eɺcient way
is quite unlikely. Therefore, it is quite common that researchers make
several assumptions and simplifications in their models without missing
the important underlying structure [43]. In this work, we follow the
assumptions described in [28]: facilities and locations are equal-sized;
the number of periods in the planning horizon is known; and the
distances between the facilities are determined a priori. As stated
earlier, the DFLP tries to minimize the total MH cost along with the
rearrangement costs. Adapting the DFLP to robotics again, the target
is to find the optimal layouts for the total planning horizon. Hence, the
measure to be minimized is the transportation path which ensures that
the robots pass through the facilities following the orders for diɼerent
periods with the minimum possible usage of energy. Since robots are
capable of lifting hundreds of pounds of payload and positioning the
weight with accuracy to a fraction of a millimeter [44], this will also save
the material usage, and increase the product quality and throughput. A
mathematical formulation for the DFLP is shown below:

F1 =
P∑

t=2

n∑

i=1

n∑

j=1

n∑

l=1

AtijlYtijl+

P∑

t=1

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

ftikdtjlXtijXtklEtik (1)

Subject to

n∑

j=1

Xtij = 1; i = 1, 2, . . . , n; t = 1, 2, . . . , P; (2)

n∑

i=1

Xtij = 1; j = 1, 2, . . . , n; t = 1, 2, . . . , P; (3)

Ytijl = X(t−1)ijXtil; i, j, l = 1, 2, . . . , n; t = 2, 3, . . . , P; (4)

Xtij =
{

1 ; if facility i is at location j in period t
0 ; otherwise

(5)

Ytijl =






1 ; if facility i is shifted from location j
to l in period t

0 ; otherwise
(6)

Where, i, k are facilities; j, l are locations in the layout; Atijl is the fixed
cost for shifting facility i from location j to l in period t (whereAtijj = 0);
ftik is the flow cost for unit distance from facility i to k in period t ; dtjl
is the distance from location j to l in period t ; Etik is the energy used
by the robots for transporting unit material from facility i to k in period
t ; n is the total number of facilities in the layout; and P is the number
of periods for the planning horizon.
It should be noted that, this objective includes the energy used by the
robots for completing a complete transportation sequence for every
period of the planning sequence. However, for the lack of benchmark
problem or real-world data, and for comparing with existing methods,
we fixed Etik = 1. Thus, the objective is to minimize the sum of the
layout rearrangement cost (first term) and the MH costs (second term)
over the planning horizon (Eq. 1). Constraints Eqs. 2 and 3 ensure
that each location is assigned to exactly one facility and each facility is
assigned to only one location at each period, respectively. Constraint
Eq. 4 assigns a value 1 only if a facility is shifted between locations in
consecutive periods.

6. The proposed approach

6.1. Chromosome representation

The initial population is generated randomly, and we consider a
form of direct representation for chromosomes. The solution is
represented as a string of integers of length n×P, where n is the total
number of facilities, and P is the number of periods for the planning
horizon. The chromosomes are encoded as (a11a12a13, . . . , a1n)
(a21a22a23, . . . , a2n) ,. . . . . ., (aP1aP2aP3, . . . , aPn). The integers
denote the facilities and their positions in the string denote the positions
of the facilities in the layout for that period. This representation is very
useful for the GA because a chromosome will be chosen for crossover,
mutation or jumping operations if it has a good objective value and
also the objective value for the chromosome is easy to calculate. Fig. 4
illustrates the chromosome for the 9–facility, 3–period DFLP mentioned
in Fig. 3.

Figure 4. Chromosome representation for the 9–facility, 3–period DFLP
presented in Fig. 3.

6.2. Crossover and mutation

In this approach, we applied a single point crossover operation. For
keeping the chromosomes valid after the operation, some repair
operations are required to remove any duplication or absence of
facilities. These repair operations are only required if the crossover
point is within the genes of a particular period. However, no repair
operation is necessary when the crossover point is the first or the last
gene of any period (the boundary of two periods, in other words). In
the repairing process, first we find and list the duplicate facilities in that
particular period according to the positions in the chromosome. Then,
we check whether any facilities are missing in that period (starting from
the first to the last gene of the period). After that, we replace the list of
the duplicate facilities with facilities that are missing. For mutation, we
use the traditional swap mutation with the restriction that two genes are
chosen randomly from the same time period. As a result, the resulting
chromosome is legal and no further repair is required.

