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POLYNOMIALS WITH COEFFICIENTS
FROM A FINITE SET
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ABSTRACT. This paper focuses on the problem concerning the location and
the number of zeros of those polynomials when their coefficients are restricted
with special conditions. The problem of the number of the zeros of reciprocal
Littlewood polynomials on the unit circle T is discussed, the interest on bounds
for the number of the zeros of reciprocal polynomials on the unit circle arose
after 1950 when Erd6s began introducing problems on zeros of various types of
polynomials. Our main result is the problem of finding the number of zeros of
complex polynomials in an open disk.
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1. Introduction

Locating zeros of polynomials with special conditions for the coefficients, in
particular, the location and the number of zeros of those polynomials having
coefficients in a finite subset of the complex plane C has applications in many ar-
eas of applied mathematics, including linear control systems, electrical networks,
root approximation, and signal processing, so there is a need for obtaining better
results in these subjects. A review on the location of zeros of polynomials can
be found in [1], [11], [14], [15], and [I7]. Also, a problem is of finding the number
of the zeros of reciprocal Littlewood polynomials on the unit circle. Lakatos and
Losonczy [10] considered reciprocal polynomials which all their zeros are on the
unit circle. Erdélyi [7] proved that every reciprocal Littlewood polynomial has
at least one zero on the unit circle, but recently Mukunda [I3t Theorem 3] im-
proved this result for odd degree reciprocal Littlewood polynomials by proving
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that every reciprocal Littlewood polynomial of odd degree n > 3 has at least
three zeros on T, and also he determined all Pisot numbers whose minimal poly-
nomials are Littlewood polynomials. Salem [16] showed that the set of all Pisot
numbers is closed.

A Pisot number is a real algebraic integer greater than 1, all of whose conju-
gates lie inside the open unit disk.

If p(z) is a polynomial in R[z] of degree n, then we define p*(z) = z"p(2~1),
and we say that p(z) is reciprocal if p(z) = £p*(2).

In what follows, C[z] denotes the set of all complex polynomials with com-
plex coefficients and we consider two subsets U,, and L,, of C|z] of all degree n
polynomials A,

h(z) = Z apz”,
k=0

so that if h € U,, then |ax| =1 for all k, and if h € L,,, then a;, = £1 for all k.
The members of U,, and L,, are called Unimodular and Littlewood (or sometimes
real unimodular) polynomials, respectively.

Next, let p € C[z] be a polynomial of degree n as

p(z) = Zakzk. (1.1)

In this work, we will obtain bounds for the zeros of the following three types of
polynomials in (1.1).

Type 1: |apg| =1 and |ax| < 1 for every k € {1,2,...,n}.

Type 2: |a,| =1 and |ax| <1 for every k € {0,1,...,n —1}.

Type 3: |ag| = |an| =1 and |ax| < 1 for every k € {1,2,...,n — 1}.

Throughout the paper D(zg,r) denotes the open disk in the complex plane
centered at zg with radius r > 0.

2. On the location of zeros of polynomials

There are many new results about the location of zeros and bounds for the
zeros of polynomials with restricted coefficients. In this section, we state some
results about the location of zeros and the number of zeros of some types of
polynomials. Borwein, Erdélyi, and Littmann [4] proved that any polynomial
of type 3 has at least 8y/nlogn zeros in disk with center on the unit circle and
radius 33771°gn”. The first theorem proved in [3], provides upper bounds for the
number of real zeros of those polynomials that their coefficients are restricted in

the closed unit circle.
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THEOREM 2.1.

(i) There is an absolute constant c; > 0 such that every polynomial p of the
form

n
p(:v):Zajxf7 a; €C, lag| =1, la;| <1,
j=0

has at most c1y/n zeros in [—1,1].

(ii) There is an absolute constant co > 0 such that every polynomial p of the

form
n

p(:v):Zajxj7 a; €C, la,|=1, la;| <1,
j=0

has at most cay/n zeros in R\(—1,1).

