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ABSTRACT. The aim of this paper is to present several techniques of con-
structing a lattice-ordered effect algebra from a given family of lattice-ordered
effect algebras, and to study the structure of finite lattice-ordered effect algebras.
Firstly, we prove that any finite MV-effect algebra can be obtained by substitut-
ing the atoms of some Boolean algebra by linear MV-effect algebras. Then some
conditions which can guarantee that the pasting of a family of effect algebras is
an effect algebra are provided. At last, we prove that any finite lattice-ordered
effect algebra E without atoms of type 2 can be obtained by substituting the
atoms of some orthomodular lattice by linear MV-effect algebras. Furthermore,
we give a way how to paste a lattice-ordered effect algebra from the family of
MV-effect algebras.
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1. Introduction

In a classical physical system, the measured events form a Boolean algebra.
However, the event structure for quantum mechanics is not necessarily a Boolean
algebra. Therefore, Birkhoff and von Neumann introduced orthomodular lattices
as the event structure describing quantum mechanical experiments [1[10]. Later,
orthomodular lattices were considered as the standard quantum logic [I7]. Or-
thoalgebras as a generalization of orthomodular posets were introduced which
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were also considered as a “sharp” quantum logic [7L[1T[14]. In the Nineties of the
last century, two equivalent quantum structures, D-posets and effect algebras,
were introduced, which were considered as “unsharp” quantum logics [111[1§].
They are generalizations of many structures which arise in quantum mechanics,
in particular, of Boolean algebras, orthomodular lattices and MV-algebras etc.
[4.[7]. More about effect algebras see [7].

In 1958, Chang introduced the definition of MV-algebras to prove the com-
pleteness of Lukasiewicz propositional logic [4]. MV-algebras play an important
role in many fields of mathematics [4,[7]. Especially, with the development of
quantum logic, MV-algebras have appeared in effect algebras in many ways:
Mundici showed that starting from an AF C*-algebra we can obtain a count-
able MV-algebra, and conversely, any countable MV-algebra can be derived in
such a way [4]. Ravindran proved that ®-symmetric effect algebras are exactly
MV-algebras [33], and also Boolean D-posets of Chovanec and Képka are MV-al-
gebras [19120].

In [34], it has been proved that every lattice-ordered effect algebra L is a union
of its maximal subsets of pairwise compatible elements, called blocks. The blocks
of a lattice-ordered effect algebra L are subeffect algebras and sublattices of L.
Moreover, every block B of the lattice-ordered effect algebra L is an MV-algebra
in its own right, which means that it can be organized into an MV-algebra [7,34].

A natural question is how to paste a lattice-ordered effect algebra from the given
family of MV-algebras?

The pasting techniques and the Greechie diagrams were essentially used in the
early studies of orthomodular lattices [BLI2LI7]. In [5L12,17,27,30], the authors
gave some interesting ways how to paste a given family of Boolean algebras to
obtain an orthomodular lattice. The pasting techniques gave a lot of interesting
examples. On the one hand, the pasting techniques allowed us to start from
simple structures and “paste” them to obtain more complex quantum structures
and these ways were different from those ways in [26l28]. The pasting techniques
also brought important results [12,22H24]. The first achievement was that of
Greechie who used the pasting techniques for constructing “stateless logics” [12].
Then Shultz gave a characterization of the state spaces of orthomodular lattices
[37]. Later, Navara and Weber independently constructed orthomodular lattices
admitting no group-valued measure [22,[38]. Furthermore, some descriptions of
state spaces of orthomodular structures are given in [23]24].

Recently, in order to study the pasting constructions of MV-effect algebras
and the structures of effect algebras, the Greechie diagrams of effect algebras
were introduced by Navara in [29], and Chovanec introduced the generalized
Greechie diagrams of the pasting of MV-algebras in [3]. In [39], the authors
introduced the definitions of Greechie diagrams of MV-algebras and finite lattice-
ordered effect algebras without of atoms type of 2.
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The pasting techniques were also used to study the structure of effect algebras
in [21[35]. In [2], the authors introduced a pasting technique from an “admissible
system” of MV-algebras giving a D-poset. In [35], the author gave another
method of constructing a lattice-ordered effect algebra E with the given family of
MV-algebras. However, all the given MV-algebras must have the same nontrivial
sub-MV-algebra. The present paper provides several ways of constructing a
lattice-ordered effect algebra L from a given family of MV-algebras which are
different from those used in [2] and [35]. The pasting techniques used in this
paper allow us to show that the set of blocks of the lattice-ordered effect algebra
E which is a pasting of a given family 8 of MV-algebras coincides with the
set B. Finally, the given family of MV-algebras 96 used in this paper does not
necessarily have the same nontrivial sub-MV-algebra.

This paper is organized as follows. In Section 2, we recall some basic defini-
tions and facts on effect algebras. In Section 3, the definition of the substitution
of atoms of Boolean algebras by linear MV-effect algebras is introduced. It is
proved that any finite MV-effect algebra can be obtained by substituting the
atoms of some Boolean algebra by linear MV-effect algebras. In Section 4, we
introduce some conditions which will ensure that the pasting of (lattice-ordered)
effect algebras is a (lattice-ordered) effect algebra. In Section 5, we introduce
the definition of the substitution of sharp atoms of lattice-ordered effect algebras
by lattice-ordered effect algebras. Then we prove that the finite effect algebra L
which is a pasting of MV-effect algebras family 8 and in which any atom is of
type 1, is a lattice-ordered effect algebra if and only if the pasting of the Boolean
algebras family S(%) which is the set {S(M) | M € B}, is an orthomodular
lattice, where S(M) is the set of sharp elements of M.

2. Some basic definitions and facts

In this section, we will recall some basic facts on effect algebras.
DEFINITION 2.1. ([I7]) An orthomodular lattice is abounded lattice (L; V, A, 0, 1)
with a unary operation ’ on L satisfying the following conditions for all a,b € L:

(i) If a < b, then v’ < d;

(i) a” = q;

(iii) ' Na=0,d Va=1;

(iv) If a < b, then a V (a’ A D) =b.
DerFINITION 2.2. ([7lIT]) An effect algebra is a system (E; @®,0,1) consisting of

a set F with two special elements 0 and 1, called the zero and the unit, and with
a partial binary operation @ satisfying the following conditions for all a, b, c € E:
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(E1) If a @ b is defined, then b @ a is defined and a b =b & a;

(E2) If a ® b is defined and (a @ b) @ ¢ is defined, then b® ¢ and a @ (b ® ¢) are
defined, and (a ®b) Bc=a® (b D c);

(E3) For any a € E, there exists a unique b € E such that a @ b is defined and
a®b=1;

(E4) If a ® 1 is defined, then a = 0.

