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ON A STRENGTHENED MULTIDIMENSIONAL
HILBERT-TYPE INEQUALITY
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ABSTRACT. The main objective of this paper is a study of the general refine-
ment and converse of the multidimensional Hilbert-type inequality in the so-called
quotient form. Such extensions are deduced with the help of the sophisticated
use of the well-known Hélder’s inequality. The obtained results are then applied
to homogeneous kernels with the negative degree of homogeneity. Also, we estab-
lish the conditions under which the constant factors involved in the established
inequalities are the best possible. Finally, we consider some particular settings
with homogeneous kernels and weighted functions. In such a way we obtain both
refinements and converses of some actual results, known from the literature.
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1. Introduction

Hilbert’s inequality is one of the most significant weighted inequalities in
mathematical analysis and its applications. Through the years, Hilbert-type
inequalities were discussed by numerous authors, who either reproved them using
various techniques, or applied and generalized them in many different ways. For
more details about Hilbert’s inequality the reader is referred to [4] or [7].

Although classical, Hilbert’s inequality is still of interest to numerous math-
ematicians. Some of the recent results concerning Hilbert’s inequality include
extension to multidimensional case, equipped with conjugate exponents p;, that

is, 'él/pi =1,p; >1,n>2 (see papers [1], [2], [6], [8], [9]).
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Here we refer to the paper [I], which provides a unified treatment of the
multidimensional Hilbert-type inequality in the setting with conjugate expo-
n

nents. Suppose (9;,3;, ;) are o-finite measure spaces and K: [][ ; — R,
i=1

0i;: 2 = R, f;: Q = R, 4,5 =1,2,...,n, are non-negative measurable func-
tions. If [] ¢i;(z;) =1, then
i,j=1
[ 56 T At o) < T ol (1.1)
& i=1 i=1
where
n 1/pi
wi(wi) = l /K(X) I ¢ di'x) (1.2)
& J=1.#i
and . .
Q:HQ,” QZ: H Q]a X_(x17x27 7xn)7
i=1 ) j=1,j#i ) (13)
dp(x) = Hduz(xz)v d/:Li<X) = Hd“j (Ij)
i=1 j=1,ji
The abbreviations as in (L3]) will be valid throughout the whole paper. Also
note that || - ||, denotes the usual norm in L?:(;), that is
1/p:
| piiwi fill p; = [/(dh’iwifi)pi (z:) dpi () ) i=1,2,...,n.

Q;

The main purpose of this paper is to establish the general refinement and
converse of the multidimensional Hilbert-type inequality (I.I)). More precisely,
such extensions can be established with the help of the refined use of the well-
known Holder’s inequality.

The paper is organized in the following way: After this Introduction, in Sec-
tion 2] we establish our main results, that is, refinement and converse of the
Hilbert-type inequality (LI in the so-called quotient form. In other words, we
shall find the lower and the upper bound for the quotient between the left-hand
side and the right-hand side of inequality (II]). Further, in Section [ we apply
our main results to homogeneous kernels with the negative degree of homo-
geneity. Also, the considerable attention is given to the investigation of the best
possible constant factors involved in established Hilbert-type inequalities. Fi-
nally, in Section [l we consider our results equipped with some particular kernels
and weight functions, and compare our results with the previously known from
the literature.
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ON A STRENGTHENED MULTIDIMENSIONAL HILBERT-TYPE INEQUALITY

The techniques that will be used in the proofs are mainly based on classical
real analysis, especially on Fubini’s theorem and Hoélder’s inequality.

2. Main results

In this section we establish our main results, that is, refinement and converse
of the multidimensional Hilbert-type inequality. More precisely, we shall consider
the quotient between the left-hand side and the right-hand side of inequality
(LI). In such a way we shall find the lower and the upper bound for the above
mentioned quotient, expressed in terms of similar quotient. The lower bound
will establish the converse, while the upper bound will give the refinement of
the Hilbert-type inequality (II)). Such improvements will be referred to as the
refinement and converse of the Hilbert-type inequality in the quotient form.

