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Abstract

Models of functional connectivity in cortical cultures onmulti-electrodes arraysmay aid in understanding how cognitive
pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such
models, this study uses both data- and model-driven approaches to determine what dependencies are present in
and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties
of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and
then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels
of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their
consistencies were verified using surrogate data. By comparing network-wide properties between model generated
networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent
co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
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1. Introduction

Cultures of cortical neurones on Multi-Electrode Arrays (MEAs; spe-
cialised glass dishes with a lattice of embedded electrodes), are good
platforms for investigating anatomical and functional neuronal networks
because they are maintainable for weeks or months, can be recorded
for extended periods, can be observed under a microscope, and ex-
perimental control can be maintained over the chemical and electrical
environments of the neurones [1–4]. Also, these cultures are an ac-
cessible platform for studying the computational properties of biologi-
cal neuronal networks to gain understanding of their behaviour and to
potentially enable their use for control of robotic systems [5, 7].

These neurones are initially dissociated to sever synaptic connections,
but upon seeding onto an MEA, they begin to reintegrate their network
through the extension of neurites and the formation of synapses (gov-
erned by complex biological processes, eɼectively producing a random
network), and they begin to exhibit action potentials within several days,
leading to spontaneous and highly synchronous bursts of excitation
around the 14th day in vitro (DIV 14) [1, 7]. These bursts are remi-
niscent of both developmental behaviour in embryonic brains, thought
to be responsible for optimising the network for information processing
[8], and of the pathological behaviour observed in ailments like epilepsy
or ataxia [9]. They also may be an obstacle to experimentally inducing
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synaptic plasticity [2, 9]. Nonetheless, these bursts of activity represent
a natural separation of time-scales [10] and are ideal phenomena for
gaining insight into the inter-regional interactions [11] of these neuronal
networks because they are formed spontaneously and tend to involve
most, if not all, of the observable network.

These bursts likely represent cascades of excitation through the synap-
tic connections of a neuronal network [1]. While synaptic changes can
occur quickly, the anatomical structure, in the absence of outside in-
tervention, generally changes on a much slower time-scale [12]. While
this relatively stable anatomical structure lends a degree of consistency
to these bursts, there is also significant variation, not only in the burst
intensities and locations, but also in the inter-channel synchrony [8, 13].
Some cultures tend to exhibit burst sizes drawn from a narrow, mono-
modal distribution (referred to as a fixed distribution), while others ex-
hibit wider mono-modal (variable distribution) or even distinctly multi-
modal distributions (typically bimodal distributions) [7]. While the fixed
distribution cultures produce a progression of bursts that are very sim-
ilar in intensity, the other two culture types produce widely varying be-
haviour, which may point to distinct hierarchical arrangements of sub-
networks or modules or a variety of modes of activation [14].

Techniques to measure the anatomical connectivity of live neuronal net-
works are limited [15], but functional connectivity (how the regions of
the network interact) can be assessed by through commonalities in
the spiking patterns recorded from these diɼerent regions with an MEA
[16, 17] and can give insight into the anatomical structure when ob-
served over long durations [12]. Within bursts of excitation, the func-
tional connectivity of the culture can be assessed, creating functional
connectivity networks (FCNs) by treating the regions of neuronal tissue
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Figure 1. Burst Size Distributions. Typical distributions are shown to illustrate
the three classifications: variable is wide and unimodal, bimodal has
two distinct modes, and fixed is narrow and unimodal. The bar graph
denotes the number of cultures of each class that were present in the
analysed dataset.

surrounding each recording electrode as nodes and significantly syn-
chronous activity between regions as edges [11]. These FCNs exhibit
small-world characteristics, which are important for information flow
and storage [18] and are common in self-organising systems, including
brain networks [11]. Further, it is likely that information may not be only
encoded in the static structures of these networks, but also in how they
evolve from burst to burst [19].