DEFINITION 2.3. ([7]) Let E be an effect algebra.

(i) Define a binary relation on E by a < b if, for some c € E, c®a = b.

(ii) Define a binary relation L on E by aLb if and only if a @ b exists in E.
PROPOSITION 2.4. ([7]) Let E be an effect algebra. The binary relation < defined
by Definition 2.3(i) is a partial ordering in E. Moreover, 0 and 1 are the least
element and the greatest element of E, respectively.

DEFINITION 2.5. ([7}[11]) Let E be an effect algebra.

(i) An element p of an effect algebra FE is principal if, for z,y € E, 2,y < p
and x 1 y, then x ®y < p.

1 n element a of an efiect algebra £ 1s sharp if the equality aNa” = olds.
(ii) Anel f ff lgebra F is sh if th lity " =0 hold

(iii) An element a of an effect algebra E is called an atom if the interval
E[0,a) = {x € E |0 < x < a} equals the set {0,a}. Instead of F[0,al, we
write simply also [0, a], where FE is an effect algebra.

In this paper, we denote the sets of principal and sharp elements of an effect
algebra E by P(FE) and S(FE), respectively. We denote the set of all atoms of F
by A(E).

DEFINITION 2.6. ([7L[I3]) Let E be an effect algebra. An element a of an effect
algebra F is central if

(i) for all p € E, there exist ¢,r € F such that ¢ < a,r <d,and a =q P r;

(ii) a and o’ are principal.
DEFINITION 2.7. ([7]) Let E be an effect algebra. If the poset (E; <) is a lattice,
then F is called a lattice-ordered effect algebra.

DEFINITION 2.8. ([4[7]) An MV-algebra is an algebra (M;+,’,0,1) consisting
of a nonempty set M, two constant elements 0, 1 in M, a unary operation ’

and a total binary operation + on M satisfying the following equations for all
a,b,c e M:

(MVi)  a+b=>b+a;
(MVii) (a+b)+c=a+ (b+c);
(MViii)) a4+0=04+a=q;
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(MViv) 1+a=1;
(MVv)  (d) =a;
(MVvi) 0 =1;
(MVvil) a+a =1,
(

DEFINITION 2.9. ([34]) Let E be an effect algebra, a,b € E. The elements a
and b are called compatible (abbreviation a <> b), if there are a1, b1,¢; € E such
that the following conditions hold:

(C].) a:aleBcl,b:bl@cl,
(02) a1 P bl Dy exists in F.

DEFINITION 2.10. ([34]) Let E be a lattice-ordered effect algebra. A maximal
subset M of mutually compatible elements of F is called a block of E.

DEFINITION 2.11. ([34]) Let E be an effect algebra. Then @) C E is called a
subeffect algebra of E if

(i) 1€Q,

(ii) if out of elements x,y, z € E with @y = z two are in @, then z,y,z € Q.

If F is a lattice-ordered effect algebra and @ is a sublattice and a subeffect
algebra of F, then @ is called a lattice-ordered subeffect algebra of E.

THEOREM 2.12. ([7.[34])

(i) Let (E;®,0,1) be a lattice-ordered effect algebra. If for every two elements
a,b € E, a and b are compatible, then (E;+,,0,1) is an MV-algebra, where the
binary operation + on E is defined as follows: for any a,b € E, a+b = a®(a’Ab).

(ii) Let (E;+,’,0,1) be an MV-algebra. If we put a ®b:= a + b if and only
if a <V for any a,b € E, then (E;®,0,1) is a lattice-ordered effect algebra.

Remark 2.13. By Theorem 2.12] any MV-algebra (E;+,’,0,1) can be orga-
nized into an effect algebra (E;@®,0,1), which is called an MV-effect algebra
[15].

THEOREM 2.14. ([7}34]) Let E be a lattice-ordered effect algebra. Then every
block of a lattice-ordered effect algebra E is an MV-effect algebra, and the lattice-
ordered effect algebra E is the set-union of all its blocks.

Whence, by Theorem [2.14] any lattice-ordered effect algebra is a set-union of
MV-effect algebra . However, the question how to “paste” lattice-ordered effect
algebras from a family of MV-effect algebras is open. In the sequel, we will give
some ways how to construct a lattice-ordered effect algebra from a given family
of MV-effect algebras.
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DEFINITION 2.15. ([7]) Let a be an element of an effect algebra E and n > 0
be an integer. We define na =0ifn=0,la=aifn=1,andna=(n—1)a®a
if (n—1)a and (n —1)a @ a are defined in E. We define the isotropic index 1(a)
of the element a, as the maximal nonnegative number n such that na exists. If
na exists for every integer n, we say that 2(a) = +oo0.

3. Greechie diagrams of MV-effect algebras
and the substitutions of MV-effect algebras

In this section, we recall the definition of the Greechie diagrams of MV-effect
algebras, and introduce the definition of the substitutions of atoms in MV-effect
algebras. Then we prove that every finite MV-effect algebra can be obtained by
substituting atoms in a Boolean algebra by linear MV-effect algebras.

THEOREM 3.1. ([839]) Let M be a finite MV-effect algebra and A(M) be the set
of all atoms of M. For any nonzero element x, there exist a unique set of atoms
{ai €eAM)|ie I} and positive integers k;, i € I, such that x = P k;a;.
iel

Remark 3.2. By Theorem B any nonzero element = in a finite MV-effect
algebra M is determined by a unique set of atoms and a natural numbers se-
quence. Hence, the Greechie diagram of an MV-effect algebra can be defined
based on both the atoms and isotropic indices of atoms.

DEFINITION 3.3. A hypergraph is a couple H = (V, &), where V is a nonempty
set and £ is a covering of V by nonempty subsets of V (i.e., [JE = V). The
elements of V, respectively, &, are called wvertices, respectively, edges of H.

DEFINITION 3.4. ([3l839]) Let M be a finite MV-effect algebra. The hypergraph
(V,€), where V = {(1a),a) | a € A(M)}, € = {V}, is called the Greechie
diagram of the MV-effect algebra M. Furthermore, the vertex (1,z) € V is
usually written as x.

Ezxzample 3.5. Fig. 2 is the Greechie diagram of the MV-effect algebra (even a
Boolean algebra) M; represented by Fig. 1.

