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REAL HYPERSURFACES IN A COMPLEX SPACE
FORM WITH A CONDITION ON THE STRUCTURE
JACOBI OPERATOR
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ABSTRACT. In this paper we classify the real hypersurfaces in a non-flat com-
plex space form with its structure Jacobi operator R satisfying (Vx R¢)¢ = 0,
for all vector fields X in the maximal holomorphic distribution D. With this
result, we prove the non-existence of real hypersurfaces with D-parallel as well
as D-recurrent structure Jacobi operator in complex projective and hyperbolic
spaces. We can also prove the non-existence of real hypersurfaces with recurrent
structure Jacobi operator in a non-flat complex space form as a corollary.
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1. Introduction

Let M, (c) be an n-dimensional non-flat complex space form with constant
holomorphic sectional curvature 4c. It is known that a complete and simply con-
nected non-flat complex space form is either a complex projective space (¢ > 0),
denoted by CP™, or a complex hyperbolic space (¢ < 0), denoted by CH™.
Without loss of generality, we always assume ¢ = 1 for CP™ and ¢ = —1 for
CH™.

Let M be a real hypersurface in M,,(c). The Jacobi operator Ry, with respect
to a tangent vector field X on an open subset of M, is defined by Rx(Y) =
R(Y, X)X, for vector fields Y tangent to M, where R is the curvature tensor
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on M. In particular, for the structure vector field £ = —JN, where N is locally
a unit normal vector field of M, R is called the structure Jacobi operator of
M. Let D denote the distribution determined by tangent vectors perpendicular
to £ at each point of M. D is called the maximal holomorphic distribution on
M. If the structure Jacobi operator satisfies (VxR¢)Y = 0, for any vector field
X in D and Y tangent to M, then it is said to be D-parallel; and if it satisfies
(VxRe)Y = w(X)Re(Y) for any vector field X in D and Y tangent to M, where
w is a 1-form on M, then the structure Jacobi operator is said to be D-recurrent.

In [5], J. D. Pérez, F. G. Santos and Y. J. Suh studied the non-existence of real
hypersurfaces with D-parallel structure Jacobi operator in a complex projective
space, leaving the complex hyperbolic case open. The concept of D-recurrent
structure Jacobi operator was first considered in [6], which gives the original
idea to our paper. However, a part of the proof given for the classification of
real hypersurfaces in CP™ with its structure Jacobi operator D-recurrent ([6: §5,
p. 221]) cannot be justified. Actually, there does not exist any real hypersurface
in M,,(c), for n > 2, with D-recurrent structure Jacobi operator as will be shown.

Recently T. Theofanidis and P. J. Xenos proved in [§] that there does not exist
any real hypersurface in M, (c), n > 2, with recurrent structure Jacobi operator.
They also studied real hypersurfaces in Ms(c¢) with D-recurrent structure Jacobi
operator in [9].

In this article, we consider a condition weaker than D-parallelism and D-rec-
urrence on the structure Jacobi operator and prove the following theorem.

THEOREM 1.1. Let M be a real hypersurface in M,(c), n > 2, satisfying
(VxRe)E = 0, for all vector fields X in D. Then M is locally congruent to
a ruled real hypersurface.

The above theorem will lead to the proof of non-existence of real hypersurfaces
with D-parallel or D-recurrent structure Jacobi operator in M,,(c).

THEOREM 1.2. There does not exist any real hypersurface M in My(c), n > 2,
with its structure Jacobi operator D-recurrent: (VxRe)Y = w(X)ReY, for all
vector fields X in D and Y tangent to M. Here w denotes a 1-form on M.

From Theorem [[.2] we have the following results.

COROLLARY 1.3. There does not exist any real hypersurface M in My (c), n > 2,
with its structure Jacobi operator D-parallel: (VxRe)Y =0, for all vector fields
X in D and Y tangent to M.

