
�
�

DOI: 10.2478/s12175-014-0254-2

Math. Slovaca 64 (2014), No. 4, 1007–1018

REAL HYPERSURFACES IN A COMPLEX SPACE

FORM WITH A CONDITION ON THE STRUCTURE

JACOBI OPERATOR

S. H. Kon — Tee-How Loo — Shiquan Ren

(Communicated by Július Korbaš )

ABSTRACT. In this paper we classify the real hypersurfaces in a non-flat com-

plex space form with its structure Jacobi operator Rξ satisfying (∇XRξ)ξ = 0,

for all vector fields X in the maximal holomorphic distribution D. With this

result, we prove the non-existence of real hypersurfaces with D-parallel as well

as D-recurrent structure Jacobi operator in complex projective and hyperbolic

spaces. We can also prove the non-existence of real hypersurfaces with recurrent

structure Jacobi operator in a non-flat complex space form as a corollary.
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1. Introduction

Let Mn(c) be an n-dimensional non-flat complex space form with constant

holomorphic sectional curvature 4c. It is known that a complete and simply con-

nected non-flat complex space form is either a complex projective space (c > 0),

denoted by CPn, or a complex hyperbolic space (c < 0), denoted by CHn.

Without loss of generality, we always assume c = 1 for CPn and c = −1 for

CHn.

Let M be a real hypersurface in Mn(c). The Jacobi operator RX , with respect

to a tangent vector field X on an open subset of M , is defined by RX(Y ) =

R(Y,X)X, for vector fields Y tangent to M , where R is the curvature tensor
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on M . In particular, for the structure vector field ξ = −JN , where N is locally

a unit normal vector field of M , Rξ is called the structure Jacobi operator of

M . Let D denote the distribution determined by tangent vectors perpendicular

to ξ at each point of M . D is called the maximal holomorphic distribution on

M . If the structure Jacobi operator satisfies (∇XRξ)Y = 0, for any vector field

X in D and Y tangent to M , then it is said to be D-parallel; and if it satisfies

(∇XRξ)Y = ω(X)Rξ(Y ) for any vector field X in D and Y tangent to M , where

ω is a 1-form on M , then the structure Jacobi operator is said to be D-recurrent.

In [5], J. D. Pérez, F. G. Santos and Y. J. Suh studied the non-existence of real

hypersurfaces with D-parallel structure Jacobi operator in a complex projective

space, leaving the complex hyperbolic case open. The concept of D-recurrent

structure Jacobi operator was first considered in [6], which gives the original

idea to our paper. However, a part of the proof given for the classification of

real hypersurfaces in CPn with its structure Jacobi operator D-recurrent ([6: §5,
p. 221]) cannot be justified. Actually, there does not exist any real hypersurface

inMn(c), for n > 2, withD-recurrent structure Jacobi operator as will be shown.

Recently T. Theofanidis and P. J. Xenos proved in [8] that there does not exist

any real hypersurface in Mn(c), n > 2, with recurrent structure Jacobi operator.

They also studied real hypersurfaces in M2(c) with D-recurrent structure Jacobi

operator in [9].

In this article, we consider a condition weaker than D-parallelism and D-rec-

urrence on the structure Jacobi operator and prove the following theorem.

������� 1.1� Let M be a real hypersurface in Mn(c), n > 2, satisfying

(∇XRξ)ξ = 0, for all vector fields X in D. Then M is locally congruent to

a ruled real hypersurface.

The above theorem will lead to the proof of non-existence of real hypersurfaces

with D-parallel or D-recurrent structure Jacobi operator in Mn(c).

������� 1.2� There does not exist any real hypersurface M in Mn(c), n > 2,

with its structure Jacobi operator D-recurrent: (∇XRξ)Y = ω(X)RξY , for all

vector fields X in D and Y tangent to M . Here ω denotes a 1-form on M .

From Theorem 1.2, we have the following results.

������	�
 1.3� There does not exist any real hypersurfaceM in Mn(c), n > 2,

with its structure Jacobi operator D-parallel: (∇XRξ)Y = 0, for all vector fields

X in D and Y tangent to M .

������	�
 1.4� There does not exist any real hypersurfaceM in Mn(c), n > 2,

with recurrent structure Jacobi operator, i.e., ∇Rξ = ω⊗Rξ.
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2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of

class C∞ unless otherwise stated. Let M be a connected real hypersurface in

Mn(c), n > 2, without boundary. Let N be a locally defined unit normal vector

field on M . Denote by ∇ the Levi-Civita connection on M induced from Mn(c).