1

[ 2
[ Xe
®

0

Fig. 1 Eightelements MV-algebra Fig.2 The Greechie diagram of MV-algebra M,

1056



THE PASTING CONSTRUCTIONS FOR EFFECT ALGEBRAS

Example 3.6. Fig. 4 is the Greechie diagram of the MV-effect algebra My
represented by Fig. 3.

(L.a) (2,.d) (1,.1;)

Fig.3 Twelve elements MV-algebra M, Fig.4 The Greechie diagram of MV-algebra M,

DEFINITION 3.7. Let L, M be finite MV-effect algebras, (Vr,€r) and (Var, Ear)
be the Greechie diagrams of L and M, respectively. If there exists a bijection
f: VL — Vi such that for any (:(a),a) € Vi, and (2(b),b) € Vs, we have 1(a) =
1(b) whenever f((2(a),a)) = f((2(b),b)), then the Greechie diagrams (Vr,E&r)
and (Var, Enr) are called isomorphic.

THEOREM 3.8. ([39]) Let L,M be finite MV-effect algebras, (Vi,Er) and
(Var, Ear) be the Greechie diagrams of L and M, respectively. Then the Greechie
diagram (Vr,Er) is isomorphic to Var, Enr) if and only if L is isomorphic to M.

PRrROPOSITION 3.9. Let M be an MV-effect algebra. For any sharp atom a € M,
M = M|0,a'| U M]a, 1], M[0,a'] N M[a, 1] = 0.

Proof. Obviously, M[0,a’] U Mla,1] C M. We have to prove that M[0,a’] U
Mla,1] D M. For any x € M, we have that aNx =aoraAz =0. lfaAz = a,
then x € Ma,1]. f ahz =0,thenz =xAl=2A(aVd) = (zAa)V(xAd) =
x Ad,and so x € M|0,d’]. Hence, M = M|[0,a'] U M|a, 1].

Now, we prove that M [0, a’]NM][a, 1] = 0. Suppose that M[0,a'|NM]a, 1] # 0.
If © € M[0,a'] N Mla,1], then a < z < a’ and a A a’ = a # 0, which is a
contradiction. Hence, M[0,a’| N M|a, 1] = 0. O

PROPOSITION 3.10. Let (M;®,0,1) be an MV-effect algebra and C,, be the
linear MV-effect algebra {0, ;L, e mnzl , 1}, where m is a natural number with
m > 1. Assume that a is an atom of M such that a N a’ = 0. Then (M*;®*,
(0,0),(1,a")) is an MV-effect algebra, where M* equals C,, x M[0,a’], and for
any (b, c), (d,e) € M*,(b,c) ®* (d,e) exists and equals (b&¢,, d,c® e) whenever
both b ®¢,, d and c ® e exist in Cp, and M, respectively.
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Proof. It is easy to see that M[0,a’] is also an MV-effect algebra when we
restrict the partial operation @ of M to M[0,a’]. Then the result is obvious. O

Remark 3.11. In Proposition B.I0] since M equals M |0, a']UM|a, 1] by Propo-
sition [3.9] we can define an MV-effect algebra embedding f: M — M* as follows:
for any © € M,

f@) = (0,z), if z € M[0,qd],
T (1,ay), if x € Ma,1] and x =a ® ay.

Hence, the MV-effect algebra M can be considered as a sub MV-effect algebra
of M*. Furthermore, by [I13} Thm 42] and [6} Thm 3.2], the MV-effect algebra
M is isomorphic to the direct product M|[0,a] x M|[0,a’] for a sharp element
a € M. Hence, in this paper, we identify the MV-effect algebra M with the
MV-effect algebra M0, a] x M0, a’], whenever a is a sharp element of MV-effect
algebra M.

By the above Proposition B.10 and Remark B.I1l we can introduce the fol-
lowing definition.

DEFINITION 3.12.

(i) Assume that M is an MV-effect algebra and a is a sharp atom of M. Let
M* be the MV-effect algebra C,, x M][0,a’]. Then we say that the MV-effect
algebra M™ is originated by substituting the atom a in M by the MV-effect
algebra C),, or substituting the interval M |0, a] by the MV-effect algebra C,,.

(ii) Let My be a finite MV-effect algebra and ag, a1, - . ., a,—1 be atoms of My,
and Cp,,, Cpys - - -, Cpy,, be finite chain MV-effect algebras. If ag is a sharp atom
of My, then we set My = My[0, ap] X Cpn,. If a1 is a sharp atom of My, then we
set My = M0, a}] x Cyp,. If we have M,,_1, and a,,_ is a sharp atom of M,,_1,
then we set M,, = M,,_1[0,a},_;] X Cy,,,. Thus, we have an MV-effect algebra
sequence My, My, ..., M,, where MV-effect algebra M; is originated by substi-
tuting atom a;_; of M;_; by MV-effect algebras C,,,, fori =1,2,...,n. We say
that MV-effect algebra M, is originated by substituting atoms ag, a1, ..., 0,1
of My by MV-effect algebras C,,,Cp,, - - ., Cm,,, Tespectively, n-times.

Exzample 3.13. The MV-effect algebra Lo (Fig. 3) in Example 3.6 is originated
by substituting the atom ¢ of the MV-effect algebra Ly (Fig. 1) in Example
by the linear MV-effect algebra {0, d, 2d}.

LEMMA 3.14. Let a mapping f: My — My be an isomorphism between MV-effect
algebras and let a be a sharp atom of My. If M and M3 are originated by sub-
stituting the atom a of My and the atom f(a) of My by C,, respectively, then
the MV-effect algebras M{ and M3 are isomorphic.
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Proof. Note that M; and Mj are isomorphic to C,, x Mi[0,d’] and C,, x
M50, (f(a))'], respectively, and f: M;[0,a’] — Ms[0, (f(a))’] is an isomorphism
by assumptions, we have that M; and M3 are isomorphic. O

LEMMA 3.15. Let M be the MV-effect algebra C,,, x2" 1. Then M is isomorphic
to the MV-effect algebra M*, originated by substituting the atom (1,0,...,0) of
- ~ P

n—1

B (=2") consisting of the sharp elements of M by the MV-effect algebra C,,.