It is well known that the Hilbert-type inequality is derived with the help of
Holder’s inequality. Our main results will be derived with the help of the exist-
ing Hilbert-type inequality (II]) and yet another sophisticated use of Holder’s
inequality.

We start with the refinement of the Hilbert-type inequality in the quotient
form.

THEOREM 2.1. Let (;,%;, ;) be o-finite measure spaces and let K: @ — R,

0ij: Y = R, fi: Q = R, 4,5 =1,2,...,n, be non-negative measurable func-
tions. If [ ¢ij(x;) =1, then
ij=1
n n n in /mlaxn{pl}
JEG) TT A duto) [ [EGTI I A2/ () T 65" ) dpt)] 55
Q 1= 1=1 ,J
<

= pi/ max {p;}

n
H ||¢1’Lw1fl s
=1

n
‘H1 ([ piswi fillp
1=

(2.1)
where p; > 1 are conjugate exponents and w;: ; — R is defined by (L2),
1=1,2,...,n

Proof. The left-hand side of the Hilbert-type inequality (II]) can be rewritten
in the form

/ K(x Hfz ) dpi(x / {HF”‘“ ]ln/M-Lf[lFS/”<x>r/Mdu<x>,

where the functions F;: € — R are defined by

n

Fi(x) = K(x) £ (z:) [ | 6% (), i=1,2,...,n, (2.2)

j=1
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M = 1rglau(n{pz} and

_ pi(M —n)

q; = M—p; 1=1,2,...,n.

Clearly, the above relation is meaningful because if M = p; for some [ €
{1,2,...,n}, then 1/¢; = 0.

Further, the application of Holder’s inequality to the above form of the left-
hand side of inequality (ILI)) yields inequality

/K [ )

it o

Q =1

On the other hand, by using the well-known Fubini’s theorem we have

- n 1/t
1E ) = /K(X)((zﬁufi)p" (@) ] d)f;(fvj)d/i(x)]
L & j=1,j#i

= /(dh’ifi)pi (%)(/K 1_[;1é o () A’ (x )> duz’(%’)} "
La, & =LA

_ 1/t
= / (iiwi fi)7" (x;) d/‘i(xi)]

pi/t, i=1,2,...,n, t>0,

(2.4)

and the right-hand side of Hilbert-type inequality (I.I]) can be rewritten in the
form

n n 1-n/M n n/M
[T Iéawifilo = | 1 ||F£/‘“||qi] 111 ||F£/"||n] .
=1 =1 =1
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Therefore, inequality (2.3]) can be expressed in the following form:

J K0 [T A an(x)

Q

n
1 l|@aiws fill p,
=1

(2.5)

Obviously M > n. If M > n, then ¢; > 0 and
"1 " M —p; 1 "1
= = M —n| =1,
NS SRR L) ohe]

that is, ¢; are also conjugate exponents and Hoélder’s inequality yields inequality
J 11 F () du(x) < T 1F
Qi=1 i=1

- Hence, relation (Z3]) implies inequality

n n n/M
JE) T filz)du(x) | [ T]F7"(x) du(x)
Q =1 S Q z:ln ’
I l1g:i fil I IE

which is also valid if M = n. Finally, by substituting the functions F; in the last
inequality, we get (Z1]) as required. O

Remark 1. Bearing in mind the notations as in the proof of Theorem [Z.1] we

have [ [] Fil/n(x) du(x) < 1 ||Fi1/n||n, by Holder’s inequality. Therefore, the
Qi=1 i=1
quotient on the right-hand side of inequality (2.1)) is not greater than 1, which

means that ([2.I]) represents the refinement of inequality (LI).