Understanding the precise temporal and spatial dependencies be-
tween the regions of the neuronal networks in these bursts could lead
to a better understanding of both why and when the bursts occur, as
well as their physiological significance. Further, understanding these
dependencies may ultimately lead to models that are capable of cap-
turing the inter and intra burst dynamics, thus allowing classification and
interpretation of network wide spiking activity and help guide interven-
tion to access the computational capacity of these networks. To this
end, this study aims to investigate the temporal and spatial dependen-
cies in the robust and recurrent spontaneous bursts of cultures aged
≈21 DIV [8].

The following paper uses data-driven and modelling techniques to
investigate the importance of these spatio-temporal dependencies.
Properties such as temporal dependence on prior bursts and the range
dependence of synchronous links are tested using linear correlative
analyses, while the importance of spatial dependencies in FCNs on
their small-world properties are tested using three models that incor-
porate increasing spatio-temporal dependence structures. Ultimately,
this study demonstrates the importance of inter-edge dependencies
and the complexities in the temporal dependence between the FCNs
of bursts.1

2. Methods

2.1. Cortical cultures and spike detection

The cultures were prepared from chemically and mechanically disso-
ciated cortical neurones from foetal Wistar rats and seeded onto sub-
strate embedded MEAs from MultiChannel Systems GmbH which pro-
vided 60 recording electrodes (59 viable recording channels and one
ground), arranged in a square lattice, 200 µm apart [6, 7]. Fluctuations
in extracellular membrane potential were observed at these 59 sites
for 20 to 40 minutes and spikes of negative polarity, representative of
single-unit or multiple single-unit excitatory events [22], were identified

1 This study is based on work presented in IEEE CIS 2010 [21].

using a suɺciently sensitive adaptive threshold to avoid missing any
relevant events. The times of these spikes and the channels on which
they occurred were recorded and cleaned to remove positive spikes
and other artefacts.
The cultures used for this analysis were drawn from two data sets: the
publicly available data set from [7] and a data set recorded at the Uni-
versity of Reading. Cultures from both labs were produced using the
same protocol and plated at similar densities and were found to have
very similar bursting characteristics.
In choosing recordings for this study, two criteria were considered: that
there be a suɺcient number of network-wide bursts for statistical sig-
nificance, and that the natural behaviour of the cultures be apparent.
Cultures aged 21 ± 1 DIV exhibited robust bursting behaviour, there-
fore the first criterion was met by choosing cultures of this age where
the majority of the channels showed regular burst activity. The latter
criterion was satisfied by ensuring that all recordings were made under
electrical and pharmacological control conditions. In total, 24 record-
ings met these criteria and were studied in this investigation.

2.2. Burst detection

Network burst detection was performed using the SIMMUX algorithm
[23], which identifies bursts as periods of significantly heightened spik-
ing frequency that spanned multiple channels. Overlapping bursts
were merged to give a sequence of bursts βr,b for each recording
r ∈ [1 . . . 24], such that b ∈ [1 . . . ηr ], where ηr is the number of
bursts detected in recording r. For each burst, the duration was de-
fined as the time between the first spike and the last spike and the size
was defined as the number of spikes in the burst, across all channels.
The inter-burst interval (IBI) was defined as the time between the last
spike of one burst and the first spike of the subsequent burst. For each
burst, channels that contributed more than 0.15N spikes to the burst
were said to be active, where N was the number of spikes on the
channel that contributed the most.

2.2.1. Burst classification
The burst size distributions from recordings were classified into three
categories: fixed and variable distributions (unimodal with low and high
variance, respectively) and bimodal distributions (containing two dis-
tinct classes of burst sizes) [7]. The classification was done using the
technique described in [7], by first dividing the burst size distribution
into three segments (classifying small, medium, and large bursts). First
a burst size, N, was chosen as the third largest burst in the sequence,
then bursts were classified such that small < 0.25N ≤ medium <
0.75N ≤ large. Then the burst distributions were defined as shown
in equation 1. Examples of the three burst distribution classes and their
frequencies within the data set are shown in Figure 1.

Fixed ≡ |large| > |medium| ≥ |small|

Variable ≡ |medium| ≥ |large|

Bimodal ≡ |large| > |medium| < |small|

(1)

, where |·| denotes the number of bursts in a segment.

