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ON THE GROUP SHEAF

OF A-SYMPLECTOMORPHISMS
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(Communicated by Sylvia Pulmannová )

ABSTRACT. This is a part of a further undertaking to affirm that most of
classical module theory may be retrieved in the framework of Abstract Differen-
tial Geometry (à la Mallios). More precisely, within this article, we study some

defining basic concepts of symplectic geometry on free A-modules by focussing
in particular on the group sheaf of A-symplectomorphisms, where A is assumed
to be a torsion-free PID C-algebra sheaf. The main result arising hereby is that
A-symplectomorphisms locally are products of symplectic transvections, which is
a particularly well-behaved counterpart of the classical result.
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1. Introduction

The study of symplectic A-transvections parallels that of orthogonal A-sym-

metries with respect to (A-) hyperplanes. An important result regarding orthog-

onal A-symmetries is the sheaf-theoretic version of the Cartan-Dieudonné theo-

rem, which stipulates that given a PID C-algebra sheaf and φ a non-degenerate

A-bilinear form on a convenient A-module E of rank n, having nowhere-zero

(local) isotropic sections, every A-isometry σ ∈ AutA E is a product of at most

n orthogonal symmetries with respect to (local) non-isotropic hyperplanes, cf.

[11]. But for a Riemannian convenient A-module E of finite rank, equipped as

above with a non-degenerate A-bilinear form φ, the condition that E should have

nowhere-zero isotropic sections plays no role, and is therefore needless, cf. [11].
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The Cartan-Dieudonné theorem is part of special features characterizing orthog-

onal geometry; its counterpart with respect to symplectic geometry is centered

around symplectic A-transvections. It states that

Given a free symplectic A-module of rank 2n on a topological space

X, where A is a PID C-algebra sheaf, and σ ∈ EndA E an A-sym-

plectomorphism of E , for any open U ⊆ X, σU is a product of at

most 4n− 2 symplectic A(U )-transvections.

This result is the main result of the paper.

2. Generalities on abstract geometric algebra

Let us review succinctly the basic notions of Abstract Geometric Algebra

which we are concerned with in this paper. Most of the concepts in this paper

are defined on the basis of the classical ones. These notions may be found

in our recent papers such as [8], [9], and [10]. Let F and E be A-modules

and φ : F ⊕ E −→ A an A-bilinear morphism. Then, we say that the triple

((F , E ;φ);A) ≡ (F , E ;φ) ≡ (F , E ;A) forms a pairing of A-modules or an A-pair-

ing. The sub-A-module F⊥ of E such that, for every open subset U of X, F⊥(U )

consists of all r ∈ E(U ) with φV (F(V ), r|V ) = 0 for any open V ⊆ U , is called

the right kernel of the pairing (F , E ;A). In a similar way, one defines the left

kernel of (F , E ;A) to be the sub-A-module E⊥ of F such that, for any open

subset U of X, E⊥(U ) is the set of all (local) sections r ∈ F(U ) such that

φV (r|V , E(V )) = 0 for every open V ⊆ U .

If (E , φ) is a self A-pairing with φ symmetric or skew-symmetric, the kernel

E⊥ is called the radical sheaf (or sheaf of A-radicals, or simply A-radical) of

E . If F is a sub-A-module of E , the radical of F consists of those sections of

F⊥ that are also sections of F . In other words, radF = F ∩ F⊥. In general,

if (F , E ;A) is a pairing of free A-modules, then rad E := E ∩ E⊥, and similarly

radF := F∩F�. An A-module E such that rad E �= 0 (resp. rad E = 0) is called

isotropic (resp. non-isotropic); E is totally isotropic if φ is identically zero. For

any open U ⊆ X, a non-zero section r ∈ E(U ) is called isotropic if φU (r, r) = 0.

N.B. We assume throughout the paper, unless otherwise mentioned, that the

pair (X,A) is an algebraized space, where A is a unital C-algebra sheaf such that

every nowhere-zero section of A is invertible. (Consider for example sheaves of

continuous, smooth and holomorphic functions.)
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3. Symplectic Gram-Schmidt theorem

����� 1� Let (E , ω) be a symplectic free A-module, U an open subset of X and
(r1, . . . , rn) ⊆ E(U ) an arbitrary (local) gauge of E . For any r ≡ ri, 1 ≤ i ≤ n,
there exists a nowhere-zero section s ∈ E(U ) such that ωU (r, s) is nowhere zero.