Let 〈·, ·〉 denote the Riemannian metric of M induced from the Riemannian

metric of Mn(c) and A be the shape operator of M in Mn(c). Now, we define a

tensor field φ of type (1, 1), a vector field ξ and a 1-form η by

JX = φX + η(X)N, JN = −ξ.

Then it is seen that 〈ξ,X〉 = η(X). Furthermore, the set of tensors (φ, ξ, η, 〈·, ·〉)
is an almost contact metric structure on M , i.e., they satisfy the following

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1.

From the parallelism of J we get

(∇Xφ)Y = η(Y )AX − 〈AX, Y 〉ξ
and

∇Xξ = φAX.

Let R be the curvature tensor of M . Then the Gauss and Codazzi equations are

respectively given by

R(X, Y )Z = c
{〈Y, Z〉X − 〈X,Z〉 Y + 〈φY, Z〉φX − 〈φX,Z〉φY

−2〈φX, Y 〉φZ}
+ 〈AY,Z〉AX − 〈AX,Z〉AY ,

(∇XA)Y − (∇Y A)X = c
{
η(X)φY − η(Y )φX − 2〈φX, Y 〉ξ}.

From the Gauss equation, we have

RξY = c{Y − η(Y )ξ}+ αAY − η(AY )Aξ, (2.1)

(∇XRξ)Y = −c〈Y, φAX〉ξ − cη(Y )φAX + (Xα)AY + α(∇XA)Y

−〈(∇XA)Y, ξ〉Aξ − 〈Y,AφAX〉Aξ
−η(AY )(∇XA)ξ − η(AY )AφAX, (2.2)

for all vector fields X, Y tangent to M .

For a unit vector field U in D, where D is the maximal holomorphic dis-

tribution, let DU denote the collection of tangent vectors orthogonal to ξ, U

and φU at each point of M . Then according to our assumption n > 2, DU

is a subdistribution of D with a positive dimension. Denote α = 〈Aξ, ξ〉 and

β = ‖φAξ‖.
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A real hypersurface is said to be Hopf if Aξ = αξ. A ruled real hypersurface is

a non-Hopf real hypersurface satisfying the condition 〈AX, Y 〉 = 0, for all vector

fields X, Y in D. A real hypersurface is ruled if and only if its shape operator

could be expressed as Aξ = αξ + βU , AU = βξ, AX = 0 for X ⊥ span{ξ, U},
〈U,U 〉 = 1 and β �= 0 on an open dense subset.

We recall the following results for later use.

������� 2.1� ([3]) Let M be a Hopf hypersurface in Mn(c), n > 1, and let X

be in D. If AX = λX, and AφX = λφX, then λ2 = αλ+ c.

����	 2.2� ([1]) Let M be a real hypersurface in Mn(c), n > 2. Suppose

〈(φA−Aφ)X, Y 〉 = 0 for all vector fields X, Y in D. Let G1 =
{
x ∈ M :

‖φAφ‖x �= 0
}
. Then on G1, we have gradα = αV − 2AV , where V = φAξ.

Furthermore, if we suppose Aξ = αξ + βU , where U is a unit vector field in D,

and β is a nonvanishing function on G1, and AV = 0, then we have gradβ =

(c+ β2)φU .

����	 2.3� ([2], [7]) If M is a ruled real hypersurface in Mn(c), n > 2, then

we have

(∇XA)Y = {−c〈φX, Y 〉+ η(AY )〈X, V 〉+ η(AX)〈Y, V 〉}ξ
for all tangent vectors X, Y in D, where V = φAξ.

3. Some lemmas

We begin with some lemmas in preparation for the proof of Theorem 1.1.

����	 3.1� Let M be a non-Hopf real hypersurface in Mn(c), n > 2. Suppose

M satisfies Aξ = αξ+βU , where β is non-vanishing and U is a unit vector field

in D, and there exists a unit vector field Z in DU =
{
X ∈ TM : X ⊥ ξ, U, φU

}
such that AZ = λZ and AφZ = λφZ.

