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Abstract

Although surface electromyography (sEMG) has a high correlation to muscle force, an accurate model that can esti-
mate joint torque from sEMG is still elusive. Artificial neural networks (NN), renowned as universal approximators, have
been employed to capture this complex nonlinear relation. This work focuses on investigating possible improvements
to the NN methodology and algorithm that would consistently produce reliable sEMG-to-knee-joint torque mapping
for any individual. This includes improvements in number of inputs, data normalization techniques, NN architecture
and training algorithms. Data (sEMG) from five knee extensor and flexor muscle from one subject were recorded
on 10 random days over a period of 3 weeks whilst subject performed both isometric and isokinetic movements.
The results indicate that incorporating more muscles into the NN and normalizing the data at each isometric angle
prior to NN training improves torque estimation. The mean lowest estimation error achieved for isometric motion was
10.461% (1.792), whereas the lowest estimation errors for isokinetic motion were larger than 20%.
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1. Introduction

Muscles are both the dominant tissue and the primary organ of the hu-
man body. An estimated 70% to 85% of gross body weight is attributed
to muscles [1]. Skeletal muscle, which is the type of muscle of interest
here, produces torque across a joint by shortening its resting length.
On a macroscopic level skeletal muscles are classified by their line of
action, direction of pull and their origins1 and insertions2. The func-
tional unit of the neuromuscular system is the motor unit (MU). MUs
consist of an α-motor neuron and connected muscle fibres [2]. The
α-motor neurons, located in the brain stem and spinal cord, create an
electrical impulse (action potential) that travels along axons to its ter-
minal branches, each of which is connected to a single muscle fibre
at the neuromuscular junction. The connection is usually in the middle
or proximal to the middle of the muscle fibre. As the action potential
(AP) reaches the muscle fibres, depolarization of the fibre membrane
triggers muscle contraction [3]. The membrane depolarization causes
a time-varying transmembrane electric current field that can be mea-
sured non-invasively from the surface of the skin above the muscle

∗E-mail: mervin.chandrapal@pg.canterbury.ac.nz
1 The point where the muscle attaches to the bone close to the centre
of the body
2 The point where the muscle attaches to the bone furthest from the
centre of the body

[4]. Since a single action potential will only cause a twitch, it is neces-
sary for the motor neuron to generate a series of APs in order to achieve
a longer period of contraction.

The Myoelectric Signal (MES) detected on the skin surface using sur-
face Electromyography (sEMG) is the algebraic summation of these
APs [5]. As these waves are bi-phasic or tri-phasic, the phase cancel-
lation that consequently occurs, results in the detected sEMG having
an amplitude less than proportional to the number of MU firing per sec-
ond. The amplitude of the detected sEMG also varies significantly as a
result of the summation [6]. Other factors that can vary from day to day
(or session to session) and may aɼect the sEMG but not the internal
MES, include blood flow, the condition of the skin surface and the po-
sition of the electrodes on the muscle [1]. Furthermore, sEMG can only
be reliably measured from superficial skeletal muscles. Despite these
limitations, sEMG have been shown to have a very high parallelism
to muscular movement and force [7]. Thus extracting and modelling
this sEMG-to-joint-torque relationship is especially useful in the field of
powered prosthetics, actuated assistive/rehabilitative devices and for
monitoring muscle recovery during rehabilitation [8].

Research into identifying the exact relation between sEMG and joint
torque has been carried out for more than half a century, and many
models have been proposed [2], the most common of which is the Hill
model or a variation of it. The classical three-element Hill elastic mus-
cle model approximates skeletal muscles’ mechanical responses using
passive and active elements, in parallel and series configuration. When
considering a coordinated movement, the net force from all muscles in-
volved can be summed to determine the resultant joint movement. This
approach was recently employed for a knee exoskeleton developed by
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Figure 1. Isometric (a) and isokinetic (b) test rig setup