COROLLARY 1.4. There does not exist any real hypersurface M in My (c), n > 2,
with recurrent structure Jacobi operator, i.e., VR = w®R¢.
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2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of
class C™ unless otherwise stated. Let M be a connected real hypersurface in
M, (c), n > 2, without boundary. Let N be a locally defined unit normal vector
field on M. Denote by V the Levi-Civita connection on M induced from M, (c).
Let (-,-) denote the Riemannian metric of M induced from the Riemannian
metric of M, (c) and A be the shape operator of M in M,,(c). Now, we define a
tensor field ¢ of type (1,1), a vector field £ and a 1-form 7 by

JX =¢X +n(X)N, JN=-E
Then it is seen that (¢, X) = n(X). Furthermore, the set of tensors (¢, &, 7, (-, "))
is an almost contact metric structure on M, i.e., they satisfy the following

P*X = X +n(X)§, 6£=0, n¢X)=0, n¢) =1
From the parallelism of J we get
(Vx@)Y = n(Y)AX — (AX, V)¢
and
Vx€=¢AX.

Let R be the curvature tensor of M. Then the Gauss and Codazzi equations are
respectively given by

RX.Y)Z =c{(Y.Z)X — (X, 2) Y + (¢Y, Z)¢pX — (¢X,Z)¢Y
—2(¢pX,Y)¢Z} + (AY, Z)AX — (AX, Z)AY ,

(VxA)Y — (Vy A)X = c{n(X)pY —n(Y)pX —2(¢X,Y)¢}.
From the Gauss equation, we have

ReY = c{Y — n(Y)E} + aAY — n(AY) A€, (2.1)

(VxRe)Y = —c(Y,pAX)E — en(Y)pAX + (Xa)AY + a(VxA)Y
(VX A, E)AE — (Y, ApAX) A
_n(AY)(Vx A)E — p(AV)AGAX,  (22)
for all vector fields X, Y tangent to M.
For a unit vector field U in D, where D is the maximal holomorphic dis-
tribution, let Dy denote the collection of tangent vectors orthogonal to &, U

and ¢U at each point of M. Then according to our assumption n > 2, Dy
is a subdistribution of D with a positive dimension. Denote o = (A¢,€) and

B = llopAg].
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A real hypersurface is said to be Hopf if A = «&. A ruled real hypersurface is
a non-Hopf real hypersurface satisfying the condition (AX,Y) = 0, for all vector
fields X,Y in D. A real hypersurface is ruled if and only if its shape operator
could be expressed as A{ = af + U, AU = ¢, AX =0 for X L span{{, U},
(U,U) =1 and 8 # 0 on an open dense subset.

We recall the following results for later use.

THEOREM 2.1. ([3]) Let M be a Hopf hypersurface in M, (c), n > 1, and let X
be in D. If AX = \X, and A6X = A6 X, then \2 = a\ + c.

LEMMA 2.2. ([1]) Let M be a real hypersurface in My (c), n > 2. Suppose
((pA — AP)X,Y) =0 for all vector fields X,Y in D. Let Gy = {& € M :
lpAD||. # O}. Then on G1, we have grada = oV — 2AV, where V = pAE.
Furthermore, if we suppose AE = a& + BU, where U is a unit vector field in D,
and B is a nonvanishing function on G, and AV = 0, then we have grad 8 =

(c+ B)oU.

LEmMA 2.3. ([2, [7]) If M is a ruled real hypersurface in M,(c), n > 2, then
we have

(VxA)Y ={-c(¢X,Y) +n(AY (X, V) + n(AX)(Y,V)}{
for all tangent vectors X,Y in D, where V = ¢AE.

3. Some lemmas

We begin with some lemmas in preparation for the proof of Theorem [Tl

LEMMA 3.1. Let M be a non-Hopf real hypersurface in My(c), n > 2. Suppose
M satisfies AE = a&+ U, where B is non-vanishing and U is a unit vector field
i D, and there exists a unit vector field Z in Dy = {X eTM: X LU, (bU}
such that AZ = \Z and ApZ = \pZ.