P r o o f. Without loss of generality, assume that r1 = r. On the other hand,
since the induced A-morphism ω̃ ∈ HomA(E , E∗) is one-to-one and both E and
E∗ have the same finite rank, it follows that the matrix D representing ωU (see
also [1: Theorem 2.21, p. 357; Definition 2.19, p. 356] or [2: Proposition 20.3,
p. 343]), with respect to the basis (r1, . . . , rn), has a nowhere-zero determinant ;
so since

detD =
n∑

i=1

(−1)1+iω(r1, ri) detD1i = ω

(
r1,

n∑
i=1

(−1)1+i detD1iri

)
,

where D1i is the minor of the corresponding ω(r1, ri), and detD nowhere zero,

we thus have a section s :=
n∑

i=1

(−1)1+i detD1iri ∈ E(U ) such that ω(r, s) is

nowhere zero. �

������� 1� Let (E , ω) be a symplectic free A-module of rank 2n, and I and
J two (possibly empty ) subsets of {1, . . . , n}. Moreover, let A =

{
ri ∈ E(U ) :

i ∈ I
}
and B =

{
sj ∈ E(U ) : j ∈ J

}
such that ri, sj (i ∈ I, j ∈ J) are nowhere

zero, and

ωU (ri, rj) = ωU (si, sj) = 0, ωU (ri, sj) = δij, (i, j) ∈ I × J. (1)

Then, there exists a basis B of (E(U ), ωU) containing A ∪B.

P r o o f. As in [5: Theorem 1.15, pp. 12, 13], we have three cases. With no loss
of generality, we assume that U = X.

(1) Case: I = J = ∅. Since A2n �=0 ( we already assumed that C ≡ CX ⊆A),
there exists an element

0 �= r1 ∈ E(X) � A2n(X) � A(X)2n

(take e.g. the image (by the isomorphism E(X) � A2n(X)) of an element in the
canonical basis of (sections) of A2n(X)). By virtue of Lemma 1, there exists a
section s1 ∈ E(X) such that ωV (r1|V , s1|V ) �= 0 for any open subset V in X.
Thus, based on the hypothesis on A, ωX(r1, s1) is invertible in A(X). Putting
s1 := u−1s1, where u ≡ ωX(r1, s1) ∈ A(X), one gets

ωX(r1, s1) = 1.

Now, let us consider

S1 := [r1, s1],

845



PATRICE P. NTUMBA

that is, the A(X)-plane, spanned by r1 and s1 in E(X), along with its orthogonal
complement in E(X), i.e.,

S⊥
1 ≡ T1 :=

{
t ∈ E(X) : ωX(t, z) = 0 for all z ∈ S1

}
.

The sections r1 and s1 are linearly independent, for if s1 = ar1, with a ∈ A(X),
then

1 = ωX(r1, s1) = ωX(r1, ar1) = aωX(r1, r1) = 0,

a contradiction. So, {r1, s1} is a basis of S1. Furthermore, we prove that

(i) S1 ∩ T1 = 0,

(ii) S1 + T1 = E(X).

Indeed,
(i) since ωX(r1, s1) �= 0, we have S1 ∩ T1 = 0.
On the other hand,
(ii) for every z ∈ E(X), one has

z =
(
−ωX(z, r1)s1 + ωX(z, s1)r1

)
+
(
z + ωX(z, r1)s1 − ωX(z, s1)r1

)
,

with

−ωX(z, r1)s1 + ωX(z, s1)r1 ∈ S1,

and

z + ωX(z, r1)s1 − ωX(z, s1)r1 ∈ T1.

Thus,

E(X) = S1 ⊕ T1.

The restriction ω1 ≡ ω1,X of ωX to T1 is non-degenerate as E (in particular,
E(X)) is non-isotropic. (T1, ω1) is thus a symplectic free A(X)-module of rank
2(n − 1). Repeating the construction above n − 1 times, we obtain a strictly
decreasing sequence

(E(X), ωX) ⊇ (T1, ω1) ⊇ · · · ⊇ (Tn−1, ωn−1)

of symplectic free A(X)-modules with rank Tk = 2(n− k), k = 1, . . . , n− 1, and
also an increasing sequence

{r1, s1} ⊆ {r1, r2; s1, s2} ⊆ · · · ⊆ {r1, . . . , rn; s1, . . . , sn}
of gauges; each satisfying relations (6).