(iii) There is an absolute constant cz3 > 0 such that every polynomial p of the
form

plz) = ajal, a; €C, lag| =lan| =1, |aj| <1,

has at most c3\/n real zeros.

The next theorem which is due to Erdélyi [7], give an upper bound for the
number of zeros of polynomials of type 1.

THEOREM 2.2. Let « € (0,1). Every polynomial of the form

p(@) =) aje’,  a; €C, Jaol=1, |a;| <1,
j=0

has at most (2/a) log(1/a) zeros in the open disk D(0,1 — o).

Now we provide a classical bound due to Caushy [5] for the zeros of polyno-
mials with complex coefficients. Some other classical bounds can be found in
[11], [12], and [14].

THEOREM 2.3 (Cauchy’s bound). Let p(z) = ag+ a1z + -+ a, 12" 1+ 2"
be a monic polynomial with complex coefficients. Then all the zeros of p(z) lie
in the open disk D(0,1 + A), where A = max |a;|, for every j =0,...,n—1.

The following theorem and lemma which are respectively proved in [9] and
[13] have key role in the proof of the theorem (Theorem 3.1) about the number
of zeros of reciprocal Littlewood polynomials on the unit circle.
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THEOREM 2.4. Let 7y, be a Pisot number of degree n whose minimal polynomial
is of the form

d—1
pu(z) =24+ ap2¥,
k=0

where a, = £N (k=0,...,d — 1) for positive integer N > 2. Then
n—1
pn(z) = 2" — Nsz,
k=0

and the sequence {~y,} is strictly increasing and converges to N + 1.

LEMMA 2.1. Suppose p(z) is a polynomial in C|z], m is a positive integer and w
is a complex number on T. Then the number of roots of Ry, (z) = wz"p(z)£p*(2)
in the closed unit disk is greater than or equal to the number of roots of Sy, (z) =
2™p(z) in the same region.

Notice that p(z) and p*(z) have the same zeros on the unit circle, and that
these are also zeros of both R,,(z) and Sy, (z).

3. The main results

In this section, we state and prove some results concerning bounds for the
zeros of some classes of complex polynomials, among them the unimodular poly-
nomials, and also we find bounds for the number of zeros of some types of polyno-
mials which lie in an open disk. The first theorem of this section is an important
result about the number of the zeros of reciprocal Littlewood polynomials on
the unit circle. The next lemma provides a bound for the number of zeros of
some complex reciprocal Littlewood polynomial on the unit circle. These can
be found in [6].

LEMMA 3.1. The reciprocal polynomial p(z) = 22" + 22771 4 ... 4 g0l —pn 4
2"+ 4 2+ 1 has at least (2n — 8)/3 zeros on the unit circle.

Proof. Let q(z) :== (2 — 1)p(z) = 22"T1 — 2271 4 22" — 1. Fix 2 € T and let
t € R be so that z = e'*. Then by Euler’s identity q(e'*) = 2ip(t)e” = !, where
Y(t) = sin ¢ — 2sin L. Since (2w — t) = (), so the function ¢(t) has the
same number of zeros in the intervals [O, g] and [5§T , 277}, but 1 (t) has at least
(n — 4)/3 zeros in the interval (0, § |, because it changes its sign in the interval
2kn4+m 2(k+V)r+7 (0 7T':|
2n+1"7 2n+1 7317
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for k = 0,1,..., [”54]. Therefore, 1 (t) has at least (2n — 8)/3 zeros in the
interval (0,27), that is, the function g(e'*) has at least (2n — 8)/3 zeros in the

interval (0, 27). Thus the polynomial p(z) has at least (2n — 8)/3 zeroson T. O

THEOREM 3.1. FEwery reciprocal Littlewood polynomial of odd degree m > 3 has
at least three zeros on the unit circle. Every reciprocal Littlewood polynomial of
even degree m > 14 has at least four zeros on the unit circle.