(a) If M satisfies

AφU = δφU (3.1)

then

(λ− δ)(λ2 − αλ− c) = βφUλ. (3.2)

(b) If M satisfies

AU = βξ + γU (3.3)

then

(λ− γ)(λ2 − αλ− c)− β2λ = 0. (3.4)

1010



REAL HYPERSURFACES IN A COMPLEX SPACE FORM

(c) If M satisfies both (3.1) and (3.3) then

βλ(λ− δ)− (λ− γ)φUλ = 0. (3.5)

P r o o f. Suppose M satisfies (3.1). Taking inner product in the Codazzi equa-

tion

(∇ZA)ξ − (∇ξA)Z = −cφZ

with φZ, we obtain

β〈∇ZU, φZ〉 = λ2 − αλ− c. (3.6)

Taking inner product in the Codazzi equation

(∇ZA)φU − (∇φUA)Z = 0

with Z, we obtain

(δ − λ)〈∇ZφU,Z〉 = φUλ.

By using

∇ZφU = φ∇ZU,

we have (3.2).

Next, suppose M satisfies (3.3). Taking inner product in the Codazzi equation

(∇ZA)φZ − (∇φZA)Z = −2cξ with ξ and U respectively, we obtain

〈∇φZZ −∇ZφZ,U 〉 = 2(λ2 − αλ− c)

β
,

(λ− γ)(〈∇φZZ,U 〉 − 〈∇ZφZ,U 〉) = 2βλ.

Combining these two equations, we obtain (3.4).

Finally, if M satisfies both (3.1) and (3.3) then by using (3.2) and (3.4), we

get (3.5). �

It is stated in [4] that there exist no real hypersurfaces M in CPn, n > 2,

with shape operator given by Aξ = ξ + βU , AU = βξ + (β2 − 1)U , AX = −X

for all X ⊥ ξ, U , where U is a unit vector field in D and β is a nonvanishing

function. We shall generalize this statement to Mn(c) and give an alternative

proof.

����	 3.2� Suppose M is a real hypersurface in Mn(c), n > 1, such that the

shape operator satisfies Aξ = cξ + βU , AU = βξ + (β2 − c)U , AφU = −cφU ,

where U is a unit vector field in D and β is a nonvanishing function defined on

M . Then c > 0. Furthermore, if n > 2, then there exists a vector field X in DU

such that AX �= −X.
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P r o o f. Taking inner product in the Codazzi equation (∇UA)φU−(∇φUA)U =

−2cξ with U and ξ respectively, we obtain

−β〈∇UφU,U 〉+ β2 − 3c− 2φUβ = 0, (3.7)

−β〈∇UφU,U 〉+ 3cβ2 − 4c2 + 2c− φUβ = 0.

From these two equations we obtain

β2 − 3cβ2 + 4c2 − 5c− φUβ = 0. (3.8)

Taking inner product in the Codazzi equation (∇φUA)ξ − (∇ξA)φU = cU with

U and ξ respectively, we obtain

β2〈∇ξφU,U 〉+ 2c2 − cβ2 − β2 − c+ φUβ = 0,

〈∇ξφU,U 〉 − 4c = 0. (3.9)

From these two equations we obtain

3cβ2 + 2c2 − β2 − c+ φUβ = 0. (3.10)

By summing up (3.8) and (3.10), we obtain

c(c− 1) = 0,

which cannot happen when c = −1. Hence c = 1 and (3.8) becomes

φUβ = −2β2 − 1. (3.11)

From (3.7) and (3.11), we have

β〈∇UφU,U 〉 = 5β2 − 1. (3.12)

From (3.9) we have

〈∇ξφU,U 〉 = 4. (3.13)

Now suppose to the contrary that AX = −X for any vector field X in DU . For

any unit vector field Z in DU , taking inner product in the Codazzi equation

(∇ZA)ξ − (∇ξA)Z = −φZ with U, φU, ξ respectively, we have

Zβ + β2〈∇ξZ,U 〉 = 0, (3.14)

〈∇ZU, φU 〉 = 0, (3.15)

〈∇ξZ,U 〉 = 0. (3.16)

From (3.14) and (3.16), we obtain

Zβ = 0. (3.17)

Take inner product in the Codazzi equation (∇ZA)φU − (∇φUA)Z = 0 with ξ,

〈∇ZφU,U 〉 = 〈∇φUZ,U 〉;
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then apply (3.15),

〈∇φUU,Z〉 = 0. (3.18)

Take inner product in the Codazzi equation (∇ZA)U − (∇UA)Z = 0 with U ,

2Zβ + β〈∇UZ,U 〉 = 0;

then apply (3.17),

〈∇UU,Z〉 = 0. (3.19)

Taking inner product in the Codazzi equation (∇UA)φU − (∇φUA)U = −2ξ

with φU , we have

〈∇φUU, φU 〉 = 0. (3.20)

From (3.18), (3.20) and 〈∇φUU, ξ〉 = −1, we obtain

∇φUU = −ξ; (3.21)

hence

∇φUφU = 0. (3.22)