Proof. Let a = (1,0,...,0). Then a is an atom of B with a A a’ = 0. Since B

~
n—1

is isomorphic to the direct product B|0, a] x B|0, a’], we have that the MV-effect
algebra M* = C,, x B0, '] is isomorphic to the MV-effect algebra C,,, x 2"~ 1.
O

THEOREM 3.16. Let M be the MV-effect algebra Chyy % -+ - x Cy,, , where Cyy, is
{O, WIL ey m;l__l, 1}, m; =2 1,1=1,2,...,n. Then the MV-effect algebra M?*,
which is originated by substituting atoms ay,as,...,a, of B by MV-effect alge-

bras Cp,, ..., Cn, , respectively, n-times, is isomorphic to the MV-effect algebra
M, where aqy = (1,0,...,0), ..., a, = (0,...,0,1).
N N~ 7
n—1 n—1

Proof. Notethat a; is a sharp atom of B, assume that M is originated by sub-

stituting the atom aq by the MV-effect algebra C,,,, then My = C,,, x B0, a!]

= M, x{0} x{0,1} x --- x {0, 1}, which is isomorphic to the MV-effect algebra
- ~ -

n—1
M., x{0,1} x --- x {0,1}, and so, we can set M; = C,,, x{0,1} x --- x {0,1}.
~ ~ - ~ ~ -
n—1 n—1

Note that as is also a sharp atom of M;, assume that Ms is originated by sub-
stituting the atom ag by the MV-effect algebra M,,,, then My = C,,, x M1[0, a}]
= Cipy XClp, {0} x{0,1} x --- x {0,1}. Again, we can set My=C,,, x M1[0, a}]

- ~ -
n—2
=Cpy X Cpyy x {0,1} x -+ x {0,1}.
~ -

~
n—2

Repeating the above process, we get that M,, = C,, X Cm(n,_l) X oo X Cp, .

Setting My = B, M* = M,, we have a sequence of MV-effect algebras
My, M, ..., M,, where M, is originated by substituting atoms ai,as,...,a,
of B by MV-effect algebras Cp,,,...,Chp, , respectively, n -times. Then M, is
isomorphic to the MV-algebra M. (]
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DEFINITION 3.17. Let M be a finite MV-effect algebra and let a hypergraph
H = (V,€) be the Greechie diagram of M, (1,a) € V, {(n,b)}NV =0, & = {1},
where V1 = (V- {(1,a)}) U{(n,b)} and n € N, n > 1. Writing H1 = (V1,&1),
we say that H; is originated by substituting the vertex (1,a) of H by (n,b).

Example 3.18. The Greechie diagram in Fig. 4 is originated by substituting
the vertex (1, ¢) of the Greechie diagram in Fig. 2 by (2,d).

THEOREM 3.19. Let M be a finite MV-effect algebra. If H = (V,E) and
Hi = Vi,&1) are the Greechie diagrams of M and S(M), respectively, then
the Greechie diagram H is originated by substituting every vertex (1,2(x)zx) of
H1 by the vertex (1(z), x).

Proof. Let H = (V,€) and H1=(V1, &) be the Greechie diagrams of M and
S(M), respectively. Then V equals {(:(z),z) | « is an atom of M} and V,
equals {(1,2(z)z) | 1(z)z is an atom of S(M)}, hence, H is originated by sub-
stituting every vertex (1,2(x)x) by (:(z),x) of H;. O

THEOREM 3.20. Let M and N be two finite MV-effect algebras. Assume that
Hi = (V1,&1) and Ho = (Va, &) are the Greechie diagrams of M and N, respec-
tively. Then the Greechie diagram of Hi is originated by substituting the vertex
(1,a) of Ha by the vertex (n,b) if and only if M is originated by substituting
the sharp atom a of N by the MV-effect algebra Cy, where Cy, equals the linear
MV-effect algebra {0,b,...,nb} up to isomorphisms.

Proof.

(Sufficiency) Assume that Vo = {(1,a), (¢2(a1),a1), ..., (¢(am), am)}. Then N
is isomorphic to [0, a] x [0,2(a1)a1] x - -+ X [0,2(am)am]. The MV-effect algebra
[0,nb] x [0,2(a1)a1] X - -+ x [0,2(am)an] is originated by substituting the atom a
of N by C, ={0,b,...,nb}. Thus M is isomorphic to [0, nb] x [0,2(a1)a1] x -
X [0,2(@m)am]. Hence, Vi = {(n,b), (2(a1),a1),..., (t(am), am)}, Ha is originated
by substituting the vertex (1, a) of Hy by (n,b).

(Necessity) By the definitions of #; and M2, M and N are isomorphic to
[0,nb] x [0,2(a1)a1] X - -+ x[0,2(am)am] and [0, a] x [0,2(a1)a1] X - - x [0, 2(am)am],
respectively. Hence, M is originated by substituting the atom a of N by C} =
{0,b,....nb}. O

Remark 3.21. By Theorem and 320, any finite MV-effect algebra M is
originated by substituting the atoms of the Boolean algebra S(M) by linear
MV-effect algebras.
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4. The pasting of lattice-ordered effect algebras

In this section, we will present some conditions to construct an effect algebra
from a given family of effect algebras.

Firstly, we recall the following two kinds of basic techniques of constructing
a (lattice-ordered) effect algebra with a given family of (lattice-ordered) effect
algebras [7].

If M is a family of (lattice-ordered) effect algebras, then the cartesian product

[I M is organized into a (lattice-ordered) effect algebra in the obvious way
MeM
using coordinatewise operations and relations.

If M is a family of (lattice-ordered) effect algebras such that AN B = {0, 1}
for any two distinct effect algebras A, B € M, then the horizontal sum of all is

defined in such a way that, for any z,y € |J M, x @ y is defined if and only
MeMm
if there exists an effect algebra M € M such that x @ y exists in M, in which

case x @y = x @ y. Then the algebraic system ( |J M;@®,0,1) is called the
MeM

horizontal sum of M, or the {0,1}—pasting and it is a (lattice-ordered) effect
algebra.

Now we give the general definitions of the pasting of the family of effect
algebras.

DEFINITION 4.1. Let M be a family of effect algebras such that M satisfies the
following conditions:
(i) for any A,B € M with A # B, A¢ B,
(ii) for any A, B € M, AN B is a subeffect algebra of both A and B on which
the induced structures coincide, and 0 =04 =05, 1 =14 = 15.
Let L= |J M. The partial addition operation & is defined in the following

MeM
way: for any x,y € L, x @ y exists in L if and only if there exists M € M such

that x @) y exists in M, in which case, xt @y = x &y y. For any A, B € M,
AN B is a subeffect algebra of both A and B on which the induced structures
coincide, then both A and B have same zero element 0 = 04 = O and the unit
element 1 =14 = 1. Then the algebraic system (L; @, 0, 1) is called the pasting
of the effect algebras family M.

If all elements M € M are MV-effect algebras, then (L;®,0,1) is called the
pasting of the MV-effect algebras family M.

Remark 4.2.