In a similar way, we also obtain the lower bound for the quotient between the
left-hand side and the right-hand side of inequality (LTJ).
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THEOREM 2.2. Let (;,%;, ;) be o-finite measure spaces and let K: @ — R,

i Q5 — ]R fi:Q = R, 4,5 =1,2,...,n, be non-negative measurable func-
tions. If H ¢ij(x;) =1, then
3,j=1
J K(x) H1 fi(zi) du(x)
Q =

n
'H1 ([ izwi fillp
1=

n/ min {pi} (26)

[ [0 [T 72" @) 1] fﬂ"(x»du(x)}
Q i=1 2,j=1
pi/ min {p;} ’

l<z<n

>

I louesefill

where p; > 1 are conjugate exponents and w;: ; — R is defined by (L2),
i=1,2,....n

Proof. The starting point in obtaining (2.0]) is the relation

n

/ [0 dntx / oo T xlr/nLUIFJ/”(x)]l_m/ndu(x),

where the functions F;: @ — R are defined by (2.2), m = 1I<1[11n {p:}, and

R
pi—m

If m = p; for some | € {1,2,...,n}, then 1/r; = 0, which means that the above
decomposition is meaningful.
Now, the application of Hélder’s inequality yields relation

JTIE 00 dut)
Q =1

l/K filw) dp(x r/n[/nplm x) dpa(x )1

On the other hand, regarding relation (2.4]), we have

n n m/n n
TTIEY ", = [H ||¢Mwl-fi||pi} ~ [H ||F£/”||n}
=1 =1 =1

1-m/n

1-m/n
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Now, if we divide inequality (2.7)) with the previous relation, we get inequality

Q =1
A 1/n
[IE
n m/n n L 1—-m/n (28)
JE®) T file) dp(x) ST FY™ (%) dp(x)
< Q i=1 Qi=1
— n n 1/r
l:[l [ iiwi fillp, ,1:[1||Fi/ r;

Obviously m < n. If m < n, then r; > 0 and

that is, r; are conjugate exponents. Hence, yet another application of Holder’s
inequality implies that

. <1
TLIE ™,
=1
Therefore, inequality (28] yields
n n m/n
JILFE" ) du(x) | [K) TT file:) du(x)
Qi=1 < Q =1
7 1/n - " ’
ILIE I l1giifil
that is,
n 1/n n/m n
JILE" (%) dpa(x) JE) T fi(z:) du(x)
Q=1 < Q i=1
n 1 n — n
ILIE" 11 l1gii fil

Note also that the last inequality also holds for m = n. Finally, by substituting

the functions F;, defined by (22)), in the last inequality, we get (2.0)) as required.
O

Remark 2. Obviously, inequality (28] provides the converse of the Hilbert-type
inequality (I.T]) in the quotient form.
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3. Homogeneous kernels
and the best possible constant factors

In this section we apply our general results to homogeneous functions with
the negative degree of homogeneity. Further, regarding the notations from the
previous section, we assume that ; = R,, equipped with the non-negative
Lebesgue measures du;(x;) = dx;, i = 1,2,...,n. In addition, we have 2 = R}
and dx = dxqy dzs ... dz,.

n
We introduce the real parameters A;;, 7,7 = 1,2,...,n, such that >~ A;; =0,
i=1

7 =1,2,....n, and denote a; = Z Aij, 1 =1,2,...,n. Next, we consider the

set of power functions ¢;;: Ry — ]R defined by
(bij(xj) = Iinj. (31)
Clearly, the set of the above defined power functions satisfy the condition

n

n n n i

L[ @tes) = L 10 = L™ =,

ij=1 j=1i=1 j=1
n

since Y A;; = 0. Therefore, the functions ¢;;, 4,5 = 1,2,...,n, satisfy the

=1
conditions as in Theorems [2.1] and

Recall that the function K: R} — R is said to be homogeneous of degree —s,
s> 0, if K(tx) =t °K(x) for all ¢ > 0. Furthermore, for a = (a1, as,...,ay)
€ R™, we define

ki(a) = / K@) J[ wyduw i=12,...n, (3.2)

n—1 ‘7:17]-#1
R+
i TJiqq —
where @' = (u1,...,ui—1, L, Uit1,. .-, Up), d'u = duy ... duj—1 dujsq ... duy,

and provided that the above integral converges. Note that the constant factor
ki(a) does not depend on the component a;. Thus, the component a; can be
replaced with an arbitrary real number. This fact will sometimes be used in the
sequel, for the reason of simpler notation.

