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ABSTRACT. We define states on bounded commutative residuated lattices and

consider their property. We show that, for a bounded commutative residuated

lattice X,

(1) If s is a state, then X/ ker(s) is an MV-algebra.

(2) If s is a state-morphism, then X/ ker(s) is a linearly ordered locally finite

MV-algebra.

Moreover we show that for a state s on X, the following statements are equivalent:

(i) s is a state-morphism on X.

(ii) ker(s) is a maximal filter of X.

(iii) s is extremal on X.
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1. Introduction

Since the notion of state is firstly defined on MV-algebras by Kôpka and

Chovanec in [9], theory of states on algebras is applied to other algebras and

now it is a hot research filed. For example, property of states on pseudo-MV

algebras is considered in [2], on pseudo-BL algebras in [7], on non-commutative

residuated R�-monoids in [5,6]. In [7], it is proved that the notion of (Bosbach)

state is the same as the notion of Riec̆an for good bounded R�-monoids.

The algebras above all have the condition of divisibility (div): x ∧ y =

x � (x → y), from which the algebras are distributive lattices. On the other

hand there are no research about states on algebras without (div) so far. We
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here define states on commutative residuated lattices and consider their prop-

erty. In [2], it is proved that there exists a state on every bounded commu-

tative R�-monoid, but unfortunately we don’t know whether there exist states

on bounded commutative residuated lattices. In [4], a strong notion of state-

morphism is defined and investigated its property on several algebras. It is also

prove that if s is a state-morphism s for a bounded commutative R�-monoid X,

then the quotient algebra X/ ker(s) is an MV-algebra.

We show a stronger result, namely, for a bounded commutative residuated

lattice X,

(1) If s is a state, then X/ ker(s) is an MV-algebra.

(2) If s is a state-morphism, then X/ ker(s) is a linearly ordered locally finite

MV-algebra.

Moreover we give a characterization theorem of extremal states on residuated

lattices. Namely, for a state s on a bounded commutative residuated lattice X,

the following statements are equivalent:

(i) s is a state-morphism on X.

(ii) ker(s) is a maximal filter of X.

(iii) s is extremal on X.

Our results are generalizations of those in [2,4,5] and [7].

2. Bounded commutative residuated lattice and state

We recall a definition of bounded commutative residuated lattices. An alge-

braic structure (X,∧,∨,�,→,0,1) is called a bounded commutative residuated

lattice (simply called residuated lattice, CRL) if

(1) (X,∧,∨,0,1) is a bounded lattice;

(2) (X,�,1) is a commutative monoid with unit element 1;

(3) For all x, y, z ∈ X, x� y ≤ z if and only if x ≤ y → z.

For all x ∈ X, by x′, we mean x′ = x → 0, which is a negation in a sense.

Some well-known algebras, MTL-algebras, BL-algebras, MV-algebras, Heyt-

ing algebras and so on, are considered as algebraic semantics for so-called fuzzy

logics, monoidal t-norm logic, Basic logic, many valued logic, intuitionistic logic

and so on, respectively. Moreover, any residuated lattice satisfying the divisibil-

ity condition (div) is called a R�-monoid ([4]):

(div) x ∧ y = x� (x → y).
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These algebras are axiomatic extensions of residuated lattices as follows:

R�-monoid = CRL +
{
x ∧ y = x� (x → y)

}

MTL = CRL + {(x → y) ∨ (y → x) = 1}
BL = CRL + {x ∧ y = x� (x → y)}+ {(x → y) ∨ (y → x) = 1}

= MTL + {x ∧ y = x� (x → y)}
MV = BL + {x′′ = x}

As to basic properties of residuated lattices, we have the following ([3,4,8,10]).

����������� 2.1� Let X be a residuated lattice. For all x, y, z ∈ X, we have

(1) 0′ = 1, 1′ = 0

(2) x� x′ = 0

(3) x ≤ y ⇐⇒ x → y = 1

(4) x� (x → y) ≤ y

(5) x ≤ y =⇒ x� z ≤ y � z, z → x ≤ z → y, y → z ≤ x → z

(6) 1 → x = x

(7) (x ∨ y)� z = (x� z) ∨ (y � z)

(8) (x ∨ y)′ = x′ ∧ y′

According to [4], we define states on residuated lattices. LetX be a residuated

lattice. A map s : X → [0, 1] is called a state on X if it satisfies

(S1) s(x) + s(x → y) = s(y) + s(y → x)

(S2) s(0) = 0 and s(1) = 1

The condition (S1) above has other equivalent notions.

