

DOI: 10.2478/s12175-014-0272-0 Math. Slovaca **64** (2014), No. 5, 1237–1248

ESTIMATES ON THE DIMENSION OF AN EXPONENTIAL ATTRACTOR FOR A DELAY DIFFERENTIAL EQUATION

SAKINEH HABIBI

(Communicated by Philip Korman)

ABSTRACT. We study the long time behavior of delay differential equation, considered in a bounded domain in \mathbb{R}^d . Using the short trajectory method to prove the existence of the exponential attractor. Also we have estimates on the fractal dimension of an exponential attractor.

©2014 Mathematical Institute Slovak Academy of Sciences

1. Introduction

In this note we restrict our attention to the DDE

$$x'(t) = -\mu x(t) + f(x(t-\tau)),$$

$$x(\theta) = \varphi(\theta), \qquad \theta \in [-\tau, 0].$$
(1.1)

Where $\mu > 0$, $\tau > 0$ is a fixed delay time and $f: [0, \infty) \to [0, \infty)$ is a continuous function and f(0) = 0.

Also φ is a given function in the space of continuous functions from $[-\tau, 0]$ to \mathbb{R} . This space is denoted by $C = C([-\tau, 0]; \mathbb{R})$ and endowed with the uniform norm topology.

$$(||f|| = \max\{|f(t)|: t \in [-\tau, 0]\},\$$

and

$$dist_C(f(t), g(t)) = \max\{|f(t) - g(t)|: t \in [-\tau, 0]\}.$$

2010 Mathematics Subject Classification: Primary 34D45.

Keywords: global attractor, delay differential equation, fractal dimension, short trajectory method, exponential attractor.

Every $\varphi \in C$ uniquely determines a solution $x \colon [-\tau, 0] \to \mathbb{R}$ of ODD (1.1) such that $x(0) = \varphi$ (initial function) and x satisfies DDE (1.1) for all t > 0. In fact x(t) is found by the method of steps: x is known for $t \in [-\tau, 0]$, if $k \in N_0$ and $n = k\tau$, then, for $n \le t \le n + \tau$, x is defined by

$$x(t) := e^{-\mu(t-n)}x(n) + \int_{t}^{t} e^{-\mu(t-s)}f(x(s-\tau)) ds.$$
 (1.2)

Let $x_t(s) = x(t+s)$, $s \in [-\tau, 0]$, $t \ge 0$ represent the segment of a given solution x(t) on the interval $[t-\tau, t]$.

Furthermore, it is assumed that $f:[0,\infty)\to [0,\infty)$ is a globally Lipschitz function

$$|f(x) - f(y)| \le L|x - y| \qquad \text{for all } x, y \ge 0 \tag{1.3}$$

and there exists a constant β such that

$$f(x) \le \beta$$
, for all $x \ge 0$. (H1)

Let x(t) be the solution of (1.1). Multiply by $e^{\mu t}$ and integrating this equation to get

$$x(t) = x(0)e^{-\mu t} + \int_{0}^{t} e^{-\mu(t-s)} f(x(s-\tau)) ds,$$
 (1.4)

Lemma 1.1. If f is Lipschitzian then the solution is unique.

Proof. Let x(t), $\tilde{x}(t)$ be two solutions on $[-\tau, T]$. We subtract equations for x(t), $\tilde{x}(t)$ to get

$$\begin{aligned} x(t) - \widetilde{x}(t) &= (x(0) - \widetilde{x}(0)) \mathrm{e}^{-\mu t} + \int_{0}^{t} \mathrm{e}^{-\mu(t-s)} \left[f(x(s-\tau)) - f(\widetilde{x}(s-\tau)) \right] \mathrm{d}s, \\ |x(t) - \widetilde{x}(t)| &= \left| (x(0) - \widetilde{x}(0)) \mathrm{e}^{-\mu t} + \int_{0}^{t} \mathrm{e}^{-\mu(t-s)} \left[f(x(s-\tau)) - f(\widetilde{x}(s-\tau)) \right] \mathrm{d}s \right|, \\ |x(t) - \widetilde{x}(t)| &= |x(t) - \widetilde{x}(t)| \\ &\leq |x(0) - \widetilde{x}(0)| |\mathrm{e}^{-\mu t} + L \int_{0}^{t} \mathrm{e}^{-\mu(t-s)} |x(s-\tau)| - \widetilde{x}(s-\tau)| \mathrm{d}s, \\ &= \int_{0}^{t} \mathrm{e}^{-\mu(t-s)} |x(s-\tau)| - \widetilde{x}(s-\tau)| \mathrm{d}s, \end{aligned}$$