(2) Case I = J �= ∅. We may assume without loss of generality that I =
J = {1, 2, . . . , k}, and let S be the submodule spanned by {r1, . . . , rk; s1, . . . , sk}.
Clearly, ωX |S is non-degenerate; by Adkins-Weintraub [1: Lemma (2.31), p. 360],
it follows that S ∩ S⊥ = 0. On the other hand, let z ∈ E(X). One has

z =
(
−

k∑
i=1

ωX(z, ri)si+

k∑
i=1

ωX(z, si)ri

)
+
(
z+

k∑
i=1

ωX(z, ri)si−
k∑

i=1

ωX(z, si)ri

)
,
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with

−
k∑

i=1

ωX(z, ri)si +

k∑
i=1

ωX(z, si)ri ∈ S,

and

z +
k∑

i=1

ωX(z, ri)si −
k∑

i=1

ωX(z, si)ri ∈ S⊥.

Thus,
E(X) = S ⊕ S⊥.

Based on the hypothesis on S1 the restriction ωX |S is a symplectic A-bilinear
form. (It is also easily seen that the restriction ωX |S⊥ is skew-symmetric.)
Moreover, since S⊕S⊥ = E(X) and E(X)⊥ = 0, if there exist z1 ∈ S⊥ such that
ωX(z1, z) = 0 for all z ∈ S⊥, then z1 ∈ E(X)⊥ = 0, i.e., z1 = 0. Thus, ωX |S⊥ is
non-degenerate and hence a symplectic A-form. Applying Case (1) , we obtain
a symplectic basis of S⊥, which we denote as

{rk+1, . . . , rn; sk+1, . . . , sn}.
Then,

B = {r1, . . . , rn; s1, . . . , sn}
is a symplectic basis of E(X) with the required property.

(3) Case J \ I �= ∅ (or I \ J �= ∅). Suppose that k ∈ J \ I; since ωX is non-

degenerate there exists rk ∈ E(X) such that ωX(rk, sk) �= 0 in the sense that
ωV (rk|V , sk|V ) �= 0 for any open V ⊆ X. In other words, the section v ≡
ωX(rk, sk) ∈ A(X) is nowhere zero, and is therefore invertible. So, if rk :=
v−1rk, we have ωX(rk, sk) = 1. Next, let us consider the sub-A(X)-module R,
spanned by rk and sk, viz. R = [rk, sk]. As in Case (1), we have

E(X) = R⊕R⊥.

Clearly, for every i ∈ I, ri ∈ R⊥. To show this, fix i in I, and assume that
ri = ark + bsk + x, where a, b ∈ A(X) and x ∈ R⊥. So, one has

0 = ωX(ri, sk) = a, 0 = ωX(ri, rk) = b,

which corroborates the claim that ri ∈ R⊥ for all i ∈ I. Furthermore, we also
clearly have that for every j �= k in J , sj ∈ R⊥. Then A ∪ B ∪ {rk} is a family
of linearly independent sections: the equality

akrk +
∑
i∈I

airi +
∑
j∈J

bjsj = 0

implies that ak = ai = bj = 0. Repeating this process as many times as
necessary, we are lead back to Case (2), and the proof is finished. �

Referring to Theorem 1, the basis B is called a symplectic A(U )-basis of
(E(U ), ωU).
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	���

��� 1� Let (E , ω) be a symplectic free A-module of finite rank. For any
nowhere-zero (local) section r ∈ E(U ) (U is an open subset of X), there exists a
nowhere-zero section s ∈ E(U ) such that ωU (r, s) is nowhere zero.

P r o o f. Apply Theorem 1 to find a symplectic basis of (E(U ), ωU) containing
the given nowhere-zero section r, then apply Lemma 1 to find a nowhere-zero
section s ∈ E(U ) such that ωU (r, s) is nowhere zero. �

4. Main results

��
������� 1� Let (E , ω) and (E ′, ω′) be symplectic A-modules. An A-morph-
ism ϕ ∈ HomA(E , E ′) is called symplectic if

ϕ∗ω′ := ω′ ◦ (ϕ× ϕ) = ω,

that is, for any s, t ∈ E(U ), where U is open in X,

ω′
U (ϕU (s), ϕU(t)) ≡ ω′(ϕ(s), ϕ(t)) = ω(s, t) ≡ ωU (s, t).

A symplectic A-isomorphism is called an A-symplectomorphism. Symplectic
A-modules (E , ω) and (E ′, ω′) are called symplectomorphic if there is an A-sym-
plectomorphism between them.

Clearly, symplectic A-morphisms are necessarily injective; indeed, given a
symplectic A-morphism ϕ : (E , ω) −→ (E ′, ω′), then, for any s ∈ E(U ), since ω
is non-degenerate, ϕU (s) = 0 implies that s = 0.