(i) We define a binary relation < on L as follows, for any z,y € L, © < y
if and only if there exists M € M such that z <j; y, where <,; is the partial
order in M. Then < is reflexive and antisymmetric.
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(ii) We define a binary relation L on L as follows, for any z,y € L, z L y if
and only if there exists M € M such that x 1L s y, where L ,; is the orthogonality
relation on M. For z,y € L, if x L y, then we say that x and y are orthogonal.

(iii) We define a unary operation ’ on L as follows, for any =,y € L, if 2 &y
exists and equals 1, then we write that 2’ = y. In fact, if there exist two effect
algebras A, B such that t ®4y = x®p 2z = 1 (where ®4 and @ p are the partial
additions on A and B, respectively), then © € AN B. Since AN B is a subeffect
algebra of both A and B, then we have that y = z = 7.

Remark 4.3. Let (L;®,0,1) be the pasting of a family M of effect algebras.
For any A,B € M, if An B = {0,1}, then (L;®,0,1) is the horizontal sum of
the effect algebras family M.

In the following part of this section, we will discuss the pasting of effect
algebras.

PROPOSITION 4.4. Let M be a family of effect algebras and (L;®,0,1) be a
pasting of M. Suppose that M satisfies the following condition:

(Eo) for any a,b,c € L, if a® b and (a ®b) ® ¢ exist in L, then there exists an
M € M such that a,b,c € M.

Then (L;®,0,1) is an effect algebra.

Proof. Leta,b,ce L. If a®b exists, then there exists an effect algebra M € M
such that a @b = a ®p; b = b ®pr a. Hence, b @ a exists and equals a § b. If
a®b and (a®b) P c exists, then by the assumptions there exists an effect algebra
M € M such that a, b, c € M. Hence, we have that (a®b)@®c = (a®pb) Barc =
a®y (bByc) =ad (bPc). For any a € L, by Remark [£2(iii), there exists a
unique element b such that a ® b = 1. Assume that a ® 1 exists, then a & 1
exists in some M € M, and so a = 0. Thus, we have proved that (L;®,0,1) is
an effect algebra. O

PROPOSITION 4.5. Let M be a family of effect algebras and (L;®,0,1) be a
pasting of M. Suppose that M satisfies the following condition:

(E1) forany A, B € M, if a € AN B, then there exists an effect algebra C € M
such that A[0,a] U B[0,d'] C C.

Then (L;®,0,1) is an effect algebra.

Proof. By Proposition 4] it suffices to prove (Egp). Let us assume that
a,b,c € L and (a ®b) @ c exists. Then there exist two effect algebras A, B € M
such that a®b=a®ab, (a®b)Bc= (a®ab)®pc,andsoa®be AN B. By
the condition (E;), there exists an effect algebra C' € M such that A[0,a & b] U
B0, (a ® b)'] C C. Hence, a,b,c € C. O
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Remark 4.6. There is an example ([27: Example 3.6]) which shows that con-
dition (Eg) does not imply the condition (E;).

DEFINITION 4.7. ([7]) Let (E;@®,0,1) be an effect algebra.

(i) A non empty subset I of E is called an ideal of E if
(1) p® q € I whenever p,q € I and p L ¢, and
(2) for any p € F and g € I, p < ¢q implies p € I.

(ii) The ideal I. generated by a single element e is called a principal ideal.

Remark 4.8. Let F be an effect algebra, then the interval E[0, ¢] is a principal
ideal if and only if e is a principal element of E [7]. In fact, let e be a principal
element of an effect algebra, then it is easy to see that F[0, €] is an ideal, and so
E[0,e] = I.. However, if e is not a principal element of an effect algebra, then
the principal ideal I, does not always equal the interval E[0, x| for some z € E.

PROPOSITION 4.9. Let M be a family of effect algebras and (L;®,0,1) be a
pasting of M. Suppose that M satisfies the following condition:

(Eq) for any A,B € M, we have AN B =1UI', where I is an ideal of both A
and B and the set I' equals {i' | i € T}.

Then (L;®,0,1) is an effect algebra.

Proof. By Proposition 5] it is sufficient to prove (E;). Let us assume that
a € AN B for some A, B € M. If A= B, then (E;) is clearly satisfied. Assume
now that A # Band ANB =1UI" If a € I, then A[0,a] = B[0,al], we have
that A[0,a] U B[0,a’] C B. If a € I’, then A[0,a'] = BJ0,d'], we have that
A[0,a] U B[0,d] C A. O

Remark 4.10. The condition (E;) does not imply the condition (E3). Let D
be the diamond effect algebra {0,a,b,1}, where a ®a =0b@® b =1, and for any
x € D, x @0 = x. Suppose that A is the horizontal sum of D and the linear
effect algebra {0,c¢,1} and B is the horizontal sum of D and the linear effect
algebra {0,d,1}. Let M = {A, B}, then M satisfies the condition (E;) but not

(E2).

PROPOSITION 4.11. Let M be a family of effect algebras and (L; ®,0,1) be a
pasting of M. Suppose that M satisfies the following condition:

(E3) there exists an M € M such that, for any A,B € M and for any a €
(AN B) —{0,1}, we have A[0,a] U B[0,a'] C M.

Then (L;®,0,1) is an effect algebra.
Proof. It is easy to see that the condition (E3) implies the condition (E;). O
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Remark 4.12. Example (.12 (Fig. 9 and Fig. 10) shows that the condition
(E2) does not imply the condition (E3). By Remark .10, we can also conclude
that the condition (E3) does not imply the condition (Es).

Now, we give a sufficient condition which can guarantee that the pasting of
the family of lattice-ordered effect algebras is also a lattice-ordered effect algebra.

PROPOSITION 4.13. Let M be a family of lattice-ordered effect algebras and
(L;®,0,1) be a pasting of M. Suppose that M satisfies the following condition:

(E4) there exists a lattice-ordered effect algebra M € M such that, for any
A,B € M with A # B, we have AN B = 1UI', where I = M[0,m] for
some m € M is a principal ideal of A, B and M.

Then (L;®,0,1) is a lattice-ordered effect algebra.

Proof. Noticing that the condition (E4) implies the condition (Ej3), then
(L;®,0,1) is an effect algebra.

Let a,b € L. Then there are the following different cases.