We assume $x = \tilde{x}$ in $[-\tau, 0]$, we obtain

$$|x(t) - \widetilde{x}(t)| \le L \int_{0}^{t} e^{-\mu(t-s)} |x(s-\tau)| - \widetilde{x}(s-\tau)| ds$$

since
$$\int_{0}^{t} e^{-\mu(t-s)} |x(s-\tau)| - \widetilde{x}(s-\tau)| ds \le \int_{0}^{t} |x(s-\tau)| ds,$$

$$|x(t) - \widetilde{x}(t)| \le L \int_{0}^{t} \sup_{-\tau \le u \le s} |x(u) - \widetilde{x}(u)| ds, \qquad t \in [0, T],$$

Then if
$$g(s) = \sup_{-\tau \le u \le s} |x(u) - \widetilde{x}(u)|$$
,

$$|x(t) - \widetilde{x}(t)| \le L \int_{0}^{t} g(s) ds, \qquad t \in [0, T]$$

$$\sup_{-\tau \le t \le \sigma} |x(t) - \widetilde{x}(t)| \le \sup_{-\tau \le t \le \sigma} L \int_{0}^{t} g(u) du, \qquad \sigma \in [0, T],$$

$$g(\sigma) \le L \int_{0}^{\sigma} g(u) du, \qquad \sigma \in [0, T],$$

It follows from integral form of Gronwall's inequality that $g(\sigma) = 0$ and hence $x(\sigma) = \widetilde{x}(\sigma)$, for all $\sigma \in [-\tau, T]$.

The mapping $S: \mathbb{R}^+ \times C \to C$, $S(t, \varphi) = x_t$, for all $t \geq 0$ (where x is the unique solution with the initial condition φ) is well defined and have the semigroup property for DDE (1.1), i.e., S(0) = I and S(t+s) = S(t)S(s) also $S(t)\varphi$ is continuous in t and is continuous respect to φ . Hence $(S(t), C([-\tau, 0], \mathbb{R}))$ for all $t \geq 0$ is a dynamical system.

Let us consider a sequence $\varphi_n \in C = C([-\tau, 0], \mathbb{R})$ such that $\varphi_n \to \varphi$ in C. We set $u_n(t) = S(t)\varphi_n$, $u(t) = S(t)\varphi$ for all $t \ge 0$. we must show $u_n(t) \to u(t)$ as $n \to \infty$ in C.

By uniqueness of solution and

$$u_n(t) = S(t)\varphi_n = u_n(0)e^{-\mu t} + \int_0^t e^{-\mu(t-s)} f(S(s-\tau))\varphi_n(\sigma) ds$$

where $s, t \geq 0, -\tau \leq \sigma \leq 0$ and use of Lebesgue's convergence theorem

$$\lim_{n \to \infty} u_n(t) = \varphi(0)e^{-\mu t} + \int_0^t e^{-\mu(t-s)} f(S(s-\tau))\varphi(\sigma) ds,$$

for $t \ge 0, -\tau \le \sigma \le 0$

$$\lim_{n \to \infty} S(t)\varphi_n = S(t)\varphi = u(t).$$

We recall several notions from the theory of dynamical systems and analysis. (S(t), C) is called *dissipative*, if there is a bounded set $W \subset C$ such that, for any bounded set $B \subset C$, there is a time $t_0 = t_0(B)$ such that $S(t)B \subset W$ for all $t \geq t_0$.

A set $A \subset C$ is called a global attractor, if

- (1) \mathcal{A} is compact;
- (2) S(t)A = A, for all t > 0;
- (3) $\operatorname{dist}_C(S(t)\boldsymbol{B},\mathcal{A}) \to 0$ as $t \to \infty$, for any $\boldsymbol{B} \subset C$ bounded.