[9] in his thesis work. Calibration of all parameters necessary for the ex-
oskeleton was substantial and experimental results obtained showed
that there were limitations to the method. A disadvantage with this ap-
proach is that ”assumptions have to be made at each step about largely
unknown properties of the musculoskeletal and nervous system” [10]
as the number of muscles modelled increases. Alternatively, the utiliza-
tion of fast and eɺcient machine learning algorithms to map the nonlin-
ear sEMG-to-joint-torque relation is an approach that has gained much
interest in the past decade. In particular, the Multilayer Perceptron neu-
ral network (MLP) has gained popularity because of its capacity as a
universal approximator [11]. These techniques are particularly useful
when exact force from each muscle in the musculoskeletal system is
not as important as the total resultant movement of the joint, such as
in a control system for an actuated prosthetic or assistive device.

In [12] the authors implemented a three-layer MLP to derive an EMG-to-
force relationship. EMG and joint force data were obtained in vivo from
a load cell and electrodes that were implanted in adult cats. Although
themethod was invasive, the results obtained prove the suitability of the
Neural Network (NN) to map the EMG to muscular force relationship. In

[10], a non-invasive approach to estimate isokinetic3 elbow-joint torque
using a three-layer MLP was attempted. The mapping was carried out
using data from 5 diɼerent subjects. Surface EMG from the biceps
brachii and triceps brachii were assumed to be representative of the
flexors and extensors of the elbow. The trained NN had a minimum es-
timation error of 0.0277 (RMSD) prompting the conclusion that the NN
is an eɼective tool for this purpose. Hahn [13] extended the applica-
tion of MLP for isokinetic joint torque estimation to the knee joint. In his
work, data were collected from 20 subjects and sEMG from the vastus
lateralis (VL) and biceps femoris (BF) were assumed to represent the
activation of knee extensors and flexors. He too concluded that the
three-layer MLP is a feasible technique for estimating isokinetic joint
torque.
Based on results obtained in [13], we have further investigated the
sEMG-to-joint-torque relation, with the specific goal of obtaining a fea-
sible NN model for the knee joint, that can be utilized in a sEMG-based
control system for an actuated assistive device. Thus the focus is not
to obtain a general physiological model, but rather a specific mapping
algorithm and method that would produce consistent joint torque map-
ping, with acceptable estimation errors, for any individual. There are
still a few questions regarding the sEMG-to-joint-torque mapping that
have not been explored. For example:

· Will the inclusion of more knee extensor and flexor muscles im-
prove joint torque estimation? In the previous work only one
knee extensor and one flexor muscle were used.

· Will alternative data normalization methods prior to NN training
improve isometric4 torque estimation?

· Is there another more eɺcient NN architecture and training al-
gorithm that could surpass the MLP in knee joint torque estima-
tion?

· If a set of neurons in the NN produce the best solution on one
day, will it also produce a near-optimal solution on another day
with the same type of test, thus ensuring the robustness of the
NN architecture over multiple sessions? Both previous papers
[10, 13] have only tried to find optimal number of neurons in the
MLP for diɼerent subjects rather than for the same subject over
multiple days.

· Is it possible to estimate isokinetic torque using a NN trained
with isometric data, by assuming quasi-static motion at low ve-
locities?

In this work, we have attempted to provide answers to these questions
through experimental results. This paper is organized as follows; in
Section 2 the experimental setup, signal processing and data normal-
ization techniques are discussed. The two NNs used in this work are
described in Section 3. The experimental results obtained are shown
and discussed in Section 4. The paper is concluded in Section 5.

3 Motion where the velocity of the moving limb is controlled i.e. con-
stant velocity, allowing maximal force to be exerted throughout the range
of motion.
4 Muscular contraction against resistance without movement such that
the length of the muscle does not change, i.e. constant joint angle
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Figure 2. The quadriceps (vastus intermedius not shown) (a) and hamstring
muscles (b) [14]