Further, in the described setting we can find the explicit formula for the weight
function (L2) including the constant factor k;(a). More precisely, we use the
substitution x; = wu;x;, j # ¢, that is, dix = :r?_laiu, while the homogeneity of
the kernel K yields relation K (x) = x; *K(1"). Moreover, regarding definition
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B2) we have
r n 1 Y/p
wi(z;) = / Kx) ][ ijiAwdlx]
i -

_ xgnflfs)/pi+0ti*14iiki1/pi (piAi)7
where Ai = (A’ilvA’i27 . ~;Ain); 1= 1,2, Lo,

Our next result is a simple consequence of Theorems 2.1l and in the de-
scribed setting with homogeneous kernels. Of course, inequalities (2.1]) and (2.6])
can be interpreted as the interpolating series of inequalities for the quotient be-
tween the left-hand side and the right-hand side of inequality (L.IJ).

COROLLARY 3.1. Letp; > 1,47 =1,2,...,n, be conjugate exponents and let A;;,
n
i,7=1,2,...,n, be the real parameters such that > A;; =0, j=1,2,...,n. If
i=1
K: R} — R is a non-negative measurable homogeneous function of degree —s,
$>0, and fi: Ry =R, i=1,2,...,n, are non-negative measurable functions,
then
n i pjAji/n ' n/lglzlg {pi}
P RGT  ) ax
R? i=1
n 1/ min {p;} n (n—1—s)/pi+ay 12111271{ pi}
|: H kz<pzA1)j| 1<1<n H ||xZ pi Zfi s
i=1 i=1
n
J K(x) 1 fi(z) dx
R i=1
< (3.4)
H kP (piAy) H "
=1 =1
n i pjAji/n n n/ mflxn{Pz}
R T e ax
< R =
[H kz(jﬂzAl)} 12, H ngn 1 s)/ZJz+a1fl o 1<i<

=1

n
where a; = Y A, i =1,2,...,n, and k;(-), i =1,2,...,n, is defined by (B3.2).
j=1
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Proof. The proof is a direct consequence of Theorems 2] and Namely, if
we substitute the functions ¢;; and w;, 4,5 = 1,2,...,n, defined respectively by

1) and @3)), in relations (Z1]) and (26]), we get the series of inequalities (BZI)

after straightforward computation.

Remark 3. The left-hand side inequality in ([B.4)) yields the converse, while the
right-hand side inequality provides the refinement of the general Hilbert-type
inequality from paper [8]. Moreover, by using the change of variables z; = u;(t;),
where u;: (a;,b;) — R are strictly increasing differentiable functions satisfying
ui(a;) = 0, u;(b;) = oo, the interpolating series ([B.4) also yields refinement
and converse of the corresponding multidimensional Hilbert-type inequality from
paper [9].

In papers [1], [2], [5], [9], the authors investigated the conditions under which
the constant factors involved in appropriate Hilbert-type inequalities are the best
possible in the sense that they can not be replaced with the smaller constants.

In the sequel we consider the problem of the best possible constant factors
involved in the interpolating series of inequalities (3.4). By the similar reasoning
as in the above mentioned papers with the same problem area, the best possible
constant factors can be obtained if they don’t contain conjugate parameters p;
in the exponents. For that reason, we assume

k1(p1Ai1) = ka2(p2Az) = -+ = kn(pnAn). (3.5)

If we use the change of variables uy = 1/ta, us = t3/ta, ug = ta/ta, ...,
n = tn/t2, which provides the Jacobian of the transformation

‘8(’&1,’&3,...,’(},”) -
a<t2,t3,...,tn) 2
we have
kQ(p2A2 / K tl s n—pa(az— A22)Htp2A2]d ¢
=3

Rn 1
= ki(p1Ai1, s —n —pa(as — Az),p2Ass, . .., p2Aan).
ACCOI‘dng to (m) we have p1A12 =SsS—nNn — pQ(OéQ - A22) 1A13 = p2A23, ey

p1Ain = p2Aa,. In a similar manner we express k;(p;Ai), i = 3,...,n, in terms
of k1(+). In such a way we see that (3.0 is fulfilled if
ijjiZS_n_pi<ai_Aii)a i,j=1,2,...,n, 17&‘] (36)