2.2.2. Temporal burst analysis
Before considering the spatio-temporal properties of functional connec-
tivity in these bursts, some analysis was performed to assess the lin-
ear dependencies between the burst properties. This analysis involved
performing auto- and cross-correlations between the burst durations,
sizes, and preceding IBIs to judge how these properties interrelate.
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2.3. Correlations and significance

A number of tests for linear dependence between variables were per-
formed in this study using correlation. These correlations were per-
formed by finding the Pearson’s Coeɺcient of Correlation between two
sequences of values at 0 or several lags. At each lag step, significance
was assessed using Student’s t-test, α = 0.05, unless stated other-
wise.

2.4. Synchrony analysis

For the two spike trains, si and sj , simultaneously recorded from chan-
nels, ci and cj , the synchrony between them was defined by σ (si, sj ).
There are many ways to assess and define synchronous spike activ-
ity [16, 17], but for the purpose of this study, synchrony between two
spike trains was defined as reoccurring coincident spike patterns. Two
parallel techniques were chosen to evaluate σ to ensure that the results
would not be overly biased by the chosen technique.
The first, denoted σD , is related to lagged correlation and mutual infor-
mation [24] and requires that the spike trains be discretised into binary
vectors. While this technique is more conventional, it has a number of
known disadvantages [24, 25]. The second technique, denoted σS , is
related more to the concept of phase synchrony [17] and requires that
non-binary instantaneous phase vectors be created from each spike
train [28]. This technique is faster, time-scale adaptive, but less com-
monly used than the first. Since bursts tend to begin with extremely
high spike frequency and then fade out, the time-scale adaptive prop-
erty of this technique might be helpful. In both cases, σ was normalized
relative to the expected synchrony from two independent spike trains
with the same spiking frequencies as si and sj . Both techniques are
commutative and result in symmetric similarity matrices.
These similarity matrices were then thresholded to produce unweighted
and undirected functional connectivity networks (FCNs), GD

r,b andGS
r,b,

respectively, where b is the index of the burst in recording r. The FCNs
are defined on a constant set of nodes that represent the electrodes of
the MEA. Edges between the nodes represent significant synchrony.

2.4.1. Binned correlation, σD

Taking inspiration from the Unitary Eventsmethod discussed in [24], the
spike trains were first discretised into binary vectors of 1ms bins, s∗

i and
s∗

j of length n, where a bin had a value of 1 when at least one spike oc-
curred during that bin and 0 otherwise. Then, σD(si, sj ) = σ ∗

D(s∗
i , s∗

j )
(equation 2) gave the similarity value between these two vectors. A
maximum lag of 14 ms was chosen to reflect the likely maximum time
window in which to observe amonosynaptic interaction across anMEA.
Since the vectors are much longer than the number of lag steps used
(≈ 700 vs 14), the reduction in temporal overlap from lags is negli-
gible. Note that σ ∗

D is normalised such that σ ∗
D > 1 if there are more

synchronous events than onemight expect from two independent spike
trains with spiking frequencies of si and sj , and σ ∗

D ≤ 1 otherwise.

σ ∗
D(s∗

i , s∗
j ) = max

ℓ∈[−14,14]

n(s∗
i (t − ℓ) · s∗

j (t))∑
t s∗

i (t)
∑

t s∗
j (t)

(2)

2.4.2. Binless SPIKE distance, σS

The binless technique used here was the SPIKE distance, defined
in [28], where SPIKE = 0 when two spike trains are identical and
SPIKE → 1 as the spike trains become progressively desynchro-
nised. To mitigate the eɼect of frequency, an empirical distribution was
created from the SPIKE value of surrogate spike trains, generated
using dithering (100 surrogates, 5 ms jitter window) [24]. A p-value,

pS (si, sj ), was found from the empirical distribution to indicate the sig-
nificance of the SPIKE distance. Thus, σS (si, sj ) = 1 − pS(si, sj ),
such that σS → 1 when two spike trains become more synchronised
than expected by chance.

2.4.3. Thresholding
Once σ values were found for each pair of channels in a burst, a thresh-
old was chosen to convert the similarity matrices into FCNs. To ensure
that all active nodes had neighbours, equation 3 was used to define a
uniform threshold, T , such that an edge was placed between nodes i
and j in a network if σ (si, sj ) >= T .