(a) If M satisfies

ApU = 5¢U (3.1)
then
(A =8)(\? —a\ —¢) = BOUN. (3.2)
(b) If M satisfies
AU = B¢ +~U (3.3)
then
A=) (A —aX—c)— A =0. (3.4)
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(¢) If M satisfies both (B1)) and [B3) then
BAN=08) — (A =7)pUX = 0. (3.5)

Proof. Suppose M satisfies (3.1]). Taking inner product in the Codazzi equa-
tion

(VzA)E = (VeA)Z = —coZ
with ¢Z, we obtain

B(VzU,¢Z) = A\* —a) —c. (3.6)
Taking inner product in the Codazzi equation

(VzA)pU — (Vv A)Z =0
with Z, we obtain
(6 = A(VzoU, Z) = pU .
By using
VzoU = ¢V zU,
we have (3.2)).

Next, suppose M satisfies ([B.3]). Taking inner product in the Codazzi equation
(VZzA)9Z — (VyzA)Z = —2c£ with £ and U respectively, we obtain
2(A2 —a\ —c¢)
B )
A =7((VezZ,U) = (Vz¢Z,U)) = 2.
Combining these two equations, we obtain (B.4).

Finally, if M satisfies both (3.1]) and (8.3) then by using (.2]) and (34), we
get (B.3). O

It is stated in [4] that there exist no real hypersurfaces M in CP", n > 2,
with shape operator given by A¢ = ¢ + U, AU = B¢+ (82— 1)U, AX = - X
for all X 1 & U, where U is a unit vector field in D and § is a nonvanishing
function. We shall generalize this statement to M, (c) and give an alternative
proof.

(VozZ =N z9Z,U) =

LEMMA 3.2. Suppose M is a real hypersurface in M, (c), n > 1, such that the
shape operator satisfies A = c€ + U, AU = B¢ + (8% — c)U, ApU = —coU,
where U is a unit vector field in D and 3 is a nonvanishing function defined on
M. Then ¢ > 0. Furthermore, if n > 2, then there exists a vector field X in Dy
such that AX # —X.

1011



S. H. KON — TEE-HOW LOO — SHIQUAN REN
Proof. Taking inner product in the Codazzi equation (Vi A)pU — (V4 A)U =
—2c€ with U and £ respectively, we obtain
—B{(VyoU,U) + B* — 3¢ — 26U = 0, (3.7)
—B(VyoU,U) + 3¢B? — 4c* + 2¢ — ¢pUB = 0.
From these two equations we obtain
% —3¢h% +4c? —5¢c— pUS = 0. (3.8)

Taking inner product in the Codazzi equation (VyyA)E — (VeA)pU = cU with
U and £ respectively, we obtain

B(VepU,U) +2¢* — B> — B2 —c+ oUB =0,

(VeoU,U) — 4c = 0. (3.9)
From these two equations we obtain
3¢ +2¢* — B2 —c+ pUB = 0. (3.10)
By summing up B8) and (3I0), we obtain
cle—1) =0,
which cannot happen when ¢ = —1. Hence ¢ = 1 and (3.8) becomes
PUB = —25% — 1. (3.11)
From [B.7) and (BI1), we have
B(VyoU,U) = 55% — 1. (3.12)
From (3.9]) we have
(VeoU,U) = 4. (3.13)

Now suppose to the contrary that AX = —X for any vector field X in Dy. For
any unit vector field Z in Dy, taking inner product in the Codazzi equation
(VzA) — (VeA)Z = —¢Z with U, ¢U, € respectively, we have

ZB+ B*(VeZ,U) =0, (3.14)
(VzU,oU) =0, (3.15)
(VeZ,U) = 0. (3.16)

From (B.I4)) and (BI6), we obtain
ZB =0. (3.17)
Take inner product in the Codazzi equation (VzA)pU — (Ve A)Z = 0 with &,
(VzoU,U) = (Vou Z,U);
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then apply (B.13),
(Voo U, Z) = 0. (3.18)

Take inner product in the Codazzi equation (VzA)U — (VyA)Z = 0 with U,
2ZB+ B(Vu Z,U) = 0;
then apply (317),
(VuU, Z) = 0. (3.19)

Taking inner product in the Codazzi equation (VyA)pU — (Vv A)U = —2¢
with ¢U, we have