The above set of conditions also implies that p;A;;, = pjAji, when k # 1, 5.
Hence, we use abbreviations A; = p,A,1 and A; = p1Ay;, © # 1. Since
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n ~ noo-
> A;; =0, one easily obtains that pjA;; = A;(1 —p;) and > A; = s—n
i=1 =1
(see also paper [9]).
In order to obtain the best possible constant factors, we establish some more
specific conditions about the convergence of the integral k;(a), a = (a1, as,. ..
ap), defined by [B2). More precisely, we assume that kj(a) < oo for
n
ag,...,an>—1,> a;<s—n+1,and n € N.
i=2
Hence, in the described setting, the interpolating series of inequalities (3.4))
can be rewritten as

[ G0 a0 2w ax]

S V.

LT a7 palp ™

=1
J KGO TT i) dx

<M (3.7)

T e 7,
=1

[ o) P a0 e ]

~ R’n,
<k TMA) T ,
” z—A —1/P1f1 Pz/M

amERE

=1

where m = 1mln {pi}, M = max. {p;}, and A = (A, Ay, ..., A,).

In the sequel, we show that the constant factors involved in the series of
inequalities (317 are the best possible under certain assumptions on the homo-
geneous kernel.

THEOREM 3.1. Let K: R} — R be a non-negative measurable homogeneous
function of degree —s, s > 0, such that for every i =2,3,...,n,

K1ty ...ty ty) <CK(Ltg,...,0,... t,), 0<t; <1, (3.8)

where C is a positive constant. Then, the constant factors ki_n/M(;&) and
k:}*n/m(A) are the best possible in the series of inequalities ([3.7).

Proof. Suppose kl n/M (A) is not the best possible constant factor in (3.7]),

that is, there exist a positive constant o < kl n/ M(A) such that the right-hand
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side inequality in (3.7) holds if we replace k

/ (A) with a. In other words

f H (xz)dx
1 =1
ﬁ (i AN
=t 3.9)
ey n/M (
| KG) T g ) ax]
R i=
< « + n
H ” *1/p1f1 pi/M
=1

functions

holds for all non-negative measurable functions f;: Ry — R, provided that all
the integrals in the inequality converge. For this purpose, let’s substitute the

f( ) 0,~ O<z<l, (3.10)
i\Ti) = I?iff/pi’ x> 1, :
where 0 < € < 1I<n_i£1 {pi + pi/L-}, in the previous inequality.

<i<n

Since ||1:;Al

P = (e TP, = e71/Pe ) the left-hand side of in-
equality (38]) becomes
—¢ / K z_f/pi dX,
[1,00)

while the right-hand side becomes

[1,00)" =1

no_ n/M
IM:als / K(X)Hx?i_s/ndx] .

Obviously, by using the variable changes u; = z;/x1, i = 2

;= T ; = 2,...,n, and the
homogeneity of the kernel K, the left-hand side I can be rewritten as

I= E/xllgl / K(ﬁl)HuigiE/malu‘| day,
1

[1/21,00)" 1 =2
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providing the inequality

Is- / - [ /K w/malu]dxl
—57x116li /K(ﬁl)f[uf”/pf alu] day (3.11)
= ki (A~ <1/p) g/ooxl li/}((ﬁl)ﬁuf ~</pi 1 ]dxl,

i=2 j=2

D,

where D; = {(ug,ug,...,un) 0 <u; <1/, uj >0, j# z} and 1/p =
(1/p1,...,1/py). Without loss of generality, it is enough to find the upper

bound for the integral [ K(a') [] ufra/pj d'u. Regarding (), we have
Dy j

l/xl

/K(I,O,ug,...,un)Huf"_s/p"du;g...dun] /u’;?_g/mdug
Rn72

Jj=3 0

=C(l—¢/pa+ g2)_1xi/p2_A2_1k1(21 —¢e/p1, Ay — €/p3s .-, A, — £/pn),

Where k:l(Al — s/pl,Ag —€/ps,-.. ﬁn —¢/py) is well defined since obviously
ZA < s —n + 2. Hence, we have

=3
/K H Aj—e/p; d1 5/171 ; 10(1)’ 1=2,3,...,n,
j=2

and consequently

Thus, by using (BI1]), we have

1>k ( - 51/p) —o(1), when ¢ — 0. (3.12)

1177



MARIO KRNIC

no .