6.3. Jumping genes operations

In order to apply the jumping genes operations for solving the DFLP, we
consider the total number of genes for a period as a single transposon.
The length of each transposon can be more than one period and
the transposition operations are chosen randomly. Furthermore, the
transpositions made within the same or to a diɼerent chromosome
are also selected randomly. To apply the cut and paste operation
into a pair of chromosomes, a transposon from each chromosome is
selected randomly. Then, for both chromosomes, the transposon is
cut from its original position and pasted into the new position of the
other chromosome. The inserting positions are selected randomly for
each chromosome with the restriction that it must be the starting gene
of any period. The gaps created because of cutting the transposon
is replaced by shifting the neighbor genes as depicted in Fig. 1(b).
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This operation can also be carried out for a single chromosome in a
similar way. In the case of the copy and paste, the transposon is
randomly selected from any of the two chromosomes. A replication
of the gene pattern is then inserted into a new location of the other
chromosome, while the original one remains unchanged at the same
site as depicted in Fig. 2(b). The new location is selected randomly
with the restriction mentioned above. Similarly, the operation on the
same chromosome is depicted in Fig. 2(a). It should be noted that,
the jumping genes operations are chosen randomly on the basis of
probability like other genetic operations. Also, the type of operations
and the transpositions made within the same chromosome or to a
diɼerent chromosome are chosen randomly and there is no restriction
to the chromosome choice.

7. Computational results

This section presents the computational results of the proposed GA
based approach with a modified version of backward pass pair-wise
exchange heuristic. As discussed in Section 5, there is no benchmark
dataset or published result for comparing the performance of the
DFLP, even the SFLP, adapted to robotics. Therefore, we could
not compare the performance of our proposed approach for this
framework. However, by setting the parameter Etik = 1 in Eq. 1,
we compare our approach with the 48 test problems obtained
from Balakrishnan and Cheng [27]. These problems were originally
designed for the DFLP and the objective is to minimize the total MH
cost. In fact, this comparison is reasonably fair in the sense that it will
correct the objective function achieved by every comparing methods
by the same amount based on the energy used by the robots for
transporting unit material from facility i to k in period t. The test
problems are divided into six types with 6, 15, and 30 facilities with
5 and 10 time periods for each. Each type has eight instances. This
will give us an idea of the eɼectiveness of the algorithm for varying sized
layouts and over varying sized planning horizons.
The experiments are conducted using 200 chromosomes and 400
generations for DFLPs with up to 15 facilities, and 400 chromosomes
and 1000 generations for DFLPs with more than 15 facilities. The
probabilities of crossover, mutation and jumping operations are 0.8,
0.2, and 0.6, respectively. We use the traditional tournament selection
with the tournament size of 2. Each problem is tested for 30
times with diɼerent seeds and the best and average solutions are
recorded. To justify the eɺciency of the proposed approach, the
results are compared to both GA–based and other evolutionary and
heuristic DFLP approaches. Tables 1∼6 summarize the results
of the comparisons. These tables are partially cited from [7].
The results are compared to the results obtained by our previous
hybrid GA approach (LHGA) [7], the GA presented by Conway and
Venkataramanan (CVGA) [26], the nested-loop GA (NLGA) [27], the
hybrid GA presented by Balakrishnan et al. (GADP) [28], the SA
heuristic (SA) [32], the DP presented by Erel et al. (DP) [31], the hybrid
ant systems (HAS) [6], and the discrete particle swarm optimization
based heuristic (DPSO) [34]. The bold numbers give the best
solution for each test problem. Since, we don’t have the average
values for comparing algorithms except the proposed approach and
LHGA; we are unable to mention their average values. However,
superior performances of LHGA have been already demonstrated in
our previous paper [7]. Therefore, for average values, we only compare
our proposed approach with LHGA.
In the 6–facility DFLPs, the results for 5–period and 10–period
problems are shown in Tables 1 and 2, respectively. From the tables,
we can find that our proposed approach obtains the best solutions