T = min
i

[
max

j
σ (si, sj )

]
(3)

2.5. Complex network models

Each recording produced a sequence of FCNs, Gr,b, associated with
the bursts found in that recording. These FCNs represent a stochastic
series of undirected and unweighted complex networks on a fixed set
of v nodes. Thus, in any burst, an FCN, Gr,b, is a network randomly
chosen from the space of all possible networks on v nodes, where sig-
nificant synchrony between nodes i and j ∈ [1 . . . v ] during burst b of
recording r is denoted eij (r, b) = 1 and 0 otherwise. As v increases,

this state space scales as 2v2
, making the problem quickly intractable.

By understanding the precise dependencies in the system, a concise
model might be produced that adequately captures the dynamics.
To investigate these spatio-temporal dependencies in the FCNs, three
network models were considered. The first two models were homo-
geneous and heterogeneous Erdös-Renyi random graph models, de-
noted HomER and HetER, respectively. The HomER model as-
sumes that edges appear in an FCN independently of each other, their
place in the network, and of their own pasts. The HetER model main-
tained the temporal and inter-edge independence, but considers that
edgesmay appear more frequently between some nodes than between
others. For each recording, r, the HomER model’s single parameter,
pr = P(eij (r, b) = 1), was fit according to equation 4, and theHetER
model’s v2 parameters, prij = P(eij (r, b) = 1), were fit according to
equation 5.

pr = 1
ηrv2

ηr∑

b=1

v∑

i=1

v∑

j=1

ei,j (r, b) (4)

prij = 1
ηr

ηr∑

b=1

ei,j (r, b) (5)

The third model, denoted the Independent Birth-Death model (IndBD),
was based on a model presented by Grindrod and Higham [26], in
which edges are dependent on their pasts but remain independent
of each other. In this model, an edge is a binary Markovian birth-
death process (P(eij (r, b)|eij (r, 1), eij (r, 2), . . . , eij (r, b − 1)) =
P(eij (r, b)|eij (r, b − 1))), such that it can be born (transition from
0 → 1) or die (transition from 1 → 0) as the network transitions from
(b − 1) → b. Thus the model for each recording is defined by the 2v2

parameters defined in equation 6.

αrij = P(eij (r, b) = 1|eij (r, b − 1) = 0)

ωrij = P(eij (r, b) = 0|eij (r, b − 1) = 1)
(6)
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These birth paramters, α , and death parameters, ω, were fit using ex-
pectation maximization, as described in [26].

2.5.1. Model capture performance

Each model was evaluated to compare how well each captured the dy-
namics of the data. The evaluation was performed first by considering
how well individual edge series were captured, and then by considering
how well entire network series were captured.

The capture performance was evaluated by using each fitted model to
generate 1000 surrogate networks, whose likelihoods, given the model
that created them, were used to create an empirical distribution for that
model. Then, the likelihood of each real network sequence was found,
given the model which was fitted to it, and compared to the empiri-
cal distributions to get a p-value. The p-value for a model indicated
the probability that the model could have generated the real sequence
and was used to assess the quality of fit. Since all three models have
edges that evolve independently, the likelihood of a network is simply
the product of the likelihoods of the edges.

2.6. Network topology analysis

All three models described in section 2.5 assume that the edges in the
FCNs are independent of each other. To evaluate this hypothesis, four
topological properties were compared between the real networks and
model generated surrogates. Since brain networks regularly have a
small-world topology [11], the first three measures evaluated this prop-
erty: average path length (also called characteristic path) and mean
clustering coeɺcient measured the long and short range eɺciency, re-
spectively [20, 27], and small-worldness was used to evaluate whether
the MCC to APL ratio was greater than might be expected in equiva-
lent random networks [18]. The last was mean node degree, a typical
indicator of the edge density of a network [20].

For each FCN and its related surrogates, these four measures were cal-
culated and their distributions across the bursts within each recording
were compared.

