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ABSTRACT. This paper focuses on the problem concerning the location and

the number of zeros of those polynomials when their coefficients are restricted

with special conditions. The problem of the number of the zeros of reciprocal

Littlewood polynomials on the unit circle T is discussed, the interest on bounds

for the number of the zeros of reciprocal polynomials on the unit circle arose

after 1950 when Erdös began introducing problems on zeros of various types of

polynomials. Our main result is the problem of finding the number of zeros of

complex polynomials in an open disk.
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1. Introduction

Locating zeros of polynomials with special conditions for the coefficients, in

particular, the location and the number of zeros of those polynomials having

coefficients in a finite subset of the complex plane C has applications in many ar-

eas of applied mathematics, including linear control systems, electrical networks,

root approximation, and signal processing, so there is a need for obtaining better

results in these subjects. A review on the location of zeros of polynomials can

be found in [1], [11], [14], [15], and [17]. Also, a problem is of finding the number

of the zeros of reciprocal Littlewood polynomials on the unit circle. Lakatos and

Losonczy [10] considered reciprocal polynomials which all their zeros are on the

unit circle. Erdélyi [7] proved that every reciprocal Littlewood polynomial has

at least one zero on the unit circle, but recently Mukunda [13: Theorem 3] im-

proved this result for odd degree reciprocal Littlewood polynomials by proving
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that every reciprocal Littlewood polynomial of odd degree n ≥ 3 has at least

three zeros on T, and also he determined all Pisot numbers whose minimal poly-

nomials are Littlewood polynomials. Salem [16] showed that the set of all Pisot

numbers is closed.

A Pisot number is a real algebraic integer greater than 1, all of whose conju-

gates lie inside the open unit disk.

If p(z) is a polynomial in R[z] of degree n, then we define p∗(z) = znp(z−1),

and we say that p(z) is reciprocal if p(z) = ±p∗(z).
In what follows, C[z] denotes the set of all complex polynomials with com-

plex coefficients and we consider two subsets Un and Ln of C[z] of all degree n

polynomials h,

h(z) =
n∑

k=0

akz
k,

so that if h ∈ Un, then |ak| = 1 for all k, and if h ∈ Ln, then ak = ±1 for all k.

The members of Un and Ln are called Unimodular and Littlewood (or sometimes

real unimodular) polynomials, respectively.

Next, let p ∈ C[z] be a polynomial of degree n as

p(z) =

n∑
k=0

akz
k. (1.1)

In this work, we will obtain bounds for the zeros of the following three types of

polynomials in (1.1).

Type 1: |a0| = 1 and |ak| ≤ 1 for every k ∈ {1, 2, . . . , n}.
Type 2: |an| = 1 and |ak| ≤ 1 for every k ∈ {0, 1, . . . , n− 1}.
Type 3: |a0| = |an| = 1 and |ak| ≤ 1 for every k ∈ {1, 2, . . . , n− 1}.
Throughout the paper D(z0, r) denotes the open disk in the complex plane

centered at z0 with radius r > 0.

2. On the location of zeros of polynomials

There are many new results about the location of zeros and bounds for the

zeros of polynomials with restricted coefficients. In this section, we state some

results about the location of zeros and the number of zeros of some types of

polynomials. Borwein, Erdélyi, and Littmann [4] proved that any polynomial

of type 3 has at least 8
√
n logn zeros in disk with center on the unit circle and

radius 33π logn√
n
. The first theorem proved in [3], provides upper bounds for the

number of real zeros of those polynomials that their coefficients are restricted in

the closed unit circle.
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������� 2.1�

(i) There is an absolute constant c1 > 0 such that every polynomial p of the

form

p(x) =

n∑
j=0

ajx
j , aj ∈ C, |a0| = 1, |aj | ≤ 1,

has at most c1
√
n zeros in [−1, 1].

(ii) There is an absolute constant c2 > 0 such that every polynomial p of the

form

p(x) =

n∑
j=0

ajx
j , aj ∈ C, |an| = 1, |aj | ≤ 1,

has at most c2
√
n zeros in R\(−1, 1).

(iii) There is an absolute constant c3 > 0 such that every polynomial p of the

form

p(x) =

n∑
j=0

ajx
j , aj ∈ C, |a0| = |an| = 1, |aj | ≤ 1,

has at most c3
√
n real zeros.