2. Experimental procedure

The experiments were carried out with one subject (physically healthy,
26-year-old male, weight: 66kg, height: 1.74m), on 10 random days,
over a period of three weeks to incorporate inter- and intra-session vari-
ation. The test procedure was explained to the subject and written
consent was obtained prior to participation. The test apparatus was
constructed to allow the measurement of isometric torque at seven dif-
ferent angles (0o, 15o, 30o, 45o, 60o, 75o, 90o), and isokinetic torque
at any given angular velocity (Fig. 1(a)). The subject was seated in a
reclining position with his back supported and the rotation axis of his
right knee along the sagittal plane was aligned to the rotation axis of
the apparatus. The subject’s leg was fastened to the moveable arm
of the apparatus using straps at the distal end of the tibia. The neu-
tral position was defined as the position when the knee joint was fully
extended. At this position the encoder (US digital S5-360) mounted
at the rotation axis of the apparatus was zeroed. The maximum an-
gle was when the knee was flexed 90o, as measured through the en-
coder. The moveable arm of the apparatus could be rigidly fixed at
any of the seven angles by means of a link that passed through a load
cell. A PID-controlled pneumatic cylinder provided variable resistance
for the isokinetic tests (Fig. 1(b)). On each of the 10 days, data from
three sessions of seven isometric tests at the seven angles (0o, 15o,
30o, 45o, 60o, 75o, 90o), and four isokinetic tests at 5os−1, 10os−1,
15os−1, 20os−1 were collected. The isokinetic speeds were chosen to
include a slow to moderate walking pace, similar to the gait of people
who require assistance. The subject was allowed a 2 minute break be-
tween each test and one hour between each session. For the isometric
tests, the subject was instructed to exert maximum eɼort for knee ex-
tension followed by a maximum eɼort for knee flexion. Then at each
isokinetic speed the subject was encouraged to exert maximum eccen-
tric and concentric contraction throughout the range of motion (93o to
-2o). Surface EMG from three knee extensor muscles and two knee
flexors together with torque data were recorded. The muscles were
chosen based on their percentage cross sectional area (%PCA) and

(a)

(iii)

(i)

(ii)

(b)

Figure 3. Bipolar active electrodes (a) and placement on leg (b) . Where (i)
Active electrodes, (ii) Encoder, and (iii) Ground electrode.

the ability of signal detection using surface electrodes. The extensor
muscles are the vastus lateralis (VL;20%), rectus femoris (RF;8%) and
vastus medialis (VM;15%). Although the vastus intermedius has a sig-
nificant contribution to knee joint extension, sEMG from this muscle is
diɺcult to detect as it is located beneath the RF. The flexor muscles are
the semitendinosus (ST;3%), and biceps femoris (BF;10%) [15]. The
location of the knee extensor and flexor muscles are shown in Fig. 2.

2.1. Electrodes

sEMG were recorded through five pairs of nickel-plated active bipolar
surface electrodes shown in Fig. 3. The reusable electrodes were con-
structed with a built in pre-amplifier (4000x amplification) circuit. The
dimension (circular electrodes, 10mm diameter in the direction of the
muscle fibre) and the inter-electrode distance (20mm) was fixed based
on SENIAM recommendations [16]. Prior to placement, the electrodes
were gelled and the placement site was shaved and cleaned with al-
cohol to reduce surface impedance. During reattachment on subse-
quent days, care was taken (visually) to ensure that the electrodes were
placed at the same site. The bipolar surface electrodes were placed
proximal to the midpoint of each muscle belly, to avoid the innervation
zones and to reduce cross talk [17]. Guidelines provided by Cram [1]
were used as reference for electrode placement. The reference elec-
trode was attached on the front of the tibia on the same leg (right leg).

2.2. Data processing

sEMG signals
All five pre-amplified sEMG signals are sampled simultaneously at
2kHz. Typically the sEMG signals are then band-pass filtered at ap-
proximately 20Hz to 500Hz [7, 13, 18]. Recent research however has
shown that force information is contained in the higher frequency seg-
ment of the sEMG [2, 19]. Therefore in this work, all sEMG were band-
pass filtered from 400-600Hz using a 2nd order Butterworth filter. The
signal was then rectified and low pass filtered (1.5Hz-2nd Order But-
terworth filter) to obtain the activation envelope. The low pass filtering
replicates the 2nd order muscle twitch response to the impulse from
the motor unit action potential [20]. The phase lag that results from this
filtering also reproduces the electromechanical delay ( 60 →120ms) in
the cross bridge mechanism [20].