3. Results

3.1. Network bursts

Twenty-four electro-physiological recordings taken from rodent cortical
neurones cultured on MEAs were analysed and bursts of excitation
were identified using the SIMMUX algorithm and their sizes, durations,
and inter-burst intervals were identified (see section 2.2). The linear
dependencies between these properties were assessed with cross-
correlation. A strong positive correlation was found between the burst
size and burst duration, which is unsurprising given that neurones have
a minimum post-firing refractory time, limiting their maximum spiking
frequency.

The nature of periodicity in the bursting patterns of the cultures was
investigated, first by defining burst periods as the duration of a burst
combined with its preceding inter-burst interval, and then by scatter-
plotting and correlating each period duration with the subsequent one
(Figure 2). It was found that many variable and bimodal cultures were
periodic, where long burst periods tended to follow short ones and vice-
versa. Fixed distribution cultures showed a more positive linear rela-
tionship, but the bursts in these cultures are by definition very similar in
size.

Table 1. Model Capture Performance. The percentage of models that fit
(p ∈ [0.025, 0.975]) their corresponding data sets are shown for
each model and each data set.

Model Mean edge fit Mean network fit
Binless Binned Binless Binned

HomER 46.48% 38.64% 100.00% 100.00%
HetER 99.58% 99.54% 100.00% 100.00%
IndBD 99.45% 99.78% 70.83% 83.33%

3.2. Functional connectivity

The binned and binless synchrony techniques described in section 2.4
were applied to each burst from each culture and the results were
thresholded to yield sequences of functional connectivity networks for
each culture. For each network of each sequence, four network prop-
erties were calculated: Average Path Length (APL), Mean Clustering
Coeɺcient (MCC), Mean Node Degree (MND), and Small-Worldness
(SW); refer to section 2.6 for details. In Figure 4, the topological pa-
rameters from binned and binless functional connectivity networks were
compared and showing that the two techniques are largely analogous.

3.2.1. Range dependence
In 19 of the binless sequences and in 14 of the binned sequences,
edges were significantly more likely to appear between a pair of nodes
if their corresponding electrodes were closer on the MEA. In a single
binned sequence, there was a small but significant positive relation-
ship which can be explained by there being no activity on the central
electrodes of the MEA (likely because the cells in the centre had died
or lifted oɼ the surface). However, none of these correlations were
stronger than −0.3, 14% were stronger than −0.2, and around 30%
were not significant at all.

3.2.2. Topological dependence on burst size
The eɼect of burst size on each of the four topological properties from
a network was assessed by correlating each property with the size of
the burst that generated the network. Scatter-plots of these compar-
isons are shown in Figure 3 for network sequences produced by each
technique.
In most sequences produced by both synchrony techniques, the mean
degrees of the networks increased as the bursts grew in size and this
had direct consequence for mean clustering. The relationship between
average path length and burst size was not quite as clear, though. With
increased numbers of edges in the network, one would have expected
the APL to decrease, and while it did for the binned variable cultures,
the opposite was generally true for all others, especially for bimodal
cultures. Scatter-plotting APL versus burst size for bimodal cultures,
it was not clear that there was as strong a linear relationship as was
suggested by the correlation results.

3.2.3. Models of functional connectivity
The three models, HomER, HetER, and IndBD (described in section
2.5), were fitted to the sequence of networks from each culture and
were each used to generate 1000 sequences of surrogate networks
for each culture. The surrogate network sequences generated from a
model were used to represent the space of all likely such sequences.
By comparing these surrogate sequences to those derived from the
culture recordings, the validity of the hypotheses in the models were
tested.
The first test for model fit was done by assessing the probability that
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Figure 2. Temporal burst period dependence. Burst period lengths from each the 24 recordings are scatter-plotted against the subsequent burst period length. The
burst period is the duration of a burst combined with the preceding period of quiescence (the inter-burst interval). For most cultures, longer periods are
generally followed by shorter ones and vice-versa, though this is not universal.

each model could have produced the real network sequence to which
it was fitted. This was done, as described in section 2.5.1, for the time
evolution of each edge through a sequence of networks and for the
entire network sequences themselves. The percentage of edge and
network models where the p-values were within 95% of the empirical
distribution are shown in table 1. The HetER and IndBD models fit the
time-evolving edge series best, but the HetER and HomER models fit
the time-evolving network series best.
To assess how each model captured the topological properties of the
data, these properties were calculated from the surrogate networks and
the results were compared. It was found that while MND was captured
in mean, but not in variance, APL was generally overestimated by all
three models and MCC was generally underestimated (Table 1). Since
Small-Worldness is defined as having higher MCC and lower APL than
equivalent random networks, it was not surprising to see SW also gen-
erally underestimated.