The next theorem which is due to Erdélyi [7], give an upper bound for the

number of zeros of polynomials of type 1.

������� 2.2� Let α ∈ (0, 1). Every polynomial of the form

p(x) =

n∑
j=0

ajx
j , aj ∈ C, |a0| = 1, |aj | ≤ 1,

has at most (2/α) log(1/α) zeros in the open disk D(0, 1− α).

Now we provide a classical bound due to Caushy [5] for the zeros of polyno-

mials with complex coefficients. Some other classical bounds can be found in

[11], [12], and [14].

������� 2.3 (Cauchy’s bound)� Let p(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn

be a monic polynomial with complex coefficients. Then all the zeros of p(z) lie

in the open disk D(0, 1 +A), where A = max |aj |, for every j = 0, . . . , n− 1.

The following theorem and lemma which are respectively proved in [9] and

[13] have key role in the proof of the theorem (Theorem 3.1) about the number

of zeros of reciprocal Littlewood polynomials on the unit circle.
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������� 2.4� Let γn be a Pisot number of degree n whose minimal polynomial

is of the form

pn(z) = zd +

d−1∑
k=0

akz
k,

where ak = ±N (k = 0, . . . , d− 1) for positive integer N ≥ 2. Then

pn(z) = zn −N

n−1∑
k=0

zk,

and the sequence {γn} is strictly increasing and converges to N + 1.

����� 2.1� Suppose p(z) is a polynomial in C[z], m is a positive integer and w

is a complex number on T. Then the number of roots of Rm(z) = wzmp(z)±p∗(z)
in the closed unit disk is greater than or equal to the number of roots of Sm(z) =

zmp(z) in the same region.

Notice that p(z) and p∗(z) have the same zeros on the unit circle, and that

these are also zeros of both Rm(z) and Sm(z).

3. The main results

In this section, we state and prove some results concerning bounds for the

zeros of some classes of complex polynomials, among them the unimodular poly-

nomials, and also we find bounds for the number of zeros of some types of polyno-

mials which lie in an open disk. The first theorem of this section is an important

result about the number of the zeros of reciprocal Littlewood polynomials on

the unit circle. The next lemma provides a bound for the number of zeros of

some complex reciprocal Littlewood polynomial on the unit circle. These can

be found in [6].

����� 3.1� The reciprocal polynomial p(z) = z2n + z2n−1 + · · ·+ zn+1 − zn +

zn−1 + · · ·+ z + 1 has at least (2n− 8)/3 zeros on the unit circle.

P r o o f. Let q(z) := (z − 1)p(z) = z2n+1 − 2zn+1 + 2zn − 1. Fix z ∈ T and let

t ∈ R be so that z = eit. Then by Euler’s identity q(eit) = 2iψ(t)e
2n+1

2 ti, where

ψ(t) = sin 2n+1
2 t − 2 sin t

2 . Since ψ(2π − t) = ψ(t), so the function ψ(t) has the

same number of zeros in the intervals
[
0, π3

]
and

[
5π
3 , 2π

]
, but ψ(t) has at least

(n− 4)/3 zeros in the interval
(
0, π3

]
, because it changes its sign in the interval[

2kπ + π

2n+ 1
,
2(k + 1)π + π

2n+ 1

]
⊂

(
0,
π

3

]
,
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for k = 0, 1, . . . ,
[
n−4
3

]
. Therefore, ψ(t) has at least (2n− 8)/3 zeros in the

interval (0, 2π), that is, the function q(eit) has at least (2n− 8)/3 zeros in the

interval (0, 2π). Thus the polynomial p(z) has at least (2n− 8)/3 zeros on T. �

������� 3.1� Every reciprocal Littlewood polynomial of odd degree m ≥ 3 has

at least three zeros on the unit circle. Every reciprocal Littlewood polynomial of

even degree m ≥ 14 has at least four zeros on the unit circle.

P r o o f. Let R(z) = a0 + a1z+ · · ·+ an−1z
n−1 + anz

n + an−1z
n+1+ · · ·+ a0z

2n

be a reciprocal Littlewood polynomial of degree 2n, and so R(z) has 2n zeros.