Of course, if a global attractor exists, then it is unique.

DEFINITION 1.1. Let \mathcal{X} be a Banach space. By $N(\mathcal{A}, \rho)$ we denote the smallest number of sets with diameter $\leq 2\rho$ that cover $\mathcal{A} \subset \mathcal{X}$. The *fractal dimension* is defined by

$$d_{\mathcal{X}}^{f}(\mathcal{A}) = \limsup_{\varepsilon \to 0+} \frac{\ln N(\mathcal{A}, \varepsilon)}{-\ln \varepsilon}.$$

DEFINITION 1.2. The set $\mathcal{E} \subset \mathcal{X}$ is called *exponential attractor* for $(S(t), \mathcal{X})$ if

- (1) \mathcal{E} is compact;
- (2) $S(t)\mathcal{E} \subset \mathcal{E}$, for all t > 0;
- (3) $d_{\mathcal{X}}^f(\mathcal{E}) < \infty$;
- (4) exists $\sigma > 0$ such that, for any $\mathbf{B} \subset \mathcal{X}$ bounded, $\operatorname{dist}_{C}(S(t)\mathbf{B}, \mathcal{E}) \leq C_{1}e^{-\sigma t}$.

Definition 1.3. Set $\mathcal{E}^* \subset \mathcal{X}$ is called *exponential attractor* for the dynamical system $(S^n(t), \mathcal{X})$ if

- (1) \mathcal{E}^* is compact;
- (2) $S(t)\mathcal{E}^* \subset \mathcal{E}$;
- (3) $d_{\mathcal{X}}^f(\mathcal{E}^*) < \infty;$
- (4) There exist $\sigma, C_1 > 0$ such that, $\operatorname{dist}_C(S^n \mathcal{X}, \mathcal{E}^*) \leq C_1 e^{-\sigma n}$, for all $n \in \mathbb{N}$.

The following lemma gives a useful help to get desirable result.

ESTIMATES ON THE DIMENSION OF AN EXPONENTIAL ATTRACTOR

Lemma 1.2. Let $S: \mathcal{X} \to \mathcal{X}$ be Lipschitz continuous, and let there exist $\theta \in (0,1)$ and a constant K > 0 such that for any $\rho > 0$, $F \subset \mathcal{X}$ with $\operatorname{diam}_{\mathcal{X}}(F) \leq 2\rho$,

$$N_{\mathcal{X}}(S(F), \theta \rho) \leq K.$$

Then, the dynamical system (S^n, \mathcal{X}) has an exponential attractor \mathcal{E}^* , and

$$\dim_{\mathcal{X}}^{f}(\mathcal{E}^*) \le \frac{\ln K}{-\ln \theta}.$$

Proof. See e.g. [3].

LEMMA 1.3. Let \mathcal{E}^* be an exponential attractor for (S^n, \mathcal{X}) , where $S = S_{t^*}$ with some fixed $t^* > 0$. Assume that $S_t x$ is locally Lipschitz continuous w.r. to t and x. Then there exist an exponential attractor \mathcal{E} to (S_t, X) such that

$$\dim_{\mathcal{X}}^{f}(\mathcal{E}) \le \dim_{\mathcal{X}}^{f}(\mathcal{E}^{*}) + 1. \tag{1.5}$$

Proof. see e.g. [3].

Theorem 1.1. The following are equivalent.

- (1) Dynamical system (S^n, B) has an exponential attractor \mathcal{E}^* ;
- (2) There exist a, b > 0, $\theta \in (0, 1)$ and $K \ge 1$ such that

$$N_C(S^n B, a\theta^n) \le bK^n, \quad \text{for all} \quad n \in \mathbb{N},$$
 (1.6)

where κ is Lipschitz constant of L.