(i) If a,b € M, then aVy b =aVp b Letc€ Landa < ¢, b <c. We
assert that there exists x € M such that a,b < x < ¢. There exist A, B € M
such that a <a ¢, b<pc. If A# B, thence€ AN B C M. Setting x = ¢, we
have that x < ¢. If A= B, thena,be ANM =1UI' = M[0,m]UM[m/,1].
If a,b € M[0,m], then we set x = ¢ Agm, and so a <4 ¢ Agm <4 c and
b<acham <y c. When M[m/,1]N{a,b} # 0, we assume that a € M[m/, 1],
then a <4 c€ M, set z = c.

(ii) When there exists only one element in M N {a,b}, we assume that a €
M N {a,b}. If there exists a lattice-ordered effect algebra A € M such that
a,b € A, then upper bounds of a,b belong to A, and so a Vp b = a V4 b.
Otherwise, if {a,b} is not contained in any lattice-ordered effect algebra of M,
then the upper bounds of a,b belong to M. In fact, if z is an upper bound of
a and b, then there exist two different lattice-ordered effect algebras A, B € M
such that a,z € A,b,z € B and a <4 z, b <p z. Noticing the condition (E4)
and A # B, we have that xt € ANB C M. By b ¢ M, we have that B # M, thus
we assume that BN M = M[0,mp] U M[m/z, 1]. Then we have that the upper
bounds of b in M belong to M[bVp m/g, 1], and so a VL b=aV (bVpmf).

(iii) When M N {a, b} is the empty set, there are the following two cases. If
there exists a lattice-ordered effect algebra A € M such that a,b € A, then
the upper bounds of a,b belong to A, and so a Vp b = a V4 b. Otherwise,
if {a,b} is not contained in any lattice-ordered effect algebra of M, then the
upper bounds of a,b belong to M. In fact, if  is an upper bound of a and
b, then there exist two different lattice-ordered effect algebras A, B € M such
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that a,z € A, b,z € B and a <4 z, b <p x. Noticing the condition (E4) and
A # B, we have that t € AN B C M. By a,b ¢ M, we assume that AN M =
M[0,ma]l U M[m'y,1], BONM = M[0,mg] U M[m/g,1]. Since M N {a,b} = 0,
the upper bounds of a and b belong to Ma V4 m/y, 1] and M[bVp m/y, 1], and
SOCL\/Lb=<a\/Am£4)\/M (b\/Bm’B). J

Remark 4.14. It is easy to see that the condition (E4) implies the conditions
(Eo), (E1), (E2), (E3), however, the reverse implications do not hold by Re-
marks 4.6, 4.10, 4.12.

5. MV-effect algebras pasting

The substitution techniques have been firstly introduced in [27] by Navara
and Rogalewicz to explore the pasting techniques of orthomodular lattices. In
this section, we will give the definitions of the substitution of effect algebras.
As the applications of the definitions, the structures of the finite lattice-ordered
effect algebras with only atoms of type 1 are discussed. Furthermore, one kind
of techniques of pasting a lattice-ordered effect algebra from the given family of
MV-effect algebras is presented.

5.1. The substitution of effect algebras

In the paper [I6; Lem 3.1], the authors proved that an element « is sharp in
a lattice-ordered effect algebra L, if and only if a is central in some block of L,
if and only if a is central in every block containing a. Similarly, in the following
theorem we will prove that an element a is sharp if and only if a is principal in
a lattice-ordered effect algebra L.

THEOREM 5.1. If (L;®,0, 1) is a lattice-ordered effect algebra, then the set P(L)
of principal elements coincides with the set S(L) of sharp elements.

Proof. It suffices to prove that P(L) 2 S(L). Assume that a € S(L), z,y € L
and r < ¢/, r < a, y < a. Then there exists a block M of L such that a,z,y € M,
and so a is a principal element of the MV-effect algebra M and x @ y <ps a in
M. Hence, z &y < a holds in L and a € P(L). O

By [I6} Cor 3.2], the authors proved that for any lattice-ordered effect algebra
E the set S(E) of sharp elements is an orthomodular lattice. By [16; Thm 5.1,
Cor 3.2], we have the following result.

COROLLARY 5.2. If (L;®,0,1) is a lattice-ordered effect algebra, then the alge-
braic system (P(L); ®p(r),0,1) is an orthomodular lattice, where the operation
®p(ry is the restriction of © of L to the set P(L).
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THEOREM 5.3. Let M and L be two lattice-ordered effect algebras. Suppose
that a is an atom of L with a Ao’ = 0. Then the algebraic system (L*;®p~,
(0,0),(a’,1)) is a lattice-ordered effect algebra, where L* equals L[0,a’] x M
and the partial operation @~ is defined as follows: for any (b,c),(d,e) € L*,
(b,c) @~ (d,e) is defined if and only if b @4 d and c B e are defined in L[0, ]
and M, respectively, in which a case, (b,c) D« (d,e) = (b @By d,c By €), where
the operation @, 1is the restriction of the operation @ of L on the set L[0,ad’]
and the operation @ s is the partial addition on M.

Proof. By Theorem[5.1l S(L) equals P(L), and o’ € P(L). Then the algebraic
system (L[0, a']; @4, 0,a’) is a lattice-ordered effect algebra. The rest is easy to
prove. O

Remark 5.4. Since S(L) equals P(L), we have that L[0,a’|UL[a, 1] is a lattice-
ordered effect algebra. By Theorem[5.3] we can define an embedding u: L]0, a']U
Lla,1] — L* as follows: for any x € L[0,a’] U L|a, 1],

u(z) = {(:c,()), if z e L[0,d],
’ (az,1), if x € Lla,1] and z =a ® ay.

Hence, the lattice-ordered effect algebra (L[0,a’] U L[a,1];®,0,1), which is a
subeffect algebra of L, can be considered as a subeffect algebra of L*. Hence, we
identify any element = € L[0, a’|UL|a, 1] with the element u(xz) € L* in the union
LUL*. Under this identification, we see that the family of lattice-ordered effect
algebras L, L* satisfies the condition (E;). Therefore, we have the following
substitution theorem.

THEOREM 5.5 (Substitution Theorem). Let M and L be two lattice-ordered
effect algebras. Suppose that a is an atom of L with a Ao’ = 0. Let U be the
set LU L*, where the lattice-ordered effect algebra L* equals L[0,a’] x M and it
is similar to the one in Theorem B3l We define a partial operation ® on U as
follows: for any a,b € U,

_ fa@pb, ifabel,
“@b'_{aeapb, if a,be L* — L.

Then the algebraic system (U;®,0,1) is a lattice-ordered effect algebra.