����������� 2.2� For a map s : X → [0, 1] with meeting (S2) above, the fol-

lowing conditions are equivalent:

(S1) s(x) + s(x → y) = s(y) + s(y → x) for all x, y ∈ X

(S1)’ 1 + s(x ∧ y) = s(x ∨ y) + s(d(x, y)) for all x, y ∈ X, where d(x, y) =

(x → y) ∧ (y → x)

(S1)” 1 + s(x ∧ y) = s(x) + s(x → y) for all x, y ∈ X

P r o o f.

(S1) =⇒ (S1)’: If we replace x and y by x∨ y and x∧ y in (S1), respectively,

then we have s(x ∨ y) + s((x ∨ y) → (x ∧ y)) = s(x ∧ y) + s((x ∧ y) → (x ∨ y)).
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Since

x ∨ y → x ∧ y = (x → x ∧ y) ∧ (y → x ∧ y)

= (x → x) ∧ (x → y) ∧ (y → x) ∧ (y → y)

= 1 ∧ (x → y) ∧ (y → x) ∧ 1

= (x → y) ∧ (y → x)

= d(x, y)

and s((x∧ y) → (x∨ y)) = s(1) = 1, we have s(x∨ y)+ s(d(x, y)) = s(x∧ y)+1.

(S1)’ =⇒ (S1)”: We set y by x∧ y in (S1)’. Then we have 1+ s(x∧ (x∧ y)) =

s(x∨(x∧y))+s((x → x∧y)∧((x∧y → y)). Since x → x∧y = (x → x)∧(x → y)

= 1 ∧ (x → y) = x → y, it follows that 1 + s(x ∧ y) = s(x) + s(x → y).

(S1)” =⇒ (S1): If we exchange x and y in the condition (S1)”, then we

have 1 + s(y ∧ x) = s(y) + s(y → x). Since s(x ∧ y) = s(y ∧ x), we get

s(x) + s(x → y) = s(y) + s(y → x). �

The following results are proved in [4] under the condition that the support al-

gebras are R�-monoids. We can show the same results under the only conditions

of residuated lattices.

����������� 2.3� Let s be a state on a residuated lattice X. Then for any

x, y ∈ X we have,

(S3) s(x′) = 1− s(x)

(S4) s(x′′) = s(x)

(S5) x ≤ y =⇒ 1 + s(x) = s(y) + s(y → x)

(S6) x ≤ y =⇒ s(x) ≤ s(y)

(S7) s(x� y) = 1− s(x → y′)

(S8) s(x) + s(y) = s(x� y) + s(y′ → x)

(S9) s(x′ → y′) = 1 + s(x)− s(x ∨ y)

(S10) s(x′ ∨ y′) = 1− s(x)− s(y) + s(x ∨ y)

(S11) s(x′′ ∨ y′′) = s(x ∨ y)

(S12) s(x) + s(y) = s(x ∧ y) + s(x ∨ y)

(S13) s(d(x, y)) = s(d(x′′, y′′))

P r o o f. We only show the cases of (S9)–(S13), because other cases can be proved

similarly as in [4].
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(S9): s(x′ → y′) = 1 + s(x) − s(x ∨ y): Since s(x′) + s(x′ → y′) = 1 +

s(x′ ∧ y′) = 1 + s((x ∨ y)′), we have s(x′ → y′) = 1 − s(x′) + s((x ∨ y)′) =

1− 1 + s(x) + 1− s(x ∨ y) = 1 + s(x)− s(x ∨ y).