for all the 16 problems of both categories (Problems 1∼16). For
the 5–period problems (Problems 1∼8), LHGA, DPSO and HAS also
find the best results for all 8 problems. However, for the 10–period
problems (Problems 9∼16), LHGA, GADP, DPSO, HAS and DP obtain
the best solutions for 4, 3, 5, 5, and 5 of the 8 problems, respectively.
In fact, our proposed approach finds new best solutions for 2 problems
(Problems 13 & 16). The average values are also better than or are in
par with LHGA.
Tables 3 and 4 report the results for 15–facility with 5 and 10
period problems, respectively. For the 5–period problems (Problems
17∼24), the proposed approach and DPSO both obtain the best
solutions for 5 out of the 8 problems. Where as, LHGA and HAS
obtain the best solution(s) for 2 and 1 of the 8 problems. All other
algorithms fail to achieve any best solution. Interestingly, the results
obtained by DPSO are not so good for the 10–period DFLPs (Problems
25∼32). Here, DPSO fails to achieve any best solution. However,
the performance of our proposed approach is consistent. Clearly,
our proposed approach and SA outperform other approaches for the
10–period problems. Both approaches obtain the best solutions for
4 of the 8 problems. Our previously proposed LHGA finds 2 best
solutions. Our proposed approach with the modified heuristic also
performs the same for these 2 problems (Problems 27 & 31). In the
16 problems of these combinations, the proposed approach obtains
the new lowest MH cost for 4 problems. From the Tables, we can
find that the problems where our proposed approach fails to achieve
the best results, its performances are not too inferior. In fact, the
deviation is only 1% in the worst case. Considering both 5 and 10
period problems, the performance of our algorithm is relatively stable. If
we compare our proposed approach only with the previously proposed
LHGA, the results are significantly better than the results obtained by
LHGA. Furthermore, the proposed approach improves the objectives
in comparison to LHGA for most of the problems, and never performs
worse than LHGA. As usually, the average values obtained by our
proposed approach for both 5 and 10 period problems are significantly
better.
The results for 30–facility with 5 and 10 period DFLPs are shown in
Tables 5 and 6, respectively. For the 5–period problems (Problems
33∼40), the proposed approach obtains the best solutions for 5 of the
8 problems. While, LHGA, SA, DPSO, HAS obtain the best solution(s)
for 3, 1, 1, and 1 of the 8 problems. Clearly, the proposed approach
outperforms all other algorithms. On the other hand, for the 10–period
problems (Problems 41∼48), both the proposed approach and SA
perform quite well. Each obtains 4 of the 8 best solutions for this
combination. Whereas, other approaches fail to obtain any of the
best solutions. Then again, if we compare the proposed approach
against LHGA, we can find that the proposed approach significantly
outperforms LHGA. In fact, the proposed approach not only finds 4
new best solutions, but also improves the objectives for almost every
case of the 16 problems of this combination while comparing with the
results of LHGA. Indeed, this is the overall trend for all the combinations
of test problems. Simultaneously, the average values obtained by the
proposed approach are significantly better than the average values
obtained by LHGA.
It is natural to raise the concern about the additional coding eɼort,
and consequently the additional complexity for the proposed modified
heuristic within the framework of LHGA [7]. For justifying the
optimization behavior of the proposed approach, again we run the
proposed approach with the modified version of heuristic for less than
the mentioned generations (70% of the scheduled generations for all
test problems). Since LHGA has been already justified as a superior
approach in comparison to other comparing approaches [7], here
we compare our proposed approach only with LHGA by running the
same reduced evolutionary cycles for LHGA. Fig. 5 presents these

169



PALADYN Journal of Behavioral Robotics

Table 1. Total cost of 6–facility and 5-period problems

Pr. CVGA NLGA GADP SA DPSO HAS DP
LHGA Proposed

Best Avg Best Avg Deviation

1 108976 106419 106419 107249 106419 106419 106419 106419 106419 106419 106419 0 %
2 105170 104834 104834 105170 104834 104834 104834 104834 104834 104834 104834 0 %
3 104520 104320 104529 104800 104320 104320 104320 104320 104320 104320 104320 0 %
4 106719 106515 106583 106515 106399 106399 106509 106399 106399 106399 106399 0 %
5 105628 105628 105628 106282 105628 105628 105628 105628 105628 105628 105628 0 %
6 105606 104053 104315 103985 103958 103958 103958 103985 103985 103985 103985 0 %
7 106439 106978 106447 106447 106439 106439 106447 106439 106439 106439 106439 0 %
8 104485 103771 103771 103771 103771 103771 103771 103771 103771 103771 103771 0 %

Table 2. Total cost of 6–facility and 10-period problems

Pr. CVGA NLGA GADP SA DPSO HAS DP
LHGA Proposed

Best Avg Best Avg Deviation

9 218407 214397 214313 215200 214313 214313 214313 214313 214313 214313 214313 0 %
10 215623 212138 212134 214713 212134 212134 212134 212134 212134 212134 212134 0 %
11 211028 208453 207987 208351 207987 207987 207987 207987 207987 207987 207987 0 %
12 217493 212953 212741 213331 212530 212530 212741 212498 212512 212498 212498 0 %
13 215363 211575 210944 213812 210906 210906 211022 205597 205597 205564 205564 -0,016 %
14 215564 210801 210000 211213 209932 209932 209932 210364 210412 209902 209932 0 %
15 220529 215685 215452 215630 214252 214252 214252 214967 215001 214252 214268 0 %
16 216291 214657 212588 214513 212588 212588 212588 205332 205368 205314 205344 -0,009 %