Proof. Let R(z) =ap+aiz+- -+ an_12""t +a,2" + an_12" + -+ agz?"
be a reciprocal Littlewood polynomial of degree 2n, and so R(z) has 2n zeros.
Note that 1/z is a zero of R(z), whenever 2, is a zero of R(z). Since R(+£1) is
an odd integer, so both R(1) and R(—1) are nonzero, and R(z) has at least one
zero on the unit circle (see [7]), hence it must have the even number of zeros
on the unit circle. If this the number is exactly two, then R(z) has n — 1 zeros
inside the open unit circle and we write R(z) = a,/2(2"p*(2) + p(z)), where

n—1
p(z) = 2" + 2ay, Z apz".
k=0

Now by Lemma 2.1 and that R(z) has n — 1 zeros inside the open unit circle
we conclude that z"p*(z) has n + 1 zeros inside the closed unit circle, that is,
p*(z) has only one zero in the closed unit circle. That means p(z) has only one
zero 7y outside the open unit circle, so « is real and |v| is a Pisot number. If we
put g,(z) = 2" —22""1 —... — 22— 2 then by Theorem 2.4, for N = 2, we have
p(2) = qn(2) if v > 1, and in this case

R(Z)Z _an(z2n+22n—1+_._+zn+1_Zn+zn—1+._.+z+1)
= (—1)"qn(—2) if ¥ < —1, also in this case,
2) = (=1)"an [(=2)"" + (=2)" T o ()" = ()"
+ (=) 4 (—2) 1]

Therefore, if degree R(z) > 4, then it has at least four zeros on the unit circle,
except possibly when R(z) is of the form r(z) = 22" 2271 ... 4 ontl _on g
2"t 4+ ... 4 2z + 1. On the other hand, by Lemma 3.1 for n > 10, we conclude
r(z) has at least (2n — 8)/3 > 4 zeros on T. Finally, a computational argument

with computer for n € {7,8,9}, shows that the polynomial r(z) has at least four
zeros on the unit circle and this completes the proof. O

Note that bounds on degree m of polynomials in Theorem 3.1 are sharp, for
example, the polynomial S(z) = z 4+ 2 has no zeros on T, and the polynomial
R(z) = 212421 4210 4 29 4 28 4 27 — 26 4 25 4 24 + 23 + 22 + 2+ 1 has only two
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zeros on T. The next theorem shows that a bound sharper than Cauchy’s bound
can be obtain if the length of all consecutive coefficients in a monic polynomial
are small enough. For example, the polynomial p(z) = 1 + z + 222 + 223 + 2%,

THEOREM 3.2. Let p(z) = ag + a1z + -+ + an_12""1 + 2™ be a polynomial in
Clz]. If 2o is any zero of p(z), then |zo| < 1+ A, where A = max{|ao|, |a1 — ao,
sl = an—1l}

Proof. We may assume that |zp| > 1, for otherwise there is nothing to prove.
Now consider the polynomial ¢(z) := (1 — z)p(z). If |z| > 1, then we obtain

la(2)] = 12" = {laol + la1 — aollz| + - + 1 — an—1]|2|"}

n
> |Z‘n+1—AZ‘Z|i
1=0

_ |Z‘n+1 A|Z‘n+1_1
2] —1
- |Z‘n+1 A|Z‘n+1
2] —1

1 n n
= o Rt as )

We can write
2" T2 — 2" (1 4+ A) = [2" 2] = (1+ A)].

Hence, we conclude that |¢(z)| > 0, whenever |z| > 1+ A. Therefore, all the
zeros of ¢(z) lie in the disk D(0,14 A). Since p(z) and ¢(z) have the same zeros,
thus |zo] < 1+ A. O

COROLLARY 3.2.1. Let p(2) = ag+ a1z + -+ +a,_12""1 4+ 2" be a polynomial
in Clz] such that |a;| < |ao|, for every i =1,...,n — 1. Then all the zeros of
p(z) lie in the open disk D(0,1+ r), where r = max{1 + |ag|, 2|ao|}.