Proof. By Remark[5.4] there exists an isomorphism between the subeffect al-
gebra L]0, a’|UL[a, 1] of L and the subeffect algebra L[0, a’] x {0,1} of L*. Thus,
both the effect algebras L]0, a’]UL[a, 1] and L[0, a'] x {0, 1} can be considered as
the intersection of lattice-ordered effect algebras L and L*. Hence, the partial
operation @ on U is well defined and the algebraic system (U;@®,0,1) is the
pasting of lattice-ordered effect algebras L and L*. Since the pasting U sat-
isfies the condition (E4), we have that U is a lattice-ordered effect algebra by
Proposition ET3 O
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DEFINITION 5.6. We say that the lattice-ordered effect algebra U is originated
by substituting the atom a in L by the lattice-ordered effect algebra M, or
substituting the interval L[0, a] by the MV-effect algebra M, where the meaning
of U, L, and M is same as those in Theorem [5.3] and Theorem

Fig.6 The lattice-ordered effect algebra U which originated by

Fig. 5 Alattice-ordered effect algebra

substituting the atom x of a lattice-ordered effect algebra L

Example 5.7. Fig. 5 and Fig. 6 are the Hasse diagrams of lattice-ordered
effect algebras L and U. It is easy to see that effect algebra U is originated by
substituting the atom x of L by the effect algebra {0, ¢, 2¢}.

5.2. The structure of lattice-ordered effect algebra
with only atoms of type 1

In this section, we will study the structure of finite lattice-ordered effect
algebras with only atoms of type 1. Using the definition of the substitution of
effect algebras, we will prove that any finite lattice-ordered effect algebra with
only atoms of type 1 can be gotten by some orthomodular lattice. Furthermore,
we present some ways how to construct a lattice-ordered effect algebra with a
family of the MV-effect algebras.

DEFINITION 5.8. ([7]) Let L be an effect algebra and a € L be an atom. The
atom a is of type 1 if whenever m is a positive integer and ma is defined, the
interval L[0,ma] = {0,a,...,ma}. Otherwise it is of type 2.

PROPOSITION 5.9. Let L be a finite lattice-ordered effect algebra and let all
atoms of L be of type 1. If A and B are different blocks of L, then the sets of
sharp elements S(A) and S(B) are also different.
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Proof. For any atom z of A, we assert that +(z)z is an atom of S(A). In fact,
for any y € L, if y < o(x)z and y < (2(x)z)’, then there exists a natural number
n such that y = nx since the atom z is of type 1. And, y = nz < («(z)z),
which implies that n = 0, and so y = 0. Hence, o(z)z € S(A). Furthermore,
for any y € L, if y < o(z)z and y Ay’ = 0, then there exists a natural number
n < u(x) such that y = nz, and so (nz) A (nz)’ = 0. Notice that if n > 1, then
z < (nz) A (nx)’. Consequently, we have that n = 0, which implies that y = 0.
Hence, o(x)z is an atom of S(A).

Assume that S(A) equals S(B). By the assumption S(A) = S(B), «(z)z is
also an atom of S(B), then there exists an atom y of B such that «(y)y = «(z)x.
Since L does not contain the atom of type 2, we get that the atom z equals
the atom y. Thus the blocks A and B are the same MV-effect algebras, which
is a contradiction. Hence, the fact that the sets S(A) and S(B) are different
holds. O

DEFINITION 5.10. Let L be a finite effect algebra which is a pasting of a family
B of MV-effect algebras, and all atoms of L be of type 1. The hypergraph (V, ),
where

V= {(x(a),a) | a € A(L)},
E ={FE CV | there exists an MV-effect algebra B € B such that
E is an the edge of the Greechie diagram of B},

is a hypergraph called the Greechie diagram of effect algebra L.

Ezxample 5.11. Fig. 7 and Fig. 8 are the Greechie diagrams of the lattice-
ordered effect algebras L (Fig. 5) and U (Fig. 6), respectively.

(1,x) (2,0)

(1,) (1,d) (1,b) (1,d)
(1,a) (Le) (1,a) (Le)

Fig. 7 The Greechie diagram of a lattice-ordered Fig. 8 The Greechie diagram of a lattice-ordered
effect algebra L effect algebra U

Example 5.12. ([39]) Fig. 9 and Fig. 10 are the Greechie diagrams of the
effect algebras, where none of them is a lattice-ordered effect algebra.
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2.0)  (1h) 20)
(1,a) -
(Lh)e ¢ (1,d)
(1,0)
(2,1)
Lg) (,5) (L)
2.0) (1.0) 1,1
Fig. 9 The Greechie diagram of a Fig. 10 The Greechie diagram of a

non-lattice effect algebra non-lattice effect algebra

In the following, we suppose that the atoms of effect algebras are all of type 1.

DEFINITION 5.13. ([39]) Let L, M be finite effect algebras which are the pastings
of two families of MV-effect algebras 67 and Bo, and (Vr, &) and (Var, Enr)
be the Greechie diagrams of L and M, respectively. If there exist bijections
VL — Vu and g: £ — &y such that

(i) for any (u(a),a) € Vi, if f((x(a),a)) = (2(b),b), then 2(a) = 2(b),
(ii) for any E € &, g(E) = {f((1«(a),a)) | (+(a),a) € E},

then the Greechie diagrams (V,,Er) and (Var, Enr) are called isomorphic.

THEOREM 5.14. ([39]) Let L, M be finite lattice-ordered effect algebras which
are the pastings of two families B, and Bo, and (Vr,EL) and Var, Enr) be the
Greechie diagrams of L and M, respectively. Then L is isomorphic to M if and
only if Vi, EL) is isomorphic to (Var,Enr).-

DEFINITION 5.15. Let L be a finite effect algebra which is a pasting of a family
M of MV-effect algebras and H = (V,&) be the Greechie diagram of L. The
hypergraph H, = (V1,&1) is called the substitution of the hypergraph #, if
(1,a) € V,(n,b) € V1, and the hypergraph #, satisfies the following conditions:

i) Vi = (V—-{(1,a)}) U{(n,b)}, where {(n,b)} NV = 0 and n is a natural
number with n > 1.

(11) 61 = 821 Uglg, Where, 811 = {E | (1,@) € E, FE e S}, 512 =& — 611, and
821 = {El ‘ El = (E - {(1,@)}) U {(’I’L,b)}, E S 511}-

THEOREM 5.16. Let L, P be two finite lattice-ordered effect algebras without
atoms of type 2, and H1 = (V1,&1) and Ha = (Va, &) be the Greechie diagrams of
L, P, respectively. Assume that a is an atom of L such that a ¢ P with aAa’ =0,
and b is an atom of P such that b ¢ L with 1(b) = n. Then the effect algebra P
is originated by substituting the sharp atom a of L by C}' ={0,b,...,nb} if and
only if the hypergraph Hs is originated by substituting the vertex (1,a) of Hi by
the vertex (n,b).
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Proof.