Torque and position data
Torque information was obtained through a load cell (PT AST 250)
mounted on the link that secured the moveable arm of the apparatus.
The load cell was sampled at 100Hz and synchronized with the sEMG
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signals, then low pass filtered at 30Hz (2nd Order Butterworth filter)
to remove noise [19, 21]. Position and velocity data were sampled at
2kHz from the encoder mounted on the test rig.

2.3. Data normalization

The main purpose of data normalization is to provide a common ba-
sis of comparison across diɼerent sessions and diɼerent subjects. Luh
[10] used the peak sEMG and torque value recorded during Maximum
Voluntary isometric Contraction (MVC) for both flexion and extension at
90o (elbow angle) to normalize all data. Similarly, Hahn [13] also used
the peak MVC data at a single angle (45o knee angle) to normalize all
subsequent data. However, the eɼect of diɼerent methods of sEMG
and torque data normalization on the NN prediction has not been thor-
oughly investigated. In this work, sEMG and torque data were normal-
ized using two methods. The first used the same method employed in
[13], i.e. normalization of all data with respect to the maximum values
at 45o knee angle. The second method was to normalize the isometric
sEMG and torque data from each of the seven angles with respect to
its own maximum, at each angle. This was based on results obtained
in [19, 22, 23] which propose that for isometric contractions the shape
of the torque (force) vs. sEMG curve is similar for each angle once nor-
malized. Muscle force-length relationship is well described in literature
and [24] has shown that the normalized force-length curve is similar
at diɼerent joint angles for in vivo human skeletal muscles. As there
were three sessions conducted each day resulting in three isometric
tests for each angle, the mean maximum sEMG and torque value at a
given angle was used to normalize all data for that angle. The mean of
the maximum values was used as it provided a robust estimate of the
MVC at every angle. In the case of the first method, themeanmaximum
of all three tests at 45o was used for normalization.
The sEMG and torque normalizations are described by Equations 1
and 2 respectively. Where nEMGm is the normalized sEMG, nτ is
the normalized torque and sEMGα

m is the sEMG data of muscle m
(VL, RF, VM, BF and ST) at knee angle α (0o, 15o, 30o, 45o, 60o,
75o, 90o). The mean maximum sEMG of muscle m at knee angle α is
represented as µmaxsEMGα

m and n is the number of sessions per day
(i.e. 3), where i increases from 1 to 3. Similar notation also applies for
torque normalization.

nEMGα
m,i =

sEMGα
m,i

µmaxsEMGα
m

(1)

µmaxsEMGα
m =

∑n
i max(sEMGα

m,i)
n

nτα
i = τα

i
µmaxτα (2)

µmaxτα =
∑n

i max(τα
i )

n

Isokinetic data normalization
Isokinetic motion data were normalized to the same mean maximum
values used to normalize isometric data for a given day. In the first
method, all isokinetic data were normalized to the mean maximum iso-
metric contraction values at 45o knee angle. With the second method
the isokinetic data were normalized with respect to mean maximum
values at each of the seven isometric angles. For intermediate knee
angles without actual values, linear interpolation was used to approxi-
mate the mean maximums.
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Figure 4. Flowchart of isometric data normalization and NN training