Proof. The existence of \mathcal{E}^* implies (1.6) with $\theta = e^{-\sigma}$ and $K = e^{d\sigma}$, where σ is the constant appearing in above definition and d > 0 is arbitrary number such that $\dim_f^C(\mathcal{E}^*) < d$. conversely, if (1.6) holds, we can construct an exponential attractor such that

$$\dim_{\mathcal{X}}^{f}(\mathcal{E}^*) \le \frac{\ln K}{-\ln \theta}.$$

and definition holds with $\sigma = -\ln \theta$. For more details see [4].

 $F \subset C$ is equicontinuous means

$$\forall \varepsilon \in (0, \infty) \ \exists \delta \in (0, \infty) \ \forall f \in F \ \forall t_1, t_2 \in [-\tau, 0] :$$

$$|t_1 - t_2| < \delta \implies |f(t_1) - f(t_2)| < \varepsilon.$$

By Arzela-Ascoli theorem a subset F of $C([-\tau, 0], \mathbb{R})$ is compact iff it is closed, bounded and equicontinuous.

A continuous map $T \colon X \to X$ is conditionally compact continuous if $A \subset X$ bounded and TA bounded imply \overline{TA} is compact. T is completely continuous if it is conditionally compact continuous and also a bounded map.

2. Global attractor

Lemma 2.1. Under hypotheses (H_1) , the semigroup S(t) generated by (1.1) is a bounded map and is dissipative. Thus, there is compact global attractor A.

Proof. Let us first show that S(t) is dissipative. If we multiply Eq. (1.1) by $e^{\mu t}$

$$x'(t) = -\mu x(t) + f(x(t - \mu)),$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{\mu t}x(t)) = f(x(t - \mu))\mathrm{e}^{\mu t},$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{\mu t}x(t)) \le \beta \mathrm{e}^{\mu t},$$

integrating this equation we obtain

$$e^{\mu t}x(t) - x(0) \le \int_{0}^{t} \beta e^{\mu s} ds,$$

 $x(t) \le x(0)e^{-\mu t} + \frac{\beta}{\mu}(1 - e^{-\mu t}), \quad \text{for all} \quad t \ge 0,$

and then $\limsup_{t\to\infty} x(t) \leq 2\frac{\beta}{\mu}$. Since x(t) is bounded above then $-f(x(t-\tau))$ is bounded below by constant \widetilde{K} . By the same arguing as above

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{\mu t}x(t)) \ge -\frac{\widetilde{K}}{\mu}\mathrm{e}^{\mu t},$$

$$x(t) \ge x(0)\mathrm{e}^{-\mu t} - \frac{\widetilde{K}}{\mu}(1 - \mathrm{e}^{-\mu t}) \qquad \text{for all} \quad t \ge 0,$$

one obtains that $\liminf_{t\to\infty} x(t) \ge -2\frac{\tilde{K}}{\mu}$.

The set $B = \left\{ u(t) \in C \colon |u(t)| \le \rho, \ \rho = \frac{2\beta}{\mu} \right\}$ is bounded invariant and absorb in set for $S(t,\varphi)$ in C: i.e. $u(t) \in \beta$, for all $t \ge T_0$ with T_0 defined by the condition $|\varphi(0)| = \frac{2\beta}{\mu} e^{-\mu T_0}$ if $\varphi(0) > 0$ and $T_0 = 0$ for $\varphi(0) \le 0$.

The inequality immediately proves dissipativeness of equation (1.1).

Let $B \in C([-\tau, 0], \mathbb{R})$ is bounded and F = S(t)B, We want to show $\overline{S(t)B}$ is compact.

(1) S(t)B is bounded; let $\varphi \in B$ is bounded then by (1.5)

$$|x(t)| \le e^{-\mu(t)} |x(0)| + \int_0^t e^{-\mu(t-s)} |f(x(s-\tau))| ds,$$

by (H_1) and boundedness of x(0) we get as wish. Or if t=1 in right hand

$$|x(t)| \le e^{-\mu} |x(t-1)| + \int_{0}^{1} e^{-\mu(1-s)} |f(x(s-\tau))| ds,$$

$$|x(t)| \le e^{-\mu} |\varphi(0)| + \frac{\beta}{\mu} (e^{-\mu} - 1),$$

 $S(1)\varphi$ is bounded then $S(t)\varphi$ is bounded for all $t \geq 0$.