4. Discussion

To assess the spatio-temporal dependencies in both excitation and
functional connectivity within network bursts, correlations were per-
formed between burst properties, functional connectivity networks
were produced, and the properties of these networks were analysed.
The burst property correlations found that most variable and bimodally
distributed cultures tend to a degree of periodicity, in which short burst

periods follow long ones, and vice-versa.
Once functional connectivity networks (FCNs) were constructed from
the bursts, further spatial and temporal dependencies were investi-
gated between the synchronous links. In many cultures, significant
range dependence was found, suggesting that synchronous links were
more likely to be found between electrodes that are located close to-
gether on the surface of theMEA. This is not surprising, considering that
proximal electrodes may detect much of the same local field potential
and that neighbouring neurones might be more likely to be synaptically
connected. However these correlations were inconsistent and minor,
suggesting that the distance between a pair of electrodes is not a ma-
jor factor in predicting the likelihood of a functional connection between
them.
Topological properties were calculated from the networks and these
were compared to the sizes of the bursts that had produced them. It
was found that in variable and bimodal cultures, larger bursts tended to
have larger minimum clustering coeɺcients and larger minimum node
degrees, though the values do not linearly follow the burst size. In big-
ger bursts, more channels are active in the burst, increasing the max-
imum number of possible functional links. Thus, it is not surprising to
observe that larger bursts might produce more edges (as reflected by
the degree), however because these additional edges also come with
additional nodes, the degree, clustering, or path length do not neces-
sarily follow linearly.
Spatiotemporal relationships between edges were investigated through
the use of three models of edge appearance in functional networks.
The first model, HomER, hypothesised that edge might appear com-
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Figure 3. Topological dependence on burst size in network sequences. Each of the four topological properties (Average Path Length, Mean Clustering Coeɺcient,
Mean Node Degree, and Small-Worldness) from each of the three classes (variable, bimodal, and fixed) and constructed with each synchrony technique
(Binless and Binned) are shown scatter-plotted against burst size, measured in 103 spikes.
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Figure 4. Comparison of topological properties between Binned networks and
Binless networks. The synchrony in the Binned networks, D, was
assessed using a binned covariance measure, while the synchrony
in the Binless networks, S, was assessed using the binless SPIKE
distance measure. The dramatic peaks at 0 indicate that the two
techniques produce networks with very similar topologies, with the
binned technique producing slightly more edges, as indicated by the
right weighted MND and MCC, and left-weighted APL.

pletely at random between any nodes, independent of each other or
their pasts. For capturing individual edge progressions through se-
quences of networks, this model was a poor choice, only accurately
capturing the dynamics of 46.48% and 38.64% of the edge individual
sequences found in the data, for Binless and Binned networks respec-

tively. However, this model quite accurately captured the network pro-
gression dynamics when assuming that all edges were independent.
The second model, HetER, hypothesised that each pair of nodes might
have a specific probability of being joined by a functional link in a given
network, but maintained that these links would be independent of each
other and their pasts. This model very accurately captured both the
edge and network progression dynamics.
The final model, IndBD, added to the HetER hypothesis that the ap-
pearance of an edge between a pair of nodes may also be depen-
dent on whether those nodes were functionally linked in the previous
burst. Since the edge appearance dynamics were modelled with er-
godic Markov chains, the steady-state behaviour closely resembled
that of the independent identically distributed edge dynamics of the
HetER model. However, while this model captured the edge dynamics
very accurately, only 70% and 83% of the network sequences’ dynam-
ics were captured, for Binless and Binned networks, respectively. This
suggests that the functional network observed during a burst has little
dependence on the network observed during the previous burst.
The three models used in this study assume that the edge dynamics
in functional networks are independent from each other. The valid-
ity of this assumption was tested by observing the general topologi-
cal properties of surrogate networks generated by these models and
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Figure 5. Topological properties of networks produced from real data sets and the models fitted to them. Each subplot shows the aggregate distributions of one
network property from networks generated using one of the two synchrony techniques (denoted real) and the surrogate network generated from the three
models fit to those networks. Regardless of synchrony technique, Average Path Length is generally overestimated by the models and Mean Clustering
Coeɺcient is generally underestimated. The models tend to reproduce the average mean node degree of the data, but not the variance. Since APL and
MCC are poorly captured, Small-Worldness is correspondingly underestimated.