(S10): s(x′∨y′) = 1−s(x)−s(y)+s(x∨y): Since s(x′∨y′)+s(x′∨y′ → y′) =
s(y′) + s(y′ → x′ ∨ y′) = s(y′) + 1, it follows s(x′ ∨ y′) + s(x′ → y′) = 1 + s(y′)
and thus

s(x′ ∨ y′) = 1 + s(y′)− s(x′ → y′)

= 1 + 1− s(y)− (1 + s(x)− s(x ∨ y))

= 1− s(x)− s(y) + s(x ∨ y).

(S11): s(x′′ ∨ y′′) = s(x∨ y): Since s((x′′ ∨ y′′)′) = s(x′′′ ∧ y′′′) = s(x′ ∧ y′) =
s((x∨y)′), we get that s(x′′∨y′′) = 1−s((x′′∨y′′)′) = 1−s((x∨y)′) = s(x∨y).

(S12): s(x) + s(y) = s(x ∧ y) + s(x ∨ y): From x ≤ x ∨ y, we have 1 + s(x)

= s(x∨y)+s(x∨y → x) = s(x∨y)+s(y → x). This implies that 1 + s(x) + s(y)

= s(x∨y)+s(y)+s(y → x) = s(x∨y)+1+s(x∧y) and hence that s(x)+s(y) =

s(x∧y)+s(x∨y). We note that the condition can be proved without divisibility

nor pre-linearity condition (a → b) ∨ (b → a) = 1.

(S13): s(d(x, y))=s(d(x′′, y′′)): It is easy to prove that s(d(x, y))≤s(d(x′, y′))
by x → y ≤ y′ → x′. Then we have

s(d(x′′, y′′)) = 1 + s(x′′ ∧ y′′)− s(x′′ ∨ y′′)

= 1 + s((x′ ∨ y′)′)− s(x′′ ∨ y′′)

= 1 + 1− s(x′ ∨ y′)− s(x ∨ y)

= 1 + 1− (1− s(x)− s(y) + s(x ∨ y))− s(x ∨ y)

= 1 + s(x) + s(y)− s(x ∨ y)− s(x ∨ y)

= 1 + s(x ∧ y) + s(x ∨ y)− s(x ∨ y)− s(x ∨ y)

= 1 + s(x ∧ y)− s(x ∨ y)

= s(d(x, y)).

�

We note that especially (S12) and (S13) above are proved in several papers

([4–6]) under the condition of divisibility. But our proof says that the condition

is not necessary to prove them.

It follows from the results without assumption of (div) that an important

property of states on residuated lattices can be proved.
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��� 2.1� Let s be a state on a residuated lattice X. Then for all x, y ∈ X,

we have

(S14) 1 + s(d(x, y)) = s(x → y) + s(y → x)

(S15) s((x → y) ∨ (y → x)) = 1

(S16) s(d(x, y)) = s(d(x → y, y → x)).

P r o o f.

(S14): Since s(x)+s(x → y) = 1+s(x∧y) and s(y)+s(y → x) = 1+s(y∧x),

we have s(x) + s(y) + s(x → y) + s(y → x) = 2 + s(x ∧ y) + s(x ∨ y). It follows

from (S12) that

s(x → y) + s(y → x) = 2 + s(x ∧ y) + s(x ∧ y)− (s(x) + s(y))

= 2 + s(x ∧ y) + s(x ∧ y)− s(x ∧ y)− s(x ∨ y)

= 1 + s(x ∧ y)− s(x ∨ y) + 1

= s(d(x, y)) + 1.

(S15): It follows from (S12) and (S14) that

1 + s(d(x, y)) = s(x → y) + s(y → x)

= s((x → y) ∧ (y → x)) + s((x → y) ∨ (y → x))

= s(d(x, y)) + s((x → y) ∨ (y → x))

and thus s((x → y) ∨ (y → x)) = 1.

(S16): Since s((x → y) ∨ (y → x)) = 1 and (S1)’, we have 1 + s(d(x, y)) =

1 + s((x → y) ∧ (y → x)) = s((x → y) ∨ (y → x)) + s(d(x → y, y → x)) =

1 + s(d(x → y, y → x)). Thus we get s(d(x, y)) = s(d(x → y, y → x)). �

3. Filter

We define filters of residuated lattices. Let X be a residuated lattice. A

non-empty subset F ⊆ X is called a filter of X if

(F1) If x, y ∈ F then x� y ∈ F ;

(F2) If x ∈ F and x ≤ y then y ∈ F .