Table 3. Total cost of 15–facility and 5-period problems

Pr. CVGA NLGA GADP SA DPSO HAS DP
LHGA Proposed

Best Avg Best Avg Deviation

17 504759 511854 484090 484695 480453 480453 482123 484628 485188 481004 481414 0.114%
18 514718 507694 485352 486141 482568 484761 485702 481940 482210 481838 482258 -0,020 %
19 516063 518461 489898 496617 486658 488748 491310 489987 490315 486658 487108 0 %
20 508532 514242 484625 490869 480359 484446 486851 486452 486856 480924 481220 0.117%
21 515599 512834 489885 491501 486658 487722 491178 486600 487006 486600 486952 0 %
22 509384 513763 488640 491098 485637 486685 489847 488894 489184 485694 485986 -0,011 %
23 512508 512722 489378 491350 485462 486853 489155 484241 484826 484241 484686 0 %
24 514839 521116 500779 496465 488865 491013 493577 500516 500962 488865 489116 0 %

results. From the figures, we can find that after completing 50% of
the scheduled generations, the proposed approach starts finding the
best known values for more than half of the populations for all test
problems. In fact, it almost convergences for around 70% of the
scheduled generations. Where as, at this point, the performances
of LHGA are not satisfactory enough. They can find the best values
only for small DFLPs and the number of optimal solutions is also small.
Thus, the proposed approach appears to be highly eɼective, and the

additional coding eɼort and complexity required in comparison to LHGA
is definitely justified.

To summarize the result, the proposed approach, LHGA, CVGA, NLGA,
GADP, SA, DPSO, HAS, and DP find the best solutions for 34, 21, 2, 5,
7, 11, 19, 15, and 11 of the 48 problems, respectively. It appears from
the results that LHGA and DPSO are the close competitors in terms of
performance. However, the problems for which LHGA finds the best
solutions, our proposed approach also finds the same best solutions.
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Table 4. Total cost of 15–facility and 10-period problems

Pr. CVGA NLGA GADP SA DPSO HAS DP
LHGA Proposed

Best Avg Best Avg Deviation

25 1055536 1047596 987887 950910 978546 980351 983070 983537 984370 960306 961014 0.978%
26 1061940 1037580 980638 947673 975684 978271 983826 954909 955746 947790 948254 0.012%
27 1073603 1056185 985886 968027 976382 978027 988635 967608 968106 967608 968026 0 %
28 1060034 1026789 976025 950701 972684 974694 976456 950674 951476 949062 949682 -0,169 %
29 1064692 1033591 982778 948470 976645 979196 982893 971387 971997 958106 959048 1,005 %
30 1066370 1028606 973912 948630 969326 971548 974436 963518 964082 951328 951752 0,283 %
31 1066617 1043823 982872 965844 978657 980752 982790 965201 965710 965201 965804 0 %
32 1068216 1048853 987789 956170 982964 982707 988584 979381 979908 955074 955540 -0,114 %

Table 5. Total cost of 30–facility and 5-period problems

Pr. CVGA NLGA GADP SA DPSO HAS DP
LHGA Proposed

Best Avg Best Avg Deviation

33 632737 611794 578689 562405 575684 576886 579741 567362 568124 563386 563642 0,174 %
34 647585 611873 572232 569251 570365 570349 570906 560015 561338 560015 561008 0 %
35 642295 611664 578527 564464 575698 576053 577402 562528 562998 562528 562780 0 %
36 634626 611766 572057 552684 566124 566777 569596 551936 553396 551778 552142 -0,028 %
37 639693 604564 559777 559596 558680 558353 561078 568303 568916 561049 561496 0,48 %
38 637620 606010 566792 592515 565894 566792 567154 568221 569148 568221 568940 0,409 %
39 640482 607134 567873 582409 567131 567131 568196 561965 562956 561965 562478 0 %
40 635776 620183 575720 578549 574369 575280 575273 574495 575016 573674 573986 -0,121 %