3. Methods

Neural networks, initially inspired by biological information processing,
have proven to be excellent non-linear function approximators. The
Multilayer Perceptron (MLP) architecture with three layers (input →
hidden → output) is the most common NN implemented. A good
overview of its general architecture and mathematical representation
can be found in [11]. Based on the architecture and training algorithm
used in [10, 13] a three-layer MLP network, trained using the second-
order-gradient-based Levenberg-Marquardt (LM) algorithm, was also
implemented in this work. Training of the network was halted when
either the gradient was suɺciently small (less than 1e-5), the number
of epochs exceeded 1000 or the generalization error (used as an early
stopping criterion) started to increase indicating that overfitting had oc-
curred. The training of the NN was then repeated with an increased
number of neurons (1 → 15) in the hidden layer.
In addition to the standard MLP NN, the recently developed Neuron-
by-Neuron (NBN) algorithm, claimed to have significant improvements
over the well known LM algorithm, was also implemented. Among the
advantages of the NBN over the LM are its ability to handle arbitrarily
connected NN which should result in smaller networks, requiring only
the forward computation without the backpropagation process, and
also the ability to directly compute the quasi-Hessian matrix; both of
which should reduce the computation time [25]. Furthermore, Wilam-
owski [25–28] proposed that the standard MLP is not the most eɺcient
neural network available. Using parity problems he demonstrated that
the Fully Connected Cascade (FCC) network is more powerful than the
classical MLP algorithm. In our work, this FCC network trained using
the NBN algorithm was implemented alongside the MLP (trained with
the LM algorithm) to provide an experimental comparison for this partic-
ular application. The FCC network was also repeatedly trained with an
increasing number of neurons in the network (1→ 10) to determine the
optimum network size. To the authors’ knowledge, this is the first time
the NBN algorithm has been utilized to model the sEMG-to-joint-torque
relationship.
The training of the NN using data acquired on each of the 10 days is
illustrated in Fig. 4. The procedure in block A is essentially repeated in
block B, with the diɼerence that more muscles were used for the joint
torque estimation. In block A, data from only two muscles (VL-extensor
and BF-Flexor) along with the joint angle α , were used to estimate the
joint torque whereas in block B data from all five muscles were utilized
to train the NN. The next level down on Fig. 4 shows the normaliza-
tion methods. Each set of data was normalized using method one or
method two as discussed in Section 2.3. At the lowest level, the nor-
malized data were used to train the two NNs. The data from the first two
sessions in a day were randomly partitioned; 60% used to train the NN,
20% used for testing and 20% used for validation and early stopping.
Then the network was tested with data from the third session. This
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Figure 5. Graphical representation of the data normalization methods and train-
ing inputs to the NNs. In the first normalization method all highlighted
variables are substituted with 45o. In the illustration, data from all 5
muscles are used. There are 3 neurons in the hidden layer of the MLP
and 3 neurons in the FCC network.

gives an unbiased indication of the NNs generalization. There were 8
test categories each day with increasing NN size resulting in a total of
100 NN trained for each day. For each of the 8 categories, the NN
size that has the lowest average estimation error was chosen as the
best result. The NN estimation error was measured as a percentage
root mean squared diɼerence (%RMSD) and is described in Equation
3, where ŷ is the estimated normalized torque and y is the actual nor-
malized torque [19]. Only the estimation errors from the third session
were used to calculate the average estimation error. The best 8 NNs
were then utilized to estimate isometric torque for the other 9 days, to
test the ability of the NN to identify day to day sEMG to torque rela-
tionship, without new learning. Finally, the best networks were tested
with the normalized isokinetic data to determine NN’s ability to estimate
dynamic torque. Fig. 5 gives a graphical representation of the data nor-
malization methods and the NN training architectures.

%RMSD = RMS(y − ŷ)/RMS(y) × 100 (3)

4. Results and discussion

The experiments were carried out over a period of three weeks to in-
corporate natural variations that occur in sEMG and joint torque. Since
the main purpose of this study is to identify possible improvements that
will enable a NN to give accurate and repeatable estimate of knee joint
torque from sEMG for a given person, incorporating as much variation
as possible in the relationship is a necessary condition. The maximum
isometric knee extensor and flexor torques over the 10 days were found
to be quite consistent. The mean (x) and standard deviation (σ ) of the
maximum torque is shown in Fig. 6. Comparatively, flexor torques have
a smaller σ than extensor torques. With regards to sEMG data, large
variations were recorded over the same 10 day period. Fig. 7 shows
the plot of the normalized mean maximum sEMG. The σ (not shown
in figure) ranged from as small as 0.097 to as large as 0.971. One
consistent result was that the peak extensor and flexor torques which
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occurs at 60o never coincided with the peak sEMG from any of the five
muscles.
It was also observed that joint torque estimation errors were larger at
smaller knee flexion angles especially at 0o, which always had the high-
est %RMSD. Conversely, the lowest %RMSD was usually at 45o or 60o

knee flexion. The high %RMSD at smaller angles may be attributed to
the eɼect of passive forces across the knee joint. It is well known that
passive forces across a joint increase near the limits of its motion. Since
these forces are not reflected in the measured sEMG, the NNs are un-
able to fully capture their eɼects. However, incorporating the joint angle
as an input to the NN improves the torque estimation [10].