����� 2� Let (E , ω) be a symplectic A-module. The correspondence

U �−→ (Sp E)(U ), (2)

where U varies over the topology of X, such that (Sp E)(U ) is the group (un-
der composition) of all A|U -symplectomorphisms yields a complete presheaf of
groups. The corresponding sheaf, denoted Sp E , is called the symplectic group
sheaf, or the group sheaf of symplectomorphisms of E (in fact, of (E , ω)).

P r o o f. We first show that for any open set U ⊆ X, (Sp E)(U ) is a group. In
fact, since

(Sp E)(U ) ⊆ GLA|U (E|U , E|U )
and the correspondence

U �−→ GLA|U (E|U , E|U ) ⊆ HomA|U (E|U , E|U )
gives rise to a complete presheaf of groups, cf. [7: pp. 285, 286], we need only
show that if ϕ, ψ ∈ (Sp E)(U ), then ϕ ◦ ψ, ϕ−1 ∈ (Sp E)(U ). To this end, let V
be any open subset of U . Then, we have

(ϕV ◦ ψV )
∗(ωV ) = (ψ∗

V ◦ ϕ∗
V )(ωV ) = ψ∗

V (ϕ
∗
V (ωV )) = ωV ,
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from which we deduce that ϕ ◦ ψ ∈ (Sp E)(U ).

On the other hand, one also obtains

(ϕ−1
V )∗(ωV ) = (ϕ−1

V )∗(ϕ∗
V (ωV )) = (ϕV ◦ ϕ−1

V )∗(ωV ) = ωV ,

so that ϕ−1 ∈ (Sp E)(U ), as well.

Let us now show that (2) yields a complete presheaf of groups. It is easy to
see that Correspondence (2), along with the obvious restriction maps, defines
a presheaf of groups on X. Thus, we just prove that the presheaf of groups
defined, on X, by (2) is complete.

Indeed, let U be an open subset of X and U = {Uα}α∈I an open covering of
U ; let ϕ, ψ ∈ (Sp E)(U ) such that

ρUUα
(ϕ) ≡ ϕUα

:= ϕα = ψα =: ψUα
≡ ρUUα

,

for all α ∈ I, and where the ρUUα
are the restriction maps characterizing the

presheaf ((Sp E)(U ), ρUV ). Since

(Sp E)(U ) ⊆ GLA|U (E|U , E|U ), GLA|U (E|U , E|U ) ⊆ HomA|U (E|U , E|U ),

and the {ρUUα
}α∈I are also the restriction maps making the diagram

U �−→ HomA|U (E|U , E|U ) (3)

into a presheaf, it follows that ϕ = ψ. So the presheaf on X, given by (2),
satisfies Condition (S1) of presheaves, see [7: p. 46].

For axiom (S2), see [7: p. 47], let

(ϕα)α∈I ∈
∏
α∈I

(Sp E)(Uα) ⊆
∏
α∈I

HomA|Uα
(E|Uα

, E|Uα
)

be such that

ρUα

Uα∩Uβ
(ϕα) ≡ ϕα|Uαβ

= ϕβ |Uαβ
≡ ρ

Uβ

Uα∩Uβ
(ϕβ)

for any α, β ∈ I, with Uαβ ≡ Uα ∩ Uβ �= ∅. Hence, since (3) yields a complete
presheaf, there exists an element ϕ ∈ HomA|U (E|U , E|U ) such that one has

ϕ|Uα
= ϕα, α ∈ I.

It only remains to show that

ϕ∗ω = ω,

where ω ≡ ω|U is a symplectic structure on E|U .

849



PATRICE P. NTUMBA

To this end, we first observe that ϕ∗ω, ω ∈ HomA|U ((E ⊕ E)|U ,A|U ), with
U �−→ HomA|U ((E ⊕ E)|U ,A|U )

defining a complete presheaf of A-modules on X, see [7: p. 134]. But,

ϕ∗ω|Uα
= (ϕ|Uα

)∗ω|Uα
= ϕ∗

αω|Uα
= ω|Uα

,

therefore

ϕ∗ω = ω,

as desired. �

Symplectic A-transvections, introduced in [12], are a particular case of A-sym-
plectomorphisms. Since we shall need them henceforth, let us recall the definition
(due to Mallios) of a symplectic A-transvection.