THEOREM 3.3. Suppose p(z) = agt+a1z+---+anz" is a degree n > 1 polynomial
in Clz] such that for everyi=0,...,n—1, |a;| < |ay|. If 2o is any zero of p(z),
then |zo| < 2.

Proof. First, we see that

p(2)] = lanllz" = {laol + lar[[z] + - + an—al[2[* 7'}

= |anz|”{1_{| 0‘ n+___+| n 1‘ }}
anl |2 ol Iz
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It is clear that if |z9| < 1, then there is nothing to prove, so without loss of
generality we assume |z| > 1. Because of |a;| < |a,| for all i, by above we get,

1 — 1
O EREED DA ST TR e S
i= Il il
1 |z| — 2
%z|{ 1_;} aallel{ 13}
Thus |p(2)| > 0, whenever |z| > 2 and the proof is complete. O

COROLLARY 3.3.1. If p is a polynomial of type 3, then every zero of p lie in the
annulus

1
< < 2.
, <12l

Proof. The proof is based on the fact that if p(z) is of type 3, then ¢(z) =
2"p(1/%) is also of type 3. d

Remark 1. Since every unimodular polynomials is of type 3, so the above
corollary satisfies for the unimodular polynomials.

PROPOSITION 3.4. Suppose p is a degree n > 1 polynomial of type 2. If zy is
any zero of p, then |zo| < r, where r = max{1,s} < 3 and s # 1 is the positive
zero of the equation

q(z) =2"T2 = 32" 4 2+ 1.

Proof. Consider the polynomial (1 — z)p(2), then we have

(1= 2)p(2)]

n+1
nz"

’ao + (a1 —ag)z+ -+ (ap —an—1)z" —a
Janl 2™ = {Jao| + a1 — aollz] + -+ lan — an_1[|2I"}
2" 1 =2 {14 |2+ -+ |2}

|zt =1 |22 =3z 4 2] 4+ 1

— n+1 1-2 —
S PR 21

AVARY]

Applying Descarte’s rules of sign, ¢(z) has only two positive zeros, say 1 and s.
Clearly, ¢(s) = 0 implies that s < 3. Since ¢(1) = 0 and sign{q(0)} is positive,
therefore |g(z)| > 0 if |z| > r and so |(1 — z)p(z)| > 0 if |z| > r, this completes
the proof. O

Finally, we will use a well-known theorem of complex analysis; namely,
“Jensen’s Formula” it provides bounds for the number of zeros of polynomi-
als in a given open disk.
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LEMMA 3.2 (Jensen’s Formula). Suppose that h is a nonnegative integer and
that

)= al(z—2)", e #0,
k=h

is analytic on the closure of the disk D(zp,r) and also assume that the zeros of
fin D(zo,7)\{z0} = {2 €C: 0< |2 —20| <r} are z1,2,...,2n, where each
zero s listed as many times as its multiplicity. Then

2

1 .
/log | f (20 4 re%)| 6.

|2k — 20| o

10g|ch\+hlogr+Zlog "
k=1

THEOREM 3.5. Let p be a polynomial of type 1 and 0 < oo < 1. Let zg € C be
so that D(zg,1 — ) C D(0,1). Then p has less than 2 log(2c(a)) zeros in the
open disk D(zp,1 — «), where c¢(«) is a positive constant depending only on «.

|2l 2|

Ul < 1for 2] < 5 implies that [p(z)| > 1 — 1-2 > 0.
If a > ; + |z0] and z € D(zp,1 — @), then |z] < % Hence, p does not have
any zeros in D(zo,1 — «), whenever a > 1 + |zo| (or @ > 1), thus in this

1 .
9 Since

Proof. The inequality ;

case the conclusion of the theorem is true, so assume that 0 < a <
|20l + 1 — a < 1, we obtain

n
Ip(20)] = \%|‘Z\%‘Hzo\l
i=1
oo
> 2= ol
i=0
(o]
> 2—20/
i=0
_ 9 1 :1—204.
11—« 1 -«