4.1. Number of Muscles

The influence of incorporating multiple flexor and extensor muscles
on joint-torque estimation was investigated using the two procedures
shown in Fig. 4. The mean lowest estimation errors for both proce-
dures over the three-week period are plotted in Fig. 8. Joint-torque
estimation using data from five muscles results in an improvement of
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approximately 40% (MLP, norm. to each angle) over using just two
muscles. This result supports the opinion that, as diɼerent muscles
contribute to the resultant torque with varying degrees, incorporating
information from more muscles improves NN-based joint-torque esti-
mation. Furthermore, neglecting sEMG data from principle knee ex-
tensors and flexors will compromise the ability of the NN to uniquely
map sEMG-to-joint torque. The eɼect of incorporating data from more
muscles when estimating day-to-day variations was also studied. The
mean estimation errors achieved using the 8 best NN each day, to esti-
mate joint torque for the other 9 days without prior learning, are plotted
side by side in Fig. 9. An improvement of up to 30% (MLP, norm. to
each angle) is achieved when data from all five muscles are used to
train the NNs.

4.2. Data normalization

The lowest joint-torque estimation errors for both normalization meth-
ods for the 10 day period are plotted alongside each another in Fig.

8. The lowest individual %RMSD is 6.415% on day 4, whereas the
mean lowest estimation error is 10.461% (1.792), achieved using re-
sults from category 8 (Fig. 4). These results are compelling evidence
that normalizing the data to the maximum at each joint angle, on av-
erage, has better estimation accuracy than data that are normalized to
the maximum at a single angle. This improvement is due to the fact
that whilst the absolute value of the sEMG at diɼerent sites and angles
may vary, the curve of the normalized sEMG to normalized joint torque
at each angle is highly similar. Both [20, 22] recognize this relationship
in certain types of muscles. In estimating inter-day variation (Fig. 9),
data normalized using the second method lowers estimation errors in
all four pairs by up to 25% compared to that from the first method.

4.3. NN architecture and training algorithm

This work also sought to identify an eɺcient NN that will provide con-
sistent results over the three-week period. A fundamental assumption
made when utilizing NNs is that a particular combination of muscle ac-
tivities and joint angles will result in only one possible set of resultant
joint torques. If this assumption is flawed then it is impossible to achieve
repeatability. The eɼect of the two diɼerent NNs on joint-torque estima-
tion is evident in Fig. 8. The MLP NN, on average, has a slightly better
joint-torque estimation regardless of the data normalization method. As
a result of the improvements incorporated in the novel NBN algorithm,
it was expected that FCC network would outperform the MLP network,
but the results indicate otherwise. Thus, for this implementation, the
FCC network together with the NBN algorithm does not show signifi-
cant improvement over the classical three layer MLP network. Despite
the fact that the NBN algorithm has shown impressive results in other
applications, its suitability for sEMG-to-joint-torque mapping is not im-
mediately evident and has to be investigated further. The ability of both
NNs to estimate joint torque for other days without prior training is very
similar (Fig. 9), where the best estimation error is approximately 15% for
each algorithm (5 muscles, normalized at each angle). This is almost
a 50% increase in the estimation error compared to Fig. 8, suggesting
that it is not feasible to use a pre-trained NN to estimate joint torque for
another day.