(2) S(t)B is equally continuous, i.e., fo rall $\varepsilon > 0$ there exist $\delta > 0$ s.t. for $t_1, t_2 \in [-\tau, 0]$: $|t_1 - t_2| < \delta$

$$|x(t_1) - x(t_2)| = \left| \int_{t_1}^{t_2} x'(s) \, ds \right| = \left| \int_{t_1}^{t_2} -\mu x(s) + f(x(s-\mu)) \, ds \right|,$$

$$\leq \int_{t_2}^{t_1} |-\mu x(s)| + |f(x(s-\mu))| \, ds,$$

by (H_1) and boundedness of x(s) in $s \in [t_1, t_2]$,

$$|x(t_1) - x(t_2)| \le |t_1 - t_2| M, \qquad M = \mu N + \beta$$

where $N = \sup |x(s)|$ for all $s \in [t_1, t_2]$, it is enough we choose $\delta = \frac{\varepsilon}{M}$.

By (1.1) and (3.3) and Arzela-Ascoli theorem S(t)B is compact, then S(t) is completely continuous for any $t \geq -\tau$. Thus, the existence of the global attractor of the equation (1.1) is an immediate consequence of [1: Theorem (3.4.8)].

3. Exponential attractor

The aim of this section is to prove that $(\{S(t)\}_{t\geq 0}, C([-\tau, 0], \mathbb{R}))$ has an exponential attractor, also we will show the estimate of its fractal dimension, the main idea of the proof is to use the so called method of trajectories, cf. [2]

One usually first constructs the exponential attractor for a certain discrete dynamical system (S^n, C) subgroup of S_t generated by $L = S(\tau)$ with fixed delay time τ . Then use of Lemma (1.3) to extend it for the entire dynamics.

We estimate the difference of the time derivatives. we establish a kind of "smoothing property". C is replaced with the smaller Banach space $C^1 = C^1([0,\tau],\mathbb{R})$ of continuously differentiable functions $f\colon [0,\tau]\to\mathbb{R}$ with the norm given by $\|f\|_{C^1} = \|f\|_C + \|f'\|_C$, Then a result of the compact embedding of C^1 into C will complete the proof.

Lemma 3.1. The mapping L is well defined and (global) Lipschitz continuous.

Proof. We assume as Lemma (1.1) that x(t), $\tilde{x}(t)$ be two solutions on $[0, \tau]$ with initial function ψ and $\tilde{\psi}$. We subtract equations for x(t), $\tilde{x}(t)$ to get

$$|x(t) - \widetilde{x}(t)| \leq |(x(0) - \widetilde{x}(0))| + L \int_{0}^{t} |x(s - \tau) - \widetilde{x}(s - \tau)| \, ds, \qquad t \in [0, \tau],$$

$$|x(t) - \widetilde{x}(t)| \leq |x(0) - \widetilde{x}(0)| + L \int_{-\tau}^{t - \tau} |x(u) - \widetilde{x}(u)| \, du, \qquad t \in [0, \tau],$$

$$|x(t) - \widetilde{x}(t)| \leq \|\psi - \widetilde{\psi}\|_{C} + Lt \|\psi - \widetilde{\psi}\|_{C} \leq (1 + Lt) \|\psi - \widetilde{\psi}\|_{C}, \qquad t \in [0, \tau],$$

$$|x(t) - \widetilde{x}(t)| \leq k_{1} \|\psi - \widetilde{\psi}\|_{C}, \qquad k_{1} = (1 + L\tau), \quad t \in [0, \tau]$$

$$\sup_{0 \leq t \leq \tau} |x(t) - \widetilde{x}(t)| \leq k_{1} \|\psi - \widetilde{\psi}\|_{C},$$

$$\|x(t) - \widetilde{x}(t)\|_{C[0,\tau]} \leq k_{1} \|\psi - \widetilde{\psi}\|_{C},$$

$$\|S(\tau)\psi - S(\tau)\widetilde{\psi}\|_{C} \leq k_{1} \|\psi - \widetilde{\psi}\|_{C}.$$

Which asserts that $L = S(\tau)$ is Lipschitz continuous.