��
������� 2� Let E be an A-module. An element ϕ ∈ Aut E is called an
A-transvection if there exists a sub-A-module H in E such that E/H � A, and
the following conditions are satisfied:

(i) ϕ|H = I.

(ii) Im(ϕ− I) ⊆ H.

More accurately, we say that ϕ is an A-transvection with respect to the sub-
A-module H.

Purely categorically, condition (i) of Definition 2 means that the diagram

0 �� H �� E ��

τ

��

A �� 0

0 �� H �� E �� A �� 0,

where the two horizontal rows represent the same short exact sequence, com-
mutes.

In the same vein, an A-transvection of a symplectic A-module is called a
sympletic A-transvection.

��
������� 3 (Mallios)� Let E be an A-module. An element ϕ ∈ End E ≡
EndA E := HomA(E , E) is called a homothecy of ratio α ∈ EndAA =:
A∗(X) � A(X) if

ϕ = α · I, (4)

where I stands for the identity of the group End E := HomA(E , E).

Section-wise, Equation (4) means that, given any section s ∈ E(U ), one has

ϕU (s) = α|U · s ≡ α · s.
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Now, suppose we have a free A-module E and H an A-hyperplane of E , so
that one has

E/H � A, (5)

cf. [8]. Moreover, let ϕ ∈ End E such that

ϕ(H) ⊆ H; (6)

then, ϕ gives rise to an element, say ϕ̃, of End(E/H); viz.

ϕ̃ ∈ End(E/H),

such that, in view of (6),

ϕ̃ ◦ q = q ◦ ϕ,
where q : E −→ E/H is the canonical A-epimorphism. However, due to (5), one
has

ϕ̃ ∈ End(E/H) � End A =: A∗(X) � A(X),

viz. one obtains

ϕ̃ = α ∈ A(X) � End A,
thus

ϕ̃ = α · I,
so that α is the ratio of ϕ̃. Hence, ϕ induces a homothecy of E/H(� A) of
ratio α.

����� 3� Let E be a free A-module, H an A-hyperplane of E , ϕ an A-endo-
morphism of E that fixes every section of H, and ϕ̃ the A-homothecy, of ratio
α, induced by ϕ on the line A-module E/H. Then,

(1) If α is nowhere 1, there exists a unique line A-module L ⊆ E such that
E = H⊕L and L is stable by ϕ, i.e. ϕ(L) � L.

(2) If α = 1, then for every A-morphism θ ∈ HomA(E ,A) = E∗(X) with
ker θ � H, there exists a unique A-morphism ψ ∈ HomA(E ,H) such that

ϕ = I + ψ. (7)

P r o o f.

(1) Uniqueness. Let L be a line A-module satisfying the hypotheses of the
assertion, and s a nowhere-zero global section of L (such a section s does exist
because L � A and A is unital). Therefore, there exists b ∈ A(X) such that
ϕ(s) = βs. Next, assume that q is the canonical A-morphism of E onto E/H.
It is clear that ϕ̃X(qX(s)) = βqX(s) ≡ βq(s); thus ϕ̃X is a homothecy of ratio
α = b, hence, by hypothesis, β is nowhere 1. Now, let u be an element of E(X)
such that u /∈ H(X); then there exists a non-zero λ ∈ A(X) and an element
t ∈ H(X) such that

u = λs+ t.
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It follows that

ϕ(u) = λβs+ t.

Of course, ϕ(u) and u are colinear if and only if t = 0. Thus, we have proved
that every section u ∈ E(X) which is colinear with its image ϕ(u) belongs to
L(X). A similar argument holds should we consider the decomposition E(U ) =
H(U )⊕L(U ), where U is any other open subset U of X. Hence, L is the unique
complement of H in E , up to A-isomorphism, and stable by ϕ.

Existence. Since α is nowhere 1 on X, there exists a nowhere-zero section
s ∈ E(X) such that

ϕ̃U (qU (s|U )) := ϕ̃U (qU (sU )) �= qU (sU ) =: qU (s|U )
for any open U ⊆ X. As ϕ̃◦q = q◦ϕ, it follows that rU := ϕU (sU )−sU does not
belong to H(U ), for any open U ⊆ X. The line A-module L := [rU ]X⊇U, open

clearly complements H. It remains to show that L is stable by ϕ: To this end,
we first observe that every sU does not belong to the corresponding H(U ), and
E(U ) � A(U )sU ⊕ H(U ). So, since rU /∈ H(U ) for every open U ⊆ X, there
exists for every rU sections αU ∈ A(U ) and tU ∈ H(U ) such that

rU = αUsU + tU . (8)

We deduce from (8) that

ϕU (rU ) = (αU + 1)rU ,

and the proof is complete.