It is easy to prove that, for a non-empty subset F of X, F is a filter if and only

if it satisfies the condition

(DS) If x ∈ F and x → y ∈ F then y ∈ F .
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For every filter F , we define a relation ≡F on X as follows:

x ≡F y ⇐⇒ x → y, y → x ∈ F.

We see that if F is a filter then ≡F is a congruence. In this case, we consider

a quotient algebra X/F = {x/F | x ∈ X} and we consistently define operators,

for x/F and y/F ∈ X/F

x/F ∧ y/F = (x ∧ y)/F

x/F ∨ y/F = (x ∨ y)/F

x/F → y/F = (x → y)/F

x/F � y/F = (x� y)/F

0 = 0/F

1 = 1/F.

It is trivial that X/F = (x/F,∧,∨,�,→,0,1) is also a residuated lattice.

For a non-empty subset S ⊆ X, by [S) we mean the filter generated by S.

We have a concrete notation about [S). Since it is easy to prove the following,

we omit its proof.

����������� 3.1� If F is a filter and a ∈ X, then we have

[F ∪ {a}) = {x | ∃u ∈ F, ∃n ∈ N : u� an ≤ x}.
����������� 3.2� For all x, y ∈ X and m,n ∈ N , we have (x ∨ y)m+n ≤
xm ∨ yn.

A proper filter P (i.e., P 
= X) is called prime if it satisfies x ∈ P or y ∈ P

provided x ∨ y ∈ P for all x, y ∈ X. A filter H is called maximal if there is no

proper filter containing H properly. It is easy to prove that, for a filter F , F is

a maximal filter if and only if there exists n ≥ 1 such that (xn)′ ∈ F for x 
∈ F .

For a state s on X, we define

ker(s) =
{
x ∈ X | s(x) = 1

}
,

the kernel of s. It is obvious that ker(s) is a proper filter of X. Since ker(s) is

the filter, we can consider the quotient residuated lattice X/ ker(s) by the filter

ker(s).

	
��� 3.1� If s is a state on X, then the following conditions are equivalent:

(i) x/ ker(s) = y/ ker(s)

(ii) s(x) = s(y) = s(x ∧ y)

(iii) s(x ∧ y) = s(x ∨ y)
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P r o o f.

(i) =⇒ (ii): Suppose that x/ ker(s) = y/ ker(s). This means that x → y,

y → x ∈ ker(s) and hence s(x → y) = s(y → x) = 1. It follows from s(x) +

s(x → y) = s(y) + s(y → x) = 1 + s(x ∧ y) that s(x) = s(y) = s(x ∧ y).

(ii) =⇒ (iii): We assume that s(x) = s(y) = s(x ∧ y). Since s(x) + s(y) =

s(x ∧ y) + s(x ∨ y), we have s(x) = s(x ∨ y) and thus s(x ∧ y) = s(x ∨ y).

(iii) =⇒ (i): Assume s(x∧ y) = s(x∨ y). Since x∧ y ≤ x, y ≤ x∨ y, it follows

from assumption that s(x ∧ y) = s(x) = s(y) = s(x ∨ y). The fact that s(x) +

s(x → y) = 1 + s(x ∧ y) = s(y) + s(y → x) yields to s(x → y) = 1 = s(y → x).

This means that x → y, y → x ∈ ker(s) and thus x/ ker(s) = y/ ker(s). �

	
��� 3.2� If s is a state on X, then s(x ∧ y) = s(x� (x → y)).

P r o o f. Since s(x) + s(x → y) = s(x → y) + s(x) = s((x → y) � x) +

s(x′ → (x → y)) = s(x � (x → y)) + s(1) = s(x � (x → y)) + 1 by (S8),

we have s(x� (x → y)) = s(x)+ s(x → y)− 1 = s(x∧ y) + 1− 1 = s(x∧ y). �

If s is a state on X, denote by X̂ =
{
x̂ := x/ ker(s) | x ∈ X

}
the correspond-

ing quotient residuated lattice. Let ŝ be the map on X̂ defined by ŝ(x̂) = s(x)

(x ∈ X).