Necessity. Let the block set of L be B, and Bi; and By be the sets {B |
(1,a) € B, B€ B} and {B| B ¢ By1, B € B}, respectively. Assume that Bo;
is the set {(BNL[0,a']) x Cf | B € B11}. Then the block set of P is Byy U Bys.
Noticing that for any B € Boy, it is originated by substituting the atom a of B
by CJ'. Hence, Hy = (V2, &) is the Greechie diagram of P.

Sufficiency. Let the block set of L be B, and B1; and Bis be {B | a € B,
Be B} and {B | B ¢ By11, B € B}, respectively, then B equals B1; U Bys.
Assume that &7 is the set {E | E is an edge of the Greechie diagram of B,
B € Bi1}, and &5 is the set {E | E is an edge of the Greechie diagram of B,
B e 812}.

Since V5 equals (V1 — {(1,a)}) U {(n,b)} and & equals E15 U Er1, where oy
equals {E1 | By = (E—{(1,a)})U{(n,b)}, E € &1}. Assume Ly is originated
by substituting the atom a of L by C}' = {0,b,...,nb}, then the hypergraph
Ho = (Vo, &) is the Greechie diagram of Lq by necessity. Hence, L; and P have
the same Greechie diagram, and so L; = P. O

THEOREM 5.17. Let L be a finite lattice-ordered effect algebra without atoms of

type 2. Then the effect algebra L is originated by the substitution the atoms of
S(L).

Proof. Let Ho = (Vo, &) be the Greechie diagram of S(L), where Vy equals
{(1,2(z)z) | # € A(L)} and & equals {E | there exists a block B of S(L) such
that E is the edge of Greechie diagram of B}. Since any atom a of L is of
type 1, for any atoms a,b of L, we have that (a)a equals 2(b)b if and only if
a equals b. Substituting every vertex (1,¢(x)z) of Ho by (¢(z),z), we can get
the diagram H; = (Vi, &), where V; equals the set {(«(z),2) | z € A(L)}, &
equals the set {E | there exists an edge Ey of Ho such that E = {(«(z), ) |
(1,2(x)z) € Eo}}. By Theorem 5.16, H; is the Greechie diagram of L, and L is
originated by the substitution the atoms of S(L). d

Remark 5.18. By Theorem [B.I7 any finite lattice-ordered effect algebra L
without atoms of type 2 can be obtained by substituting the atoms of ortho-
modular lattice S(L) by linear MV-effect algebras.

Example 5.19. The Greechie diagram Fig. 8 is originated by substituting the
vertex (1,z) of the Greechie diagram Fig. 7 by the vertex (2, ¢), and the effect
algebra U (Fig. 6) is originated by substituting the sharp atom x of the elements
L (Fig. 5) by the linear MV-effect algebra {0, ¢, 2¢c}.
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THEOREM 5.20. Let L be a finite effect algebra which is a pasting of a family
M of MV-effect algebras. Assume that for any My, My € M, for any a,b €
A(My) U A(Ms), we have that a equals b, whenever a < mb for some natural
number m < 1(b). Then the following statements hold.

(i) Let Lo be the set \|J{S(M) | M € M}, then Lg is a pasting of the family
of Boolean algebras {S(M) | M € M}.

(ii) L is a lattice-ordered effect algebra, whenever Ly is an orthomodular lattice.

Proof.

(i) Assume that By, B, € {S(M) | M € M} with By C By, then there
exist two MV-algebras M, My € M such that By equals S(M;) and B equals
S(Ms). For any x € A(M), «(x)x € By, we have that «(z)x € By C Ms. Then
there exists an atom of y of My such that y < o(x)x, and so y = z € My by
the assumption, which implies A(M;) C A(M>). Hence, M; C M. Since L
is a pasting of the family of MV-algebras M, we have that M; = M>, and so
B; = By. Furthermore, since By N By equals S(My) N S(Ms) and My N My is
the subalgebra of My and Ms, we have that By N By is a subalgebra of B; and
Bs. Hence, Lo is the pasting of a family of Boolean algebras {S(M) | M € M}.

(ii) Assume that the Greechie diagram of Lg is Ho which is the pair (Vy, &),
where Vy equals {(1,2(z)x) | # € A(L)}, and & is the set {E | there exists
a block B of Ly such that E is an edge of the Greechie diagram of B}. Since
any atom of L is of type 1, then 2(a)a equals ¢(b)b if and only if a equals b for
atoms a,b € A(L).

Let Vi be the set {(1(z),z) | 2 € A(L)}. Assume that Ep is the set {(:(z), z) |
(1,2(x)z) is a vertex of the Greechie diagram of the block B of Ly}, that is,
Ep is the edge is originated by substituting every vertex (1, 2(z)x) of the Greechie
diagram of B by the vertex (:(z), ). Let &1 be the set { Ep | B is a block of L}.
Substituting every vertex (1,2(z)x) of the Greechie diagram Hy by (u(x),x),
we can get the hypergraph H; = (V1,&1). By the definition of hypergraph
Hi = (V1,&1), the hypergraph #H; is the Greechie diagram of L. Hence, L
is originated by substituting the atoms of Ly and it is a lattice-ordered effect
algebra by Theorem O

6. Conclusions and discussion

In this paper, we gave the definitions of substituting the atoms of MV-effect
algebras. Using this definition, we proved that any finite MV-effect algebra
is originated by substituting of the atoms of the Boolean algebra by linear
MV-effect algebras. Then we gave some conditions such that the pasting of

1071



YONGJIAN XIE — YONGMING LI — AILI YANG

effect algebras is also an effect algebra. Similarly, we introduce the definition
of the substitution of sharp atoms of lattice-ordered effect algebras by lattice-
ordered effect algebras. All these definitions and results generalize those for
orthomodular posets in [27]. At last, we proved that the finite effect algebra L
without atoms of type 2, which is a pasting of MV-effect algebras family B, is a
lattice-ordered effect algebra if and only if the pasting of the Boolean algebras
family S(28) determined by the given MV-effect algebras B, is an orthomodular
lattice. The last result (Theorem [5.20) provides one kind of technique of pasting
a lattice-ordered effect algebra by a family of MV-effect algebras, however, any
atom of the pasting lattice-ordered effect algebra must be of type 1. Hence, the
question how to paste a lattice-ordered effect algebra by a family of MV-effect
algebras is still open.
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