From (3.12), (3.19) and 〈∇UU, ξ〉 = 0, we obtain

∇UU =
1− 5β2

β
φU ; (3.23)

hence

∇UφU = (1− β2)ξ +
5β2 − 1

β
U. (3.24)

From (3.13), (3.16) and 〈∇ξU, ξ〉 = 0, we obtain

∇ξU = −4φU. (3.25)

We also have

∇φUξ = U. (3.26)

Let X = U , Y = φU , Z = U in the Gauss equation, we have

R(U, φU )U = (β2 − 5)φU. (3.27)

On the other hand, applying (3.11), (3.21), (3.22), (3.23), (3.24), (3.25), (3.26)

to

R(U, φU )U = ∇U∇φUU −∇φU∇UU −∇[U,φU ]U,

we have

R(U, φU )U = (10β2 − 8)φU. (3.28)

From (3.27) and (3.28), we see that β is constant. This contradicts (3.11). Hence

the proof is completed. �
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4. Proof of Theorem 1.1

In this section we give a classification of real hypersurfaces in Mn(c) satisfying

the condition

(∇XRξ)ξ = 0 (4.1)

for all vector fields X in D. Note that the condition (4.1) is equivalent to

cφAX + αAφAX − 〈φAX,Aξ〉Aξ = 0, (4.2)

for any tangent vector field X in D. Hence by (4.2), for any vector fields X, Y

in D,

c〈(φA−Aφ)X, Y 〉 = 〈φAX,Aξ〉〈Aξ, Y 〉+ 〈X,Aξ〉〈φAY,Aξ〉. (4.3)

���
������� 4.1� There does not exist any Hopf hypersurface in Mn(c), n > 2,

satisfying the condition (∇XRξ)ξ = 0 for any vector field X in D.

P r o o f. Suppose M is such a Hopf hypersurface. Equation (4.3) becomes

〈(φA−Aφ)X, Y 〉 = 0 (4.4)

for all vector fields X, Y tangent to M . Hence Aφ = φA. Pointwise, we get that

Dλ = {X ∈ D : AX = λX} is φ-invariant. Hence by Theorem 2.1, we obtain

λ2 = αλ+ c. (4.5)

Let X be a unit principal vector field in D such that AX = λX. Then by

(4.2), we obtain

λ(c+ αλ) = 0.

From the above two equations, we get λ3 = 0. Hence λ = 0 and this contradicts

(4.5). �

In the rest of this section, let M be a real hypersurface in Mn(c) that satisfies

the condition (4.1). We also suppose that Aξ = αξ+βU with β �= 0 everywhere

on M and U a unit vector field in D.

From (4.3) we obtain that for any vector fields X, Y in D,

c〈(φA−Aφ)X, Y 〉 = −β2{〈Y, U 〉〈φU,AX〉+ 〈X,U 〉〈φU,AY 〉}. (4.6)

���
������� 4.2� For a real hypersurface M in Mn(c), n > 2, satisfying the

condition (4.1), we have

(a) AφU = δφU , where δ is a function on M ,

(b) AU = βξ +

(
1− β2

c

)
δU ,

(c) (β2 − c)(c+ αδ)δ = 0.
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P r o o f. Let X = Y = φU in (4.6), then we have

〈AU, φU 〉 = 0. (4.7)

If we let X = U and Y an arbitrary vector field in D in (4.6), then

c〈φAU − AφU, Y 〉 = −β2〈AφU, Y 〉. (4.8)

Since (4.8) also holds for Y = ξ, we obtain

cAφU − cφAU = β2AφU. (4.9)

By putting X = φU and replacing Y with φY in (4.6), we have

c〈AφU − φAU, Y 〉 = β2〈AφU, φU 〉〈φU, Y 〉, (4.10)

for any vector field Y in D. Since (4.10) also holds for Y = ξ, we obtain

cAφU − cφAU = β2〈AφU, φU 〉φU. (4.11)

Putting X = φU in (4.2) and taking inner product with U , we get

(c− β2)〈φAφU,U 〉+ α〈AφAφU,U 〉 = 0. (4.12)

From (4.9) and (4.11), we get (a) and (b). From (a), (b) and (4.12), we get (c).

�

From this proposition we know that DU is invariant under A. In particular,

for any vector fields X, Y in DU , (4.6) becomes

〈(φA−Aφ)X, Y 〉 = 0. (4.13)

Therefore, let Dλ = {X ∈ DU : AX = λX} denote a pointwise subspace of DU ;

then Dλ is φ-invariant.