�
��
� 3.3� Let s be a state on X, then we have

(i) ŝ is a state on X̂.

(ii) X̂ = X/ ker(s) is an MV-algebra.

P r o o f. We only show the case of (ii), because (i) is proved easily (c.f. [4]).

For all x, y ∈ X, since s((x → y) ∨ (y → x)) = 1, we have (x → y) ∨ (y → x)

∈ ker(s). This implies (x̂ → ŷ)∨(ŷ → x̂) = (x/ ker(s) → y/ ker(s))∨(y/ ker(s) →
x/ ker(s)) = ((x → y) ∨ (y → x))/ ker(s) = 1/ ker(s) = 1̂, that is, (x̂ → ŷ) ∨
(ŷ → x̂) = 1̂. It follows from the lemma above that s(x� (x → y)) = s(x∧ y) =

s((x� (x → y)) ∧ (x ∧ y)) and hence that x/ ker(s)� (x/ ker(s) → y/ ker(s)) =

x/ ker(s)�(x → y)/ ker(s) = (x�(x → y))/ ker(s) = (x∧y)/ ker(s) = x/ ker(s)∧
y/ ker(s). This means that x̂ ∧ ŷ = x̂ � (x̂ → ŷ), that is, X̂ = X/ ker(s)

satisfies the divisibility. Moreover, it follows from s(x′′) = s(x) and x ≤ x′′ that
s(x) = s(x ∧ x′′) = s(x ∨ x′′) hence that (x̂)′′ = (x/ ker(s))′′ = x′′/ ker(s) =

x/ ker(s) = x̂. Therefore X̂ = X/ ker(s) is an MV-algebra. �
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4. State-morphism

In this section, we define a state-morphism on a residuated lattice according

to [4]. We consider the closed interval [0, 1] as the standard MV-algebra, where

operations ∧L, ∨L, �L, →L are defined by, for all a, b ∈ [0, 1]

a ∧L b = min{a, b}
a ∨L b = max{a, b}
a�L b = max{a+ b− 1, 0}
a →L b = min{1− a+ b, 1}.

A map s from a residuated lattice X to the standard MV-algebra [0, 1] is said

to be a state-morphism if, for all x, y ∈ X,

(sm1) s(x → y) = s(x) →L s(y)

(sm2) s(x ∧ y) = s(x) ∧L s(y)

(sm3) s(0) = 0 and s(1) = 1.

A state s on X is said to be extremal if the equality s = λs1 + (1 − λ)s2 for

some λ ∈ (0, 1) and states s1, s2 implies s1 = s2.

����������� 4.1� Every state-morphism s on a residuated lattice X is a state

on X and s(x� y) = s(x)�L s(y).

P r o o f. Let s be a state-morphism on X. We only show the case of (sm1). The

other case (sm2) can be proved similarly. There are two cases to be considered

(i) s(x) ≤ s(y) and

(ii) s(x) > s(y).

In the first case (i) s(x) ≤ s(y), since s(x) →L s(y) = 1 and s(y) →L s(x) =

1 − s(y) + s(x), we have s(x) + s(x → y) = s(x) + 1 and s(y) + s(y → x) =

s(y) + 1 − s(y) + s(x) = 1 + s(x). Hence s(x) + s(x → y) = s(y) + s(y → x).

The same equation also holds in the case (ii). Thus, every state-morphism is the

state.

Concerning to s(x� y) = s(x)�L s(y), we have

s(x� y) = 1− s(x → y′) = 1− (s(x) →L s(y′))

= 1−min{1− s(x) + s(y′), 1}
= max{1− (1− s(x) + s(y′)), 0}
= max{s(x)− s(y′), 0} = max{s(x)− 1 + s(y), 0}
= s(x)�L s(y).
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�
����������� 4.2� A state s on X is a state-morphism if and only if ker(s) is

a maximal filter.

P r o o f. If x /∈ ker(s), since s(x) < 1, then there exists n ≥ 1 such that

(s(x))n = 0 by definition of � in [0, 1]. It follows from the above that s(xn) = 0.