4.4. Neural network size

To ascertain the best network size to consistently produce near-optimal
joint-torque estimation, each NN was trained repeatedly with an in-
creasing number of neurons. The network sizes that produce the top
three lowest estimates are plotted in Fig. 10 (only data from procedure
B in Fig. 4 is used). The plot shows how often a particular network
size results in the best (1st , 2nd or 3rd) isometric torque estimate. The
network sizes that give consistent results for the FCC network are nine
and ten, when normalized using the first and second method respec-
tively. Five neurons in the hidden layer form the optimal size for the
MLP network. Moreover, when compared to the FCC, the MLP has
a more distinct optimal network size. In comparison, [13] proposes a
MLP network with 15 neurons in the hidden layer (for isokinetic torque
estimation). It is suggested that smaller networks have good interpo-
lation abilities and can handle new patterns that have not been used
when training the network [26]. This is evident in the MLP network
where the optimum number of neurons in the hidden layer is just one
less than the number of inputs to the network.

4.5. Isokinetic torque estimation

The maximum torque curve obtained for the isokinetic motion (Fig. 11)
is consistent with known skeletal muscle characteristics, where the
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Figure 10. Frequency plot of optimal network sizes for MLP (a) and FCC (b)
normalized using the frist method and second method

maximum torque exerted decreases with increasing joint velocity. Max-
imum concentric extensor torque occurred at ∼50o knee angle whilst
maximum concentric flexor torque occurred at ∼25o. Each NN trained
was tested with the normalized isokinetic data to determine the NN’s
ability to estimate dynamic torque. The principal assumption made in
this estimation is that at low velocities, the motion of the knee joint could
be approximated as a quasi-static movement, and isometric condi-
tions may be presumed. Isokinetic torque estimation using NNs trained
with isometric data yielded consistent results with a percentage error of
about 20% to 30% (%RMSD). Over the 10-day period, the best isoki-
netic torque estimation achieved was 19.1349%. In Table 1, a typical
isokinetic estimation result is shown. The mean estimation error at all
velocities is very similar suggesting that the sEMG-to-joint-torque rela-
tion is similar for all the measured velocities and that quasi-static mo-
tion cannot be assumed at any velocity. The results show conclusively
that NNs trained using isometric data alone cannot be used to reliably
estimate isokinetic joint torque. One possible improvement may be to
include known force-velocity relations and passive force characteristics
as inputs to the NN. However, this finding does not conclusively prove
that NNs trained using only isometric data cannot be used to estimate
dynamic torque during activities of daily living 5. Isokinetic sEMG and
torque were only used as an approximation and further tests need to be

5 Walking, sit-to-stand movement, climbing and descending stairs, etc...
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Figure 11. Mean maximum isokinetic torque

Speed Test 1 Test 2 Test 3 Mean
5os−1 30.3506 25.7914 24.1391 26.7604
10os−1 34.1222 33.6545 22.1382 28.9716
15os−1 32.1093 26.8430 24.4955 27.8159
20os−1 21.9737 24.5017 30.9259 26.8004

Table 1. Typical results ( %RMSD) for isokinetic torque estimation (MLP NN-5
neurons; 2nd normalization method)

conducted to determine the performance of the trained NNs for these
activities.

5. Conclusion

The experiments carried out sought to investigate possible methods
to improve NN based sEMG-to-torque estimation for the knee joint.
Results indicate that including sEMG data from more extensor and
flexor muscles significantly reduces estimation errors. This is because
the contribution of the individual muscle groups to the resultant torque
varies with the joint angle. Furthermore, data normalization at each iso-
metric angle also improves estimation when compared to normalization
at a single joint angle. The lowest estimation errors were achieved us-
ing NN trained with data from all five muscles that were normalized at
each angle. When the best NNs from each day were used to estimate
inter-day joint torque, the estimation error increases by approximately
50%. The comparison of the two NN shows that the FCC network
is not a substantial improvement over the classical MLP. In addition,
the MLP network is shown to have a better defined optimum network
size (5 neurons) that produces consistent results. Experiments also re-
vealed that estimating isokinetic torque from isometric data results in
errors greater than 20% (%RMSD). One obvious limitation of the cur-
rent work is that data were only gathered from one subject over three
weeks. In order to further validate the eɼectiveness of the methodol-
ogy, data should be gathered from more subjects over a similar time
period.
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