Let $x = s(\tau)\psi$ and $\tilde{x} = S(\tau)\tilde{\psi}$ be two solutions

$$\begin{split} \left| \dot{x}(t) - \dot{\widetilde{x}}(t) \right| &\leq \mu \big| x(t) - \widetilde{x}(t) \big| + |f(x(t-\tau)) - f(\widetilde{x}(t-\tau))| \,, \qquad t \in [0,\tau], \\ \left| \dot{x}(t) - \dot{\widetilde{x}}(t) \right| &\leq \mu \left| x(t) - \widetilde{x}(t) \right| + L \left| x(t-\tau) - \widetilde{x}(t-\tau) \right|, \qquad s = t - \tau \in [-\tau,0] \\ &\leq \mu \left| x(t) - \widetilde{x}(t) \right| + L \left| \psi(s) - \widetilde{\psi}(s) \right|, \end{split}$$

take supremum respect to t on $[0, \tau]$

$$\begin{aligned} & \left\| \dot{x}(t) - \dot{\widetilde{x}}(t) \right\|_{C} \le \mu k_{1} \left\| \psi - \widetilde{\psi} \right\|_{C} + L \left\| \psi - \widetilde{\psi} \right\|_{C}, \\ & \left\| \dot{x}(t) - \dot{\widetilde{x}}(t) \right\|_{C} \le k_{2} \left\| \psi - \widetilde{\psi} \right\|_{C}, \qquad k_{2} = \mu k_{1} + L, \end{aligned}$$

then

$$||L\psi - L\widetilde{\psi}||_{C^1} \le \kappa ||\psi - \widetilde{\psi}||_{C}.$$

Where
$$\kappa = k_1 + k_2$$
.

Lemma 3.2. Let $M \ge \frac{1}{5}$, B > 0. The set

$$\mathcal{A} = \left\{ \mathcal{X} \in C([0, t^*], \mathbb{R}) : |\mathcal{X}| \le M, \operatorname{Lip} \mathcal{X} \le B \right\}$$

can covered by K balls of radius 1 in the space $C([0,t^*],\mathbb{R})$, where

$$\ln K \le C(t^*B + 1)(\ln M + 1). \qquad C > 0 \tag{3.1}$$

Proof. We consider points $t_0 = 0 < t_1 < \dots < t_n = t^*$ such that $t_{i+1} - t_i \le \delta := \frac{1}{5B}$. Then $n \le \frac{t^*}{\delta} + 1 \le 5Bt^* + 1$.

Furthermore, there exist point x_j , $j=1,\ldots,m$, in \mathbb{R} such that $B_{\mathbb{R}}(x_j,\frac{1}{5})$ cover $B_{\mathbb{R}}(0,M)$, then $m \leq (\frac{3M}{5}) = 15M$.

We consider the set

$$\mathcal{N} = \{ \mathcal{X} : [0, t^*] \to \mathbb{R} : \ \mathcal{X}(t_i) = x_j \text{ and linear in } [t_i, t_{i+1}] \},$$

if K is cardinality of \mathcal{N} then,

$$\ln k = \ln m^{n+1} \le \ln(15M)(5Bt^* + 2) \le C(t^*B + 1)(\ln M + 1).$$

We claim that the balls $B(\mathcal{X}, 1)$, $\mathcal{X} \in \mathcal{N}$ cover the set \mathcal{A} . Let $\psi \in \mathcal{A}$ be arbitrary function, there exists $\mathcal{X}(t) \in \mathcal{N}$ such that $|\mathcal{X}(t_i) - \psi(t_i)| \leq \frac{1}{5}$, $i = 0, \ldots, n$ we want to show for all $t \in [0, t^*]$, $|\mathcal{X}(t) - \psi(t)| \leq 1$.