Note that 1/z0 is a zero of R(z), whenever z0 is a zero of R(z). Since R(±1) is

an odd integer, so both R(1) and R(−1) are nonzero, and R(z) has at least one

zero on the unit circle (see [7]), hence it must have the even number of zeros

on the unit circle. If this the number is exactly two, then R(z) has n − 1 zeros

inside the open unit circle and we write R(z) = an/2
(
znp∗(z) + p(z)

)
, where

p(z) = zn + 2an

n−1∑
k=0

akz
k.

Now by Lemma 2.1 and that R(z) has n− 1 zeros inside the open unit circle

we conclude that znp∗(z) has n + 1 zeros inside the closed unit circle, that is,

p∗(z) has only one zero in the closed unit circle. That means p(z) has only one

zero γ outside the open unit circle, so γ is real and |γ| is a Pisot number. If we

put qn(z) = zn− 2zn−1− · · ·− 2z− 2, then by Theorem 2.4, for N = 2, we have

p(z) = qn(z) if γ > 1, and in this case

R(z) = −an(z2n + z2n−1 + · · ·+ zn+1 − zn + zn−1 + · · ·+ z + 1)

and p(z) = (−1)nqn(−z) if γ < −1, also in this case,

R(z) = (−1)n+1an
[
(−z)2n + (−z)2n−1 + · · ·+ (−z)n+1 − (−z)n

+ (−z)n−1 + · · ·+ (−z) + 1
]
.

Therefore, if degree R(z) ≥ 4, then it has at least four zeros on the unit circle,

except possibly when R(z) is of the form r(z) = z2n+ z2n−1+ · · ·+ zn+1− zn+

zn−1 + · · ·+ z + 1. On the other hand, by Lemma 3.1 for n ≥ 10, we conclude

r(z) has at least (2n− 8)/3 ≥ 4 zeros on T. Finally, a computational argument

with computer for n ∈ {7, 8, 9}, shows that the polynomial r(z) has at least four

zeros on the unit circle and this completes the proof. �

Note that bounds on degree m of polynomials in Theorem 3.1 are sharp, for

example, the polynomial S(z) = z + 2 has no zeros on T, and the polynomial

R(z) = z12+ z11+ z10+ z9+ z8+ z7− z6+ z5+ z4+ z3+ z2+ z+1 has only two
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zeros on T. The next theorem shows that a bound sharper than Cauchy’s bound

can be obtain if the length of all consecutive coefficients in a monic polynomial

are small enough. For example, the polynomial p(z) = 1 + z + 2z2 + 2z3 + z4.

������� 3.2� Let p(z) = a0 + a1z + · · · + an−1z
n−1 + zn be a polynomial in

C[z]. If z0 is any zero of p(z), then |z0| < 1+A, where A = max{|a0|, |a1 − a0|,
. . . , |1− an−1|}.

P r o o f. We may assume that |z0| > 1, for otherwise there is nothing to prove.

Now consider the polynomial q(z) := (1− z)p(z). If |z| > 1, then we obtain

|q(z)| ≥ |z|n+1 − {|a0|+ |a1 − a0||z|+ · · ·+ |1− an−1||z|n}

≥ |z|n+1 −A

n∑
i=0

|z|i

= |z|n+1 −A
|z|n+1 − 1

|z| − 1

> |z|n+1 −A
|z|n+1

|z| − 1

=
1

|z| − 1

{|z|n+2 − |z|n+1(1 +A)
}
.

We can write

|z|n+2 − |z|n+1(1 +A) = |z|n+1[|z| − (1 +A)].

Hence, we conclude that |q(z)| > 0, whenever |z| ≥ 1 + A. Therefore, all the

zeros of q(z) lie in the disk D(0, 1+A). Since p(z) and q(z) have the same zeros,

thus |z0| < 1 + A. �

	���

��� 3.2.1� Let p(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn be a polynomial

in C[z] such that |ai| ≤ |a0|, for every i = 1, . . . , n − 1. Then all the zeros of

p(z) lie in the open disk D(0, 1 + r), where r = max{1 + |a0|, 2|a0|}.
������� 3.3� Suppose p(z) = a0+a1z+· · ·+anzn is a degree n ≥ 1 polynomial

in C[z] such that for every i = 0, . . . , n− 1, |ai| ≤ |an|. If z0 is any zero of p(z),

then |z0| < 2.