On the other hand, by using the fact that >  A; = s —n, the expression I, can
i=1

be bounded from above in the following way:

= _ . n/M
Iy =« 5/35115 / K(ﬁl)Hufﬁa/n (Ailul dxll
-1 - [1/@1,00)71 =
oo - 0o n/M
<a 5/1:115 / K(ﬁl)Hufﬁa/n cAllu] dxll (3.13)
L 9 L i i=2
= ak?™ (A—e/nl) , when ¢ — 0.

Here, 1 denotes the constant n-tuple (1,1,...,1). Finally, relations (8:12) and
BI3) yield inequality

ky (K — El/p) —o(1) < oquf/M (IX — 5/n1> ) when & — 0T,

ie., k:i*"/M(]&) < «, which is obviously opposite to our assumption.

It remains to prove that ki_n/ m(;&) is the best possible constant factor in

the left-hand side inequality in (7). Suppose, on the contrary, that there exist

a constant 8 > ki -/ "(A), such that the inequality

n

JE) I fi(xi)dx

n j—
il =1

LT e 7 fill
b (3.14)
nog N n/m
[ KGO T a0/ 2/ () x|
n =1
>8

—A.—1/p; )
[y 4P g i

—

Il
—

7

holds for all non-negative measurable functions f;: Ry — R, provided that all

the integrals in the inequality converge. For the above choice of functions ﬁ
defined by (B3I0), the left-hand side of inequality (8:I4) becomes I as before,
while the right-hand side, denoted here by I,,, can be rewritten as

e n o _ n/m
I,=p lg/xllgl / K(a') Hufﬁa/n (Ailul dxll .
1 [1/21,00)71 =2
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Now, similarly as in the first part of the proof, we get the estimates
1<k (A-c1 /p)
I > Bk (A - 5/n1) —o(1),

ie., ki(A—el/p) > Bk (A —&/n1) —o(1), when ¢ — 0F. Finally, by letting
e — 07 we get k‘l "/m(A) > [, which is a contradiction. The proof is now
completed. O

(3.15)

4. Two examples and concluding remarks

This section is devoted to the results from previous section in some particular
settings. In such a way we shall obtain the refinements and converses of some
previously known results from the literature.

First example

Let

_ 1 _
An:(” S><fﬁ ) and Aijzs " i,j=1,2,....n, i#j. (4.1)
D; DiPj

These parameters are symmetric and

- (p -1) " s—n n-s "1
D B D T U D
i—1 pl =1, Pipj bi =1 bpj

Moreover, the above defined parameters satisfy conditions (B.6]), so the resulting
relations will include the best possible constant factors. More precisely, in the
described setting, the interpolating series of inequalities ([B.7) reads

n S—n)(n—p; np; i/ n/m
f K (x) ,Hl xi )(n—pi)/(np )fip / (2) dx}
" i=

[k1((s —n)1/p)] ™

fK Hfzxz)

pi/m

7 n—1-—s i
I [l il

n—1-—s i
I L

f K(x) [] xl(s—")(“—m)/(npi)fipi/n(xi)dx} n/M

1-n/M R i=1

< |ki((s—n)1/p ,
(s~ m)1/p)] »

7 n—1-—s i
Il

(4.2)
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where m = 1mln {pi}, M = pax, {p;}. However, under assumption (3.8, the

constant factors [k1((s —n)1/p)] M and [k1((s— n)l/p)} ~"/M are the best
possible in the interpolating series
A typical example of a homogeneous kernel with the negative degree of ho-

mogeneity is the function K: R} — R, defined by

K@)= s> 0. (4.3)

n s’
(Z=)
i=1
Clearly, K is a homogeneous function of degree —s and the constant (3.2) can

be expressed in terms of the usual Gamma function I'. For that reason, we use
the well-known formula