If z € D(0,1), then we have the growth condition

;az <D= El

i=0
Let 21, 22, ..., zs be the zeros of p in D(zp,1— 5 )\ {20} and each zero is listed
as many times as its multiplicity, then by Jensen’s formula we have

p(2)| =

2

log |p(20)| + Zlog Zl B ! /log‘p<zo + (1 - §>eie) ‘ de. (3.1)
i=1

i_ZO‘ :27T
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From the growth condition, we conclude that

2m

1 a\ g 2
- ! < . .
2F/log‘p<zo+ (1 2)e )‘d@_loga (3.2)
0

In other words, if 21, 2o, .. ., 2m (M < s) are the zeros of p in D(zp, 1—a)\{z0},
then

1_C¥

mlogl_; = i(log(
< 3 (lu(15) o)
(

1-— g) — log\zl — Zo‘)

1-— Z) —log(1 — a))

=1

s 1_ @
= Zlog 2.

=zl

Combining this with inequalities (8.1)) and (3:2]), we obtain

e}
2

2
<log . (3.3)
a «

1—
log |p(z0)| + mlog 1

By the power series expansion of the function log(1 — ), where |z| < 1, we
get

log 1:2 > g (3.4)
Now [p(z0)| = 72, and the inequalities (3.3), (3.4) imply that
ma <10g2 _logl—Qa =log(2 11—« )7
9 a 1—« al —2«a
therefore, m < i log(ZC(Oé)), where c(a) = 11:20&' -

If p is a unimodular polynomial of degree n and 0 < r < 1, then p has less
than 2l°glgg_r\/r) zeros in the open disk D(0,r). This is due to the following
theorem.

THEOREM 3.6. Suppose that p is a polynomial of type 1 and 0 < r < 1. Then p
has less than c(r) zeros in the open disk D(0,r), where c¢(r) is a positive constant
depending only on r.
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Proof. Let pbeapolynomial of the form given in the theorem and 21, 23, ..., 2
be the zeros of p in D(0,r) = {z € C: |z] < r} (note that: p(0) = ag # 0).
Assume that 7 < R < 1 and applying Jensen’s formula on D(0, R) for p with
h =0 and |ag| = 1, then we have

2

S S 1 .
S togR =Y loglzy| =, [ loglp(Re)] o,
Jj=1 j=1 0
where 21, 29, ..., 25 are the zeros of p in D(0, R) (s > m). The left-hand side of

the above relation can be written as
S

ZlogR—Zlongj\ = Z(logR—log|zj\)+ Z (log R —log|z;)
j=1 j=1 j=1 j=m+1
2

1 .
/log Ip(Rei?)| d6.

2
0

Since both terms in the middle part of this relation are positive, thus

2
Z (logR—log|zj|) < - /log Ip(Rel?)| d6.
Jj=1 0

But |z;| < r for all j =1,...,m implies that

log R — log |zj| > log R —log,

and then
m 1 27
m(log R —logr) < Z(logR —log|z]) < ) /log Ip(Re'?)| d6. (3.5)
7r
Jj=1 0

We now try to evaluate |p(Re'?)|.
If p(2) = > a;jz? and z € D(0,1), then by the growth condition, we obtain
3=0

log |[p(Re'?)| < —log(1 — R),

finally, if we choose R = +/r, then

21
21 /log |p(\/re19)|d9 < —log(l — \/r)
™
0

2log(l1—+/7) .

This inequality along with (3.5), imply that m < ¢(r), where ¢(r) = log
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Open problems
Two interesting open problems related to the reciprocal polynomials are:
1) What is the minimum number of zeros of modulus 1 of a reciprocal poly-
nomial with coefficients in the set {0,1}7

2) What is the minimum number of zeros of modulus 1 of a reciprocal poly-
nomial with coefficients in the set {—1,1}?
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