P r o o f. First, we see that

|p(z)| ≥ |an||z|n − {|a0|+ |a1||z|+ · · ·+ |an−1||z|n−1
}

= |an||z|n
{
1−

{ |a0|
|an|

1

|z|n + · · ·+ |an−1|
|an|

1

|z|
}}

.
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It is clear that if |z0| ≤ 1, then there is nothing to prove, so without loss of

generality we assume |z| > 1. Because of |ai| ≤ |an| for all i, by above we get,

|p(z)| ≥ |an||z|n
{
1−

n∑
i=1

1

|z|i
}
> |an||z|n

{
1−

∞∑
i=1

1

|z|i
}

= |an||z|n
{
2− 1

1− 1
|z|

}
= |an||z|n

{ |z| − 2

|z| − 1

}
.

Thus |p(z)| > 0, whenever |z| ≥ 2 and the proof is complete. �

	���

��� 3.3.1� If p is a polynomial of type 3, then every zero of p lie in the

annulus
1

2
< |z| < 2.

P r o o f. The proof is based on the fact that if p(z) is of type 3, then q(z) =

znp(1/z) is also of type 3. �

Remark 1� Since every unimodular polynomials is of type 3, so the above

corollary satisfies for the unimodular polynomials.

���
������� 3.4� Suppose p is a degree n ≥ 1 polynomial of type 2. If z0 is

any zero of p, then |z0| ≤ r, where r = max{1, s} < 3 and s �= 1 is the positive

zero of the equation

q(z) = zn+2 − 3zn+1 + z + 1.

P r o o f. Consider the polynomial (1− z)p(z), then we have

|(1− z)p(z)| =
∣∣a0 + (a1 − a0)z + · · ·+ (an − an−1)z

n − anz
n+1

∣∣
≥ |an||z|n+1 − {|a0|+ |a1 − a0||z|+ · · ·+ |an − an−1||z|n}
≥ |z|n+1 + 1− 2 {1 + |z|+ · · ·+ |z|n}
= |z|n+1 + 1− 2

|z|n+1 − 1

|z| − 1
=

|z|n+2 − 3|z|n+1 + |z|+ 1

|z| − 1
.

Applying Descarte’s rules of sign, q(z) has only two positive zeros, say 1 and s.

Clearly, q(s) = 0 implies that s < 3. Since q(1) = 0 and sign{q(0)} is positive,

therefore |q(z)| > 0 if |z| > r and so |(1 − z)p(z)| > 0 if |z| > r, this completes

the proof. �

Finally, we will use a well-known theorem of complex analysis; namely,

“Jensen’s Formula” it provides bounds for the number of zeros of polynomi-

als in a given open disk.
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����� 3.2 (Jensen’s Formula)� Suppose that h is a nonnegative integer and

that

f(z) =
∞∑

k=h

ck(z − z0)
k, ch �= 0,

is analytic on the closure of the disk D(z0, r) and also assume that the zeros of

f in D(z0, r)\{z0} =
{
z ∈ C : 0 < |z − z0| < r

}
are z1, z2, . . . , zm, where each

zero is listed as many times as its multiplicity. Then

log |ch|+ h log r +

m∑
k=1

log
r

|zk − z0| =
1

2π

2π∫
0

log |f(z0 + reiθ)| dθ.

������� 3.5� Let p be a polynomial of type 1 and 0 < α < 1. Let z0 ∈ C be

so that D(z0, 1− α) ⊂ D(0, 1). Then p has less than 2
α log

(
2
αc(α)

)
zeros in the

open disk D(z0, 1− α), where c(α) is a positive constant depending only on α.

P r o o f. The inequality |z|
1−|z| < 1 for |z| < 1

2 implies that |p(z)| > 1− |z|
1−|z| > 0.

If α ≥ 1
2 + |z0| and z ∈ D(z0, 1 − α), then |z| < 1

2 . Hence, p does not have

any zeros in D(z0, 1 − α), whenever α ≥ 1
2 + |z0| (or α ≥ 1

2 ), thus in this

case the conclusion of the theorem is true, so assume that 0 < α < 1
2 . Since

|z0|+ 1− α < 1, we obtain

|p(z0)| ≥ |a0| −
n∑

i=1

|ai||z0|i

≥ 2−
∞∑
i=0

|z0|i

> 2−
∞∑
i=0

αi

= 2− 1

1− α
=

1− 2α

1− α
.

If z ∈ D(0, 1), then we have the growth condition

|p(z)| =
∣∣∣∣

n∑
i=0

aiz
i

∣∣∣∣ ≤
∞∑
i=0

|z|i = 1

1− |z| .