Let Y be a unit vector field in DU satisfying AY = λY . From (4.2) we have

λ(c+ αλ) = 0. (4.14)

From (4.14), we consider the following two cases when M is non-Hopf.

Case 1. A = 0 on DU .

Hence DU = D0 at each point of M , i.e., AY = 0 for any vector field Y in

DU . From (3.2), we have δ = 0. Therefore, by Proposition 4.2, M satisfies

Aξ = αξ + βU , AU = βξ, AX = 0, for all vector fields X perpendicular to ξ

and U . Hence M is a ruled real hypersurface.

Case 2. A �= 0 on DU .

In this case, there exists a unit vector field Y in DU , such that AY = λ1Y ,

where λ1 �= 0 on an open subset of M . We identify this subset with M . By

(4.14), α �= 0 and λ1 = −c/α. From (3.4), we get

α2β2 = α(c− β2)δ + c2. (4.15)
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By applying (4.15) to Proposition 4.2 (c), we get

δ(α2 − c) = 0. (4.16)

We shall consider the following two subcases.

Subcase 2-a. δ �= 0 at some point of M .

By continuity, there exists an open subset of M , such that on this open subset,

δ �= 0 at each point. From (4.16), α2 = c on this open subset. If necessary, we

replace the normal vector field N by −N , so that α = c = 1. Then λ1 = −1 on

this open subset. Putting λ = −1 in (3.2), we obtain δ = −1. From (4.14), for

any principal unit vector field Y in DU such that AY = λY , λ(λ+1) = 0. Hence

by continuity, λ is constantly 0 or −1. By using (3.2), we see that λ = −1. This

subcase cannot happen according to Lemma 3.2 and Proposition 4.2.

Subcase 2-b. δ = 0 at every point of M .

By using δ = 0 and (4.6), we obtain 〈(φA−Aφ)X, Y 〉 = 0 for all X, Y in D. We

use the same notation G1 as in Lemma 2.2. By continuity of the norm, G1 is an

open subset of M . On G1, by using Lemma 2.2, we have

φUα = αβ (4.17)

and

φUβ = β2 + c. (4.18)

From (4.15), we have α2β2 = c2; then take the covariant derivative in the

direction of φU ,

β(φUα) + α(φUβ) = 0. (4.19)

Putting (4.17), (4.18) into (4.19), with the help of α �= 0, we get

2β2 + c = 0.

Hence β is constant and by (4.18), we have β2 + c = 0. This is a contradiction

if G1 is non-empty.

From the above argument we have G1 must be empty and φAφ = 0 must hold

everywhere on M , hence M is a ruled real hypersurface. But this contradicts

D−c/α �= 0, which holds in the whole Case 2. So Subcase 2-b is impossible.

Now we have proved that if M is a real hypersurface in Mn(c) satisfying

(∇XRξ)ξ = 0, for all vector fields X in D, then the only possibility for M is

that it is a ruled real hypersurface. Conversely, it is easy to check that ruled real

hypersurfaces satisfy (4.2). So we have completed the proof of Theorem 1.1.
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5. Proof of Theorem 1.2

We only need to verify that the structure Jacobi operator Rξ of ruled real

hypersurfaces cannot be D-recurrent. Suppose there exists a ruled real hyper-

surface with its structure Jacobi operator D-recurrent. Then its shape operator

satisfies 〈AX, Y 〉 = 0, for vector fields X, Y in D. From Lemma 2.3, it also

satisfies 〈(∇XA)Y, Z〉 = 0 for all vector fields X, Y and Z in D.

We consider X, Y in D for (2.2). Taking inner product on both sides of (2.2)

with a unit tangent vector Z in DU , and applying (2.1), we obtain

−η(AY )〈(∇XA)Z, ξ〉 = cω(X)〈Y, Z〉.
It follows from Lemma 2.3 that this equation becomes

cη(AY )〈φX,Z〉 = cω(X)〈Y, Z〉.
By putting Y = U and X = φZ in the above equation, we obtain β = 0, which

is a contradiction. Hence such a ruled real hypersurface cannot exist.

Remark 5.1� From the proof of Theorem 1.2, we get the following result:

In Mn(c), n > 2, there does not exist a ruled real hypersurface

with its structure Jacobi operator η-recurrent, i.e., 〈(∇XRξ)Y, Z〉 =
ω(X)〈RξY, Z〉 for all vector fields X, Y, Z in D.
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