(VouU, oU) = 0. (3.20)
From B.I8), 3:20) and (V4pU, &) = —1, we obtain
Vol = ¢ (3.21)
hence
VeuoU = 0. (3.22)
From (312), BI9) and (VyU, &) = 0, we obtain
VU = _BSBZ oU; (3.23)
hence
VuoU = (1 — B¢ + 55;_ . (3.24)
From BI3), I6) and (V¢U,&) = 0, we obtain
VeU = —4¢U. (3.25)
We also have
Veué =U. (3.26)
Let X =U,Y = ¢U, Z = U in the Gauss equation, we have
R(U,¢U)U = (% — 5)¢U. (3.27)
On the other hand, applying B.11), (21), 3:22), B.23), 3.24), 323, (3:20)
to
R(U,9U)U = VyVguU = VeuVyU = Vg U,
we have
R(U,¢U)U = (108* — 8)¢U. (3.28)
From (3.27) and (3:28)), we see that 3 is constant. This contradicts (3.11]). Hence
the proof is completed. O
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4. Proof of Theorem [1.1]

In this section we give a classification of real hypersurfaces in M,,(c) satisfying
the condition

(VxRe)§ =0 (4.1)
for all vector fields X in D. Note that the condition (41 is equivalent to
cpAX + aAPAX — (pAX, A AL =0, (4.2)

for any tangent vector field X in D. Hence by ([@2), for any vector fields X,Y
in D,

(@A — AP)X,Y) = (pAX, A (AL, Y) + (X, AG) (9 AY, AS). (4.3)
PROPOSITION 4.1. There does not exist any Hopf hypersurface in My (c), n > 2,
satisfying the condition (VxRe¢)§ =0 for any vector field X in D.

Proof. Suppose M is such a Hopf hypersurface. Equation (£3) becomes
(64— A§)X,Y) =0 (4.4)
for all vector fields X, Y tangent to M. Hence A¢p = ¢pA. Pointwise, we get that
Dy={X e D: AX = XX} is ¢-invariant. Hence by Theorem 2T we obtain
M =altec. (4.5)
Let X be a unit principal vector field in D such that AX = AX. Then by

([£2), we obtain
AMe+aX) =0.

From the above two equations, we get A3 = 0. Hence A\ = 0 and this contradicts

@) O

In the rest of this section, let M be a real hypersurface in M, (c) that satisfies
the condition ([J]). We also suppose that A = af + SU with § # 0 everywhere
on M and U a unit vector field in D.

From (43) we obtain that for any vector fields X,Y in D,

c{(9A = Ap)X,Y) = —B*{(Y,U){(oU, AX) + (X, U){oU, AY)}. (4.6)

PROPOSITION 4.2. For a real hypersurface M in M, (c), n > 2, satisfying the
condition ([@1), we have

(a) AU = 69U, where § is a function on M,
(b) AU = B¢ + <1 — 5;) oU,
(c) (B%—c)(c+ad)s = 0.
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Proof. Let X =Y = ¢U in (40), then we have

(AU, ¢U) = 0. (4.7)
If we let X =U and Y an arbitrary vector field in D in ([@6]), then
c(pAU — AU, Y) = —B*(AgU,Y). (4.8)
Since (£8) also holds for Y = &, we obtain
cAQU — cp AU = B> A¢U. (4.9)
By putting X = ¢U and replacing Y with ¢Y in (£0), we have
c(ApU — pAU,Y) = B*(AgU, ¢U){(pU,Y), (4.10)
for any vector field Y in D. Since ([{I0) also holds for Y = &£, we obtain
cAPU — cpAU = B*(ApU, pU ) ¢U. (4.11)
Putting X = ¢U in ([£2) and taking inner product with U, we get
(c — B2){(pApU,U) + a(ApAsU, U) = 0. (4.12)
From ([@9) and (£I1]), we get (a) and (b). From (a), (b) and (£12), we get (c).
d

From this proposition we know that Dy is invariant under A. In particular,
for any vector fields X,Y in Dy, ([£0) becomes

((pA — AP)X,Y) = 0. (4.13)
Therefore, let Dy = {X € Dy : AX = AX} denote a pointwise subspace of Dy;

then D) is ¢-invariant.
Let Y be a unit vector field in Dy satisfying AY = A\Y. From (£2) we have

AMc+al) =0. (4.14)

From (£.I4), we consider the following two cases when M is non-Hopf.