Let z1, z2, . . . , zs be the zeros of p in D(z0, 1− α
2 )\{z0} and each zero is listed

as many times as its multiplicity, then by Jensen’s formula we have

log |p(z0)|+
s∑

i=1

log
1− α

2

|zi − z0| =
1

2π

2π∫
0

log
∣∣∣p(z0 + (

1− α

2

)
eiθ

)∣∣∣ dθ. (3.1)
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From the growth condition, we conclude that

1

2π

2π∫
0

log
∣∣∣p(z0 + (

1− α

2

)
eiθ

)∣∣∣ dθ ≤ log
2

α
. (3.2)

In other words, if z1, z2, . . . , zm (m ≤ s) are the zeros of p inD(z0, 1−α)\{z0},
then

m log
1− α

2

1− α
=

m∑
i=1

(
log

(
1− α

2

)
− log(1− α)

)

<

m∑
i=1

(
log

(
1− α

2

)
− log |zi − z0|

)

<

s∑
i=1

(
log

(
1− α

2

)
− log |zi − z0|

)

=
s∑

i=1

log
1− α

2

|zi − z0| .

Combining this with inequalities (3.1) and (3.2), we obtain

log |p(z0)|+m log
1− α

2

1− α
< log

2

α
. (3.3)

By the power series expansion of the function log(1 − x), where |x| < 1, we

get

log
1− α

2

1− α
≥ α

2
. (3.4)

Now |p(z0)| ≥ 1−2α
1−α , and the inequalities (3.3), (3.4) imply that

m
α

2
< log

2

α
− log

1− 2α

1− α
= log

( 2

α

1− α

1− 2α

)
,

therefore, m < 2
α log

(
2
αc(α)

)
, where c(α) = 1−α

1−2α . �

If p is a unimodular polynomial of degree n and 0 < r < 1, then p has less

than 2 log(1−√
r )

log r zeros in the open disk D(0, r). This is due to the following

theorem.

������� 3.6� Suppose that p is a polynomial of type 1 and 0 < r < 1. Then p

has less than c(r) zeros in the open disk D(0, r), where c(r) is a positive constant

depending only on r.
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P r o o f. Let p be a polynomial of the form given in the theorem and z1, z2, . . . , zm
be the zeros of p in D(0, r) =

{
z ∈ C : |z| < r

}
(note that: p(0) = a0 �= 0).

Assume that r < R < 1 and applying Jensen’s formula on D(0, R) for p with

h = 0 and |a0| = 1, then we have

s∑
j=1

logR −
s∑

j=1

log |zj | = 1

2π

2π∫
0

log |p(Reiθ)| dθ,

where z1, z2, . . . , zs are the zeros of p in D(0, R) (s ≥ m). The left-hand side of

the above relation can be written as
s∑

j=1

logR−
s∑

j=1

log |zj| =

m∑
j=1

(logR− log |zj|) +
s∑

j=m+1

(logR− log |zj |)

=
1

2π

2π∫
0

log |p(Reiθ)| dθ.

Since both terms in the middle part of this relation are positive, thus

m∑
j=1

(
logR − log |zj |

)
<

1

2π

2π∫
0

log |p(Reiθ)| dθ.

But |zj | < r for all j = 1, . . . ,m implies that

logR− log |zj| > logR− log r,

and then

m(logR− log r) <

m∑
j=1

(
logR− log |zj|

)
<

1

2π

2π∫
0

log |p(Reiθ)| dθ. (3.5)

We now try to evaluate |p(Reiθ)|.
If p(z) =

n∑
j=0

ajz
j and z ∈ D(0, 1), then by the growth condition, we obtain

log |p(Reiθ)| ≤ − log(1−R),

finally, if we choose R =
√
r, then

1

2π

2π∫
0

log |p(√reiθ)| dθ ≤ − log
(
1−√

r
)
.

This inequality along with (3.5), imply that m < c(r), where c(r) = 2 log(1−√
r )

log r .

�
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Open problems

Two interesting open problems related to the reciprocal polynomials are:

1) What is the minimum number of zeros of modulus 1 of a reciprocal poly-

nomial with coefficients in the set {0, 1}?
2) What is the minimum number of zeros of modulus 1 of a reciprocal poly-

nomial with coefficients in the set {−1, 1}?
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