Table 6. Total cost of 30–facility and 10-period problems

Pr. CVGA NLGA GADP SA DPSO HAS DP
LHGA Proposed

Best Avg Best Avg Deviation

41 1362513 1228411 1169474 1122154 1161124 1166164 1171178 1122689 1131012 1121397 1130124 -0,067 %
42 1379640 1231978 1168878 1120182 1155634 1168878 1169138 1120170 1130946 1120170 1128680 0 %
43 1365024 1231829 1166366 1125346 1158264 1166366 1165525 1163610 1172236 1130416 1141984 0,448 %
44 1367130 1227413 1154192 1120217 1144872 1148202 1152684 1121074 1133452 1120704 1131162 0,043 %
45 1356860 1215256 1133561 1158323 1125687 1128855 1128136 1172713 1184864 1123320 1139604 -0,21 %
46 1372513 1221356 1145000 1111344 1142568 1141344 1143824 1110975 1122954 1110975 1121784 0 %
47 1382799 1212273 1145927 1128744 1141722 1140773 1142494 1209780 1220124 1148042 1160966 1,68 %
48 1383610 1245423 1168657 1136157 1160658 1166157 1167163 1136809 1150532 1136692 1148648 0,047 %

Besides, LHGA never outperforms our proposed approach. In contrast,
our proposed approach frequently outperforms LHGA. Considering the
performance of DPSO, we can find that in most cases it is better than
or equal to our proposed approach for small and medium sized DFLPs.
Still, the performance of our proposed approach is satisfactory enough
for these problems. Furthermore, for large DFLPs, our proposed
approach clearly outperforms DPSO. It can be observed that for large
DFLPs, SA performs well; on the contrary, the performances of SA

are not satisfactory enough for small and medium sized problems.
Quite the opposite results can be observed for HAS and DP. For small
DFLPs, they perform well. But, for medium and large DFLPs, their
performances are disappointing. Therefore following the overall trend,
we can conclude that our proposed hybrid GA incorporating a modified
backward pass pair-wise exchange heuristic for the DFLP is indeed
capable in performing better than all other comparing evolutionary
and heuristic algorithms with respect to solution quality for the test
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(a) 6F, 5P (b) 6F, 5P (c) 15F, 5P

(d) 15F, 10P (e) 30F, 5P (f) 30F, 10P

(g) legend

Figure 5. Percentages of optimal solution after 50% generations.

problems. It also justifies the application of the modified heuristic.
Today industrial robots present a mature technology. The huge
deployment of robots and their maintenance also incur cost. Therefore,
the companies aim to maximize their profit by increasing the
performance of the robots and to minimize the energy used by the
robots for getting better and long service from the robots. Succinctly,
adapting robots to DFLPs, optimal layout for DFLPs can help the
robots completing the material transporting sequence using a minimum
amount of energy. It is apparent from the experimental results that
the proposed approach certainly increases the eɼectiveness of robots
by solving the DFLP, and thus saves the energy used by the robots
for carrying the material among the facilities. At the same time,
transporting materials among the facilities of an optimal layout for a
DFLP by robots will increase the throughput of the manufacturing plant.
And, higher rates of throughput mean higher profits. Consequently, it
helps increasing productivity and profits for manufacturing system.
Since the algorithms used in this study use diɼerent computing
systems, coding techniques and compilers, it is very diɺcult to compare
the computation time for them. For this reason, we do not compare
the computational time in this study. In future, we hope to make this
comparison. Besides, there are no published benchmark data sets to
compare the eɼects of robot as a material handling device in the DFLP.
Therefore, we are unable to test this consequence. Also, in future, we
would like to create some benchmark data sets or collect real-world
industrial data for this comparison.

8. Conclusions
In this paper, we present a modified backward pass heuristic based
genetic algorithm for solving the dynamic facility layout problem (DFLP)
which can be thought of a generalized form of a framework for
adapting robots to DFLPs. These days, there is an increasing trend
towards implementation of industrial robot as a material handling
device in manufacturing plants. Solving the DFLP and finding the
optimal layout for a manufacturing system that uses robots as material
handling device is an eɺcient and cost-eɼective way to improve the
productivity in a plant. The experimental results strongly support the
competitiveness of our proposed approach for solving the DFLP. In
particular, the proposed approach has proved to be computationally
eɺcient when dealing with large DFLPs. Furthermore, industrial
robots ensure increased productivity in time critical situations when
the layouts are optimal. As a consequence, the energy consumption
of employed robots is minimized in material transportation between
facilities, which will lead to overall cost reduction and profit maximization
for manufacturing industries.
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