Case 1. A=0 on Dy.
Hence Dy = Dy at each point of M, i.e., AY = 0 for any vector field Y in
Dy. From ([32), we have § = 0. Therefore, by Proposition 2] M satisfies
AéE = aé + BU, AU = B¢, AX = 0, for all vector fields X perpendicular to &
and U. Hence M is a ruled real hypersurface.

CASE 2. A#0 on Dy.
In this case, there exists a unit vector field Y in Dy, such that AY = \Y,
where A\; # 0 on an open subset of M. We identify this subset with M. By

(@I4), o # 0 and \; = —c/«. From (3.4)), we get
a?B% = a(c— B*)5 + 2. (4.15)
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By applying (£.15]) to Proposition (c), we get
§(a® —¢c)=0. (4.16)

We shall consider the following two subcases.

SUBCASE 2-A. § # 0 at some point of M.
By continuity, there exists an open subset of M, such that on this open subset,
§ # 0 at each point. From (£I6), a® = c on this open subset. If necessary, we
replace the normal vector field N by —N, so that « =c¢=1. Then A\; = —1 on
this open subset. Putting A\ = —1 in [32]), we obtain § = —1. From (£14), for
any principal unit vector field Y in Dy such that AY = AY, A(A+1) = 0. Hence
by continuity, A is constantly 0 or —1. By using ([3.2), we see that A = —1. This
subcase cannot happen according to Lemma [3.2] and Proposition

SUBCASE 2-B. § =0 at every point of M.
By using § = 0 and ([@.0), we obtain {(¢A— A¢p)X,Y) =0 for all X, Y in D. We
use the same notation G as in Lemma 22l By continuity of the norm, G is an
open subset of M. On G4, by using Lemma 2.2, we have

pUa = af (4.17)
and
pUB = B> +c. (4.18)
From (£I7), we have o?8? = c?; then take the covariant derivative in the
direction of ¢U,
B(oUa) + a(oUB) = 0. (4.19)
Putting (£17), (£18) into (AI9), with the help of a # 0, we get
282 4 ¢c=0.

Hence 3 is constant and by (EIS), we have 32 + ¢ = 0. This is a contradiction
if G7 is non-empty.

From the above argument we have G; must be empty and ¢ A¢ = 0 must hold
everywhere on M, hence M is a ruled real hypersurface. But this contradicts
D_./o # 0, which holds in the whole Case 2. So Subcase 2-b is impossible.

Now we have proved that if M is a real hypersurface in M, (c) satisfying
(VxR¢)€ = 0, for all vector fields X in D, then the only possibility for M is
that it is a ruled real hypersurface. Conversely, it is easy to check that ruled real
hypersurfaces satisfy (£2)). So we have completed the proof of Theorem [[11
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5. Proof of Theorem

We only need to verify that the structure Jacobi operator R¢ of ruled real
hypersurfaces cannot be D-recurrent. Suppose there exists a ruled real hyper-
surface with its structure Jacobi operator D-recurrent. Then its shape operator
satisfies (AX,Y) = 0, for vector fields X,Y in D. From Lemma [Z3] it also
satisfies ((VxA)Y, Z) = 0 for all vector fields X,Y and Z in D.

We consider X,Y in D for (2.2). Taking inner product on both sides of (2.2))
with a unit tangent vector Z in Dy, and applying (2], we obtain

—n(AY)((VxA)Z,§) = cw(X)(Y, Z).
It follows from Lemma [2.3] that this equation becomes
en(AY )(¢X, Z) = cw(X)(Y, Z).

By putting Y = U and X = ¢Z in the above equation, we obtain S = 0, which
is a contradiction. Hence such a ruled real hypersurface cannot exist.

Remark 5.1. From the proof of Theorem [[L2] we get the following result:

In M, (c), n > 2, there does not exist a ruled real hypersurface
with its structure Jacobi operator n-recurrent, i.e., (VxRe)Y,Z) =
w(X)(ReY, Z) for all vector fields X,Y,Z in D.

Acknowledgement. The present authors would like to express their deep grat-
itude to the referee for the careful reading of our manuscript and valuable com-
ments to improve the paper.
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