Since s((xn)′) = 1− s(xn) = 1− 0 = 1, we have (xn)′ ∈ ker(s). This means that

ker(s) is the maximal filter.

Conversely, suppose that ker(s) is a maximal filter. Since ker(s) is also a prime

filter and s((x → y) ∨ (y → x)) = 1, we have x → y ∈ ker(s) or y → x ∈ ker(s).

In the case of x → y ∈ ker(s), we note that s(x) ≤ s(y). Because, since

s(x) + s(x → y) = s(y) + s(y → x), we have s(y)− s(x) = 1− s(y → x) ≥ 0. It

follows from s(x)+s(x → y) = 1+s(x∧y) that s(x) = s(x∧y) and s(x∧y) ≤ s(y),

that is, s(x∧ y) = s(x) = min{s(x), s(y)}. The other case of y → x ∈ ker(s) can

be proved similarly. That is, s(x ∧ y) = min{s(x), s(y)}.
It follows from this result that

s(x → y) = 1 + s(x ∧ y)− s(x)

= 1 +min{s(x), s(y)} − s(x)

= min{1 + s(x)− s(x), 1 + s(y)− s(x)}
= min{1, 1− s(x) + s(y)}
= s(x) →L s(y).

These mean that s is the state-morphism on X. �

A residuated lattice X is called locally finite ([11]) if, for any x ∈ X (x 
= 1)

there exists n ≥ 1 such that xn = 0. By the same proof in [11], it is clear that:


�
��
� 4.3� For a filter H of a residuated lattice X, H is a maximal filter

if and only if X/H is a locally finite residuated lattice.

Further, if s is a state-morphism, since s is a state and ker(s) is the maxi-

mal filter, the quotient structure X/ ker(s) is also a locally finite MV-algebra.

Moreover, we have the following result.

	
��� 4.1� If s is a state-morphism then X/ ker(s) is linearly ordered.

P r o o f. Since s((x → y) ∨ (y → x)) = 1 for all x, y ∈ X, we have x/ ker(s) →
y/ ker(s) = 1/ ker(s) or y/ ker(s) → x/ ker(s) = 1/ ker(s) and this means that

X/ ker(s) is linearly ordered. �
	
��� 4.2� If s is a state-morphism, then x/ ker(s) = y/ ker(s) if and only if

s(x) = s(y).
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P r o o f. Suppose that x/ ker(s) = y/ ker(s). We have s(x → y) = s(y → x) = 1

from x → y, y → x ∈ ker(s). Since s(x) + s(x → y) = s(y) + s(y → x), we get

that s(x) = s(y).

Conversely, if s(x) = s(y), since s is the state-morphism, then we have

s(x → y) = s(x) →L s(y) = 1 = s(y) →L s(x) = s(y → x). This implies

x → y, y → x ∈ ker(s) and thus x/ ker(s) = y/ ker(s). �

It follows from the above we have:


�
��
� 4.4� If s is a state-morphism on a residuated lattice X, then X/ ker(s)

is a linearly ordered locally finite MV-algebra.

It is proved in [1] that, for subalgebras X1 and X2 of the MV-algebra [0, 1],

if X1 and X2 are isomorphic then X1 = X2. Moreover, it is also proved for

MV-algebra X, X is simple if and only if it is a subalgebra of the standard

MV-algebra [0, 1]. It follows from the fact that a state on an MV-algebra is

extremal if and only if it is a state-morphism ([5]), we can show the following

result on bounded commutative residuated lattices with the similar proof in [4:

Proposition 4.10], which can be proved for bounded commutative R�-monoids.

	
��� 4.3� Let S be a state on a bounded commutative residuated lattice X.

The following statements are equivalent:

(i) s is an extremal state on X.

(ii) s is a state-morphism on X.

It follows from the above that we have a characterization theorem about

state-morphisms.


�
��
� 4.5� For a state s on a bounded commutative residuated lattice X,

the following statements are equivalent:

(i) s is a state-morphism on X.

(ii) ker(s) is a maximal filter of X.

(iii) s is extremal on X.
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