It suffices to show this for fixed $t \in [t_i, t_{i+1}]$.

$$|\mathcal{X}(t) - \psi(t)| \le |\mathcal{X}(t) - \mathcal{X}(t_i)| + |\mathcal{X}(t_i) - \psi(t_i)| + |\psi(t_i) - \psi(t)|$$

$$\le |\mathcal{X}(t) - \mathcal{X}(t_i)| + \frac{1}{5} + \delta B \le |\mathcal{X}(t) - \mathcal{X}(t_i)| + \frac{2}{5}.$$

By piecewise linearity of \mathcal{X} in $[t_i, t_{i+1}]$ we get

$$|\mathcal{X}(t) - \mathcal{X}(t_i)| \le |\mathcal{X}(t_{i+1}) - \mathcal{X}(t_i)|$$
.

Also

$$|\mathcal{X}(t_{i+1}) - \mathcal{X}(t_i)| \le |\mathcal{X}(t_{i+1}) - \psi(t_{i+1})| + |\psi(t_{i+1}) - \psi(t_i)| + |\psi(t_i) - \mathcal{X}(t_i)|$$

$$\le \frac{1}{5} + \delta B + \frac{1}{5} \le \frac{3}{5}.$$

and we done as desired.

THEOREM 3.1. Let $L = S(\tau)$, then the semigroup (L^n, B) has exponential attractor \mathcal{E}^* , and

$$\dim_{\mathcal{X}}^{f}(\mathcal{E}^{*}) \leq \frac{\ln K}{-\ln \theta}.$$

Where $K = N_C(B_{C^1}(0;1), \frac{1}{4\kappa})$.

Proof. The key step of the proof is to show that, for $F \subset B$ with $\operatorname{diam}_C(F) \le 2\rho$, there exist $\theta \in (0,1)$ and K > 0 independent of F and ρ s.t.

$$N_C(L(F), \rho\theta) \le K.$$
 (3.2)

Once this is done, we establish by induction that

$$N_C(L^n B, \theta^n R) \leq K^n$$

where $R = \operatorname{diam}_{C}(B)$. And the conclusion follows from Theorem 1.1.

To prove (3.2), by $\operatorname{diam}_{C}(F) \leq 2\rho$, we have $F \subset B_{C}(f_{0}, 2\rho)$ for arbitrary function $f_{0} \in F$, then $L(B_{C}(f_{0}; 2\rho) \cap B) \subset B_{C^{1}}(Lf_{0}; 2\kappa\rho)$, where κ is Lipschitz constant of L on C^{1} (Lemma 3.1), which can be covered by K balls with radii $\frac{e^{-\gamma}\rho}{2}$ centered in C which can in turn be replaced by the balls with a radii $e^{-\gamma}\rho$ centered in E with E and E and E i.e. E i.e. E conjugate E i.e. E i.e. E conjugate E i.e.

$$N_C(LF, \theta \rho) < K$$

and K independent of F and ρ . Also we know that

$$N_C(B_{C^1}(f_j; 2\kappa\rho), \theta\rho) = N_{C^1}(B_C(0; 1), \frac{1}{4\kappa}).$$

By Lemma (3.1) the set L(F) is contained in $L(f_0) + \widetilde{\mathcal{A}}$, where

$$\widetilde{\mathcal{A}} = \{ \mathcal{X} \in C : |\mathcal{X}| \le 2\kappa\rho, \operatorname{Lip} \mathcal{X} \le 2\kappa\rho \},$$

This covering is equivalent to the problem of this satisfy in condition of Lemma 3.2 with $M=4\kappa$, $B=4\kappa$. Then

$$\ln K \le C(\tau B + 1)(\ln M + 1) \le C(4\tau \kappa + 1)(\ln 4\kappa + 1) \le C_1(\tau \kappa + 1)(\ln \kappa + 1).$$

Then

$$\dim_{\mathcal{X}}^{f}(\mathcal{E}^{*}) \leq C'(\tau \kappa + 1)(\ln \kappa + 1). \tag{3.3}$$

THEOREM 3.2. The dynamical system (S(t), C) associated with DDE (1.1) has exponential attractor \mathcal{E} . its fractal dimension is estimated as

$$\dim_{\mathcal{X}}^{f}(\mathcal{E}) \le C'(\tau \kappa + 1)(\ln \kappa + 1) + 1. \tag{3.4}$$