H [T T(a:)

/ =t da= =" (4.4)
R} (1+ni1 )Eaz (2 w)

which holds for a; > 0,7 =1,2,...n (see, e.g. [2]). In such a way, the constant
factors k;(p;Aj), i = 1,2,...,n, involved in the series of inequalities (3.4]) become

1=1

F(S_n+1_piai+piAzz

n
F(S) H F(1+p1Al])7 7;:1727"-7717

J=1,j#i

ki(piAi) =

provided that Aij > —1/pi, 7 75 7, and A;; — oy > (’IL -8 — 1)/]71

It is easy to see that the kernel (43) satisfies the relation (B.8]). Hence,
according to Theorem [B1], the interpolating series of inequalities ([B.4]), equipped
with the kernel (£.3) and the parameters A;; satisfying conditions (3.6]), contains
the best possible constant factors.

Remark 4. If K: R} — R is defined by ([43)), then, regarding ([@.4), we easily
compute the constant factor k1 ((s — n)1/p) included in the interpolating series
of inequalities in ([@2]). Namely, we have

k1((s —n)1/p) = F(ls) f[r (pi “’_‘”) ,

i=1 pi

provided that s > n — m. This constant factor appears in paper [2] as the best
possible in the Hilbert-type inequality determined with the middle quotient in
the interpolating series (4.2]). Hence, relations as in (£2) represent the refine-
ment and converse of the corresponding Hilbert-type inequality from paper [2].

1180



ON A STRENGTHENED MULTIDIMENSIONAL HILBERT-TYPE INEQUALITY

Second example

We conclude this paper with yet another interesting example. Suppose A4;,

i =1,2,...,n, are the real parameters satisfying relations (n — s — 1)/p;—1 <
A; < 1/p;—1, provided that s > n — 2. Of course, we use convention py = p,.
Now, we define parameters A;;, 4,5 = 1,2,...,n, by
Ai, J=1
Aij = —Ai+1, j =141, (45)
0 otherwise,
where the indices are taken modulo n from the set {1,2,...,n}. Now, if the

kernel K: R} — R is defined by (&3], then the series of inequalities (3.4)
becomes

n _.n n/ min {p;}
s i—Pi—1)Ai/n ppi/m 1<i<n
{1 ()™ Malrmetim ) a2
Ri 1= 1=

pi/ lrgnilgn{pi}
pi

" —1—8)/pit+A;—A;
R ‘H1 ”Ii" s)/pit+ g
1=

f ( > 171‘)78 [T fiz:)dx
Rr i=1 i=1
- " n—1—s)/p;i+A;—A;
R L PR g,
n/ max {p;}

n —s & i—Pi—1)Ai/n ppi/n 1<i<n
{ (0 m) ™ TLalrreo el gl a5
< ]Ri =1 =1

> pi/ max {p;}

7 —1— i AlfAl <i<n
Rag [T Il 155
i=1
where the constant factors R,,, R, and R,; are given by
n Y, miz {rs)
IIT(s—n+14+pAi) T —pidiva) |

I'(s)

IIT(s=n+1 +pidig) P T(1 = pidi) /P

_ =1
"= r(s)
s Y e (eid
[IT(s—n+14+pAip1) (1 —piAif1) o
=
Far = r(s)
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Remark 5. The interpolating series of inequalities (4.6]) provides the refinement
and converse of the multidimensional Hilbert-type inequality from paper [3] (see
also paper [6]). Moreover, the parameters A;; defined by (1)), can satisfy the
set of conditions as in (3.0 only for n = 2. In this case, the set of conditions
B8] reduces to the relation p; As + paA; = 2 — s, providing the best possible
constant factors

(1= p1A2)I(1 — p2Ay) 172/ miniprpa}
R
and
I(1 = p1A2)T(1 — paA;) 1-2/ max{p1,p2}
R
in ([Z0) for n = 2 (see also paper [3]).
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