comparing them to analogous properties from the real data. In both
Binless and Binned networks, the average path length was generally
over-estimated by the models, and the mean clustering coeɺcient was
generally under-estimated. The models tended to produce an aver-
age mean node degree similar to the data, but the data exhibited more
than triple the variation. The lower MCC and higher APL of the surro-
gate networks shows that none of the models capture the small-world
properties of the biological networks; properties that are thought to be
crucial to information passing and storage [11].
By assessing synchrony by two diɼerent techniques, it was found that
while the Binned technique tended to produce slightly denser networks,
the specific definition of functional connectivity did not drastically aɼect
the small-world properties of the networks.

5. Conclusion

This study used a variety of techniques to investigate the spatial and
temporal dependencies of evolving functional connectivity in cultures of
cortical neurones. Understanding these dependencies will provide the
insight necessary to construct models that can accurately capture the
dynamics of bursts of activity in neuronal networks. Suchmodels would
be useful for classifying burst dynamics, gaining insight into neuronal
network structure, and planning interventions to prevent or alter the

nature of these bursts, allowing further understanding of the computa-
tional capabilities of biological neuronal networks and perhaps enabling
their use as suitable robotic controllers [5]. While the present study fo-
cuses on randomly arranged neuronal networks in culture, these find-
ings might generalise to the highly structured networks found in the
whole brain, where network bursts are either formative or pathologi-
cal [8], and interventions might be used to repair damage or pre-empt
seizures.
This study found that many cultures tend to exhibit periodic sequences
of longer bursts followed by shorter bursts and vice-versa. It was also
found that the functional networks within these bursts do not depend
on the preceding bursts, but do have strong small-world topologies that
are not captured by models that lack inter-edge dependencies. This
means that not all functional pathways are activated in every burst, nor
are pathways regularly activated in subsequent bursts. However, the
presence of spatial dependencies would indicate that when a pathway
between two nodes is activated, it is activated along with a regular set
of other pathways. This might point to the presence of discrete sub-
networks or consistent information flow pathways within the neuronal
network, as are found in memory recall, discrimination, and decision
making in whole brain structures.
Random network models that aim to make use of these findings would
need to consider the inter-edge dependencies and the resultant small-
world characteristics as well as the variability of burst durations and
inter-burst intervals. While the Watts-Strogatz model for randomly gen-
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erating small-world networks [18] or the configuration model for gener-
ating networks with proscribed degree distributions [20] might be rea-
sonable places to start, neither of these models can capture the inter-
edge dependencies or the variability seen in the data. Instead, it would
likely be better to search for a model inspired by the underlying biolog-
ical system, and perhaps one that uses finer-grained and more regular
time-steps than those investigated here. Such a model, using the past
interplay between node dynamics to construct functional connections
at any given step has been recently shown to be promising [29]. An-
other possible direction might be to track a resource, such as an ab-
stract ’cellular energy’ which might encompass a variety of intra-cellular
properties (eg. number of available vesicles), and use this resource to
regulate the frequency and duration of bursting events. Also, once a
suitable model has be found to capture the dynamics in the data, such
a model would be limited by the manageability of its inverse solution.
Supposing that these challenges can be overcome, these models may
provide a key to improving clinical neurological treatments, understand-
ing neuronal network function, and building the next generation of in-
terfaces between biological tissue and robotic systems.
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