Proof. we must the first prove that S(t) is local Lipschitz continuous w.r. to x and t. By which is shown in Lemma 2.1

$$||S_{t_1}x - S_{t_2}x||_C \le M |t_1 - t_2|, \quad t_1, t_2 \in [0, T]$$

ESTIMATES ON THE DIMENSION OF AN EXPONENTIAL ATTRACTOR

Let $T > \tau$ and $x(t_1)$ and $\widetilde{x}(t_1)$ are two solutions

$$|x(t_1) - \widetilde{x}(t_1)| \le |x(0) - \widetilde{x}(0)| e^{-\mu t_1} + L \int_0^{\tau} e^{-\mu(t_1 - s)} |x(s - \tau) - \widetilde{x}(s - \tau)| ds$$
$$+ L \int_0^{t_1} e^{-\mu(t_1 - s)} |x(s - \tau) - \widetilde{x}(s - \tau)| ds, \qquad t_1 \in [0, T],$$

By the same arguing as Lemma 3.1

$$|x(t_1) - \widetilde{x}(t_1)| \le k_1 \|\psi - \widetilde{\psi}\|_C + L \int_0^{t_1} \sup_{0 \le u \le s} |x(u) - \widetilde{x}(u)| \, ds, \qquad t_1 \in [0, T],$$

Then if $g(s) = \sup_{0 \le u \le s} |x(u) - \widetilde{x}(u)|$,

$$|x(t_{1}) - \widetilde{x}(t_{1})| \leq k_{1} \|\psi - \widetilde{\psi}\|_{C} + L \int_{\tau}^{t_{1}} g(s) \, ds,$$

$$\sup_{0 \leq t_{1} \leq t} |x(t_{1}) - \widetilde{x}(t_{1})| \leq k_{1} \|\psi - \widetilde{\psi}\|_{C} + \sup_{0 \leq t_{1} \leq t} L \int_{\tau}^{t_{1}} g(s) \, ds \qquad t \in [0, T],$$

$$g(t) \leq k_{1} \|\psi - \widetilde{\psi}\|_{C} + L \int_{\tau}^{t} g(s) \, ds,$$

use of integral form of Gronwall's inequality

$$g(t) \leq k_1 \| \psi - \widetilde{\psi} \|_C e^{L(t-\tau)},$$

$$\| x(t) - \widetilde{x}(t) \|_{C[0,\tau]} \leq k_1 \| \psi - \widetilde{\psi} \|_C e^{L(t-\tau)},$$

$$\| x(t) - \widetilde{x}(t) \|_{C[0,\tau]} \leq k_1 \| \psi - \widetilde{\psi} \|_C e^{L(T-\tau)},$$

$$\| x(t) - \widetilde{x}(t) \|_{C[0,\tau]} \leq k_2 \| \psi - \widetilde{\psi} \|_C,$$

Then

$$\left\| S(t)\psi - S(t)\widetilde{\psi} \right\|_{C[0,\tau]} \le k_2 \left\| \psi - \widetilde{\psi} \right\|_C, \qquad t \in [0,T], \ T > \tau.$$

for evaluation the dimension we substitute (3.3) into (1.5), yielding (3.4) and this prove the lemma.

Acknowledgement. The author thanks doctor D. Pražák for suggesting the problem and giving his references to the literature.

REFERENCES

- [1] HALE, J.: Asymptotic Behavior of Dissipative Systems. Math. Surveys Monogr. 25, Amer. Math. Soc., Providence, RI, 1998.
- MÁLEK J.—NEČAS, J.: A finite-dimensional attractor for three-dimensional flow of incompressible fluids, J. Differential Equations 127 (1996), 498–518.
- [3] PRAŽÁK, D.: On the dynamics of equations with infinite delay, Cent. Eur. J. Math. 4 (2006), 635-647.
- [4] PRAŽÁK, D.: A necessary and sufficient condition for the existence of an exponential attractor, Cent. Eur. J. Math. 3 (2003), 411–417.

Received 9. 12. 2011 Accepted 8. 6. 2012 Department of Mathematical Analysis Charles University Sokolovská 83 CZ-186 75 Prague 8 CZECH REPUBLIC

E-mail: negin_habibii@yahoo.com