(2) Uniqueness is obvious.

Existence. Let t ∈ E(X) be a nowhere-zero section such that t|U /∈ H(U ) for
any open U ⊆ X. Consider the section

r := (θ(t))−1(ϕ(t)− t). (9)

Clearly, r ∈ H(X); it is because

(q ◦ ϕ)(t)− q(t) = (ϕ̃ ◦ q)(t)− q(t) = 0.

The A(X)-morphisms

s �−→ ϕ(s) (10)

and

s �−→ s+ ψ(s) := s+ θ(s)r (11)

are equal, since ϕ(t) = t+ ψ(t) , and ϕ(s) = s+ ψ(s) for every s ∈ H(X). �

From the uniqueness of the A-morphism ψ, we deduce that the global section
r in (9) is unique. On another hand, it is clear that ϕ, as given in (7), is an
A-transvection.

In particular, we shall be concerned with symplectic A-transvections of sym-
plectic free A-modules of finite rank. More explicitly, let (E , ω) be a symplectic
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free A-module of finite rank, and ϕ a symplectic A-transvection of (E , ω). By
the proof of Lemma 3, there exists a section r ∈ E(X) such that

ϕX(s) = s+ θX(s)r, (12)

where ker θ is an A-hyperplane of E . Clearly, we have

ωX(ϕX(s), ϕX(t)) = ωX(s, t), (13)

for s, t ∈ E(X). Using (12), (13) yields

θX(s)ωX(r, t) = θX(t)ωX(r, s).

Suppose that r is nowhere zero. By Corollary 1, we let t0 be a nowhere-zero
section such that ωX(r, t0) is nowhere zero. Then

θX(s) =
θX(t0)

ωX(r, t0)
ωX(r, s) ≡ cωX(r, s),

where

c :=
θX(t0)

ωX(r, t0)
∈ A(X).

Hence,

ϕX(s) = s+ cωX(r, s)r,

with c ∈ A(X).

����� 4� Let (E , ω) be a symplectic orthogonally convenient A-module of finite
rank. The correspondence

U �−→ (Tv E)(U ),

where U is any open set in X, such that (Tv E)(U ) is the group of all symplectic
A|U -transvections yields a complete presheaf of groups. The sheaf thus obtained
is denoted T v E and is called the symplectic transvection group sheaf.

P r o o f. Apart from the completeness condition (S2), the rest of the proof is
just as straightforward as in the proof of Lemma 2. So, let

(ϕα)α∈I ∈
∏
α∈I

(Tv E)(Uα) ⊆
∏
α∈I

(Sp E)(Uα)

be such that

ϕα|Uαβ
= ϕβ |Uαβ

for any α, β ∈ I, with Uαβ �= ∅. Since ((Sp E)(U ), ρUV ) is a complete presheaf,
there exists ϕ ∈ (Sp E)(U ) such that one has

ϕ|Uα
= ϕα, α ∈ I.
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It only remains to show that ϕ is an A|U -transvetion. For this purpose, let
s ∈ E(Uα∩Uβ). If s

i
0 ∈ E(Ui), i ∈ I, is the direction section of the corresponding

A|Ui
-transvection ϕi, on one hand, we have, for any s ∈ E(Uαβ),

ϕ|Uαβ
(s) = ϕi|Uαβ

(s)

= s+ λUi
|Uαβ

ωUαβ
(sUi

0 |Uαβ
, s)sUi

0 |Uαβ

,

where i = α, β. Whence, we have

λUα
|Uαβ

ωUαβ

(
sUα
0 |Uαβ

, s
)
sUα
0 = λUβ

|Uαβ
ωUαβ

(
s
Uβ

0 |Uαβ
, s
)
s
Uβ

0 , (14)

for every s ∈ E(Uαβ). Since s is arbitrary, it follows from (14) that

sUα
0 |Uαβ

= s
Uβ

0 |Uαβ
, λUα

|Uαβ
= λUβ

|Uαβ
.

Thus, there exist sU0 ∈ E(U ) and λU ∈ A(U ) such that

sU0 |Uα
= sUα

0 , λU |Uα
= λUα

.

Hence,

ϕU (s) = s+ λUωU (s
U
0 , s)s

U
0 ,

for every s ∈ E(U ). �

We shall now show A-symplectomorphisms are generated by symplectic
A-transvections, the counterpart of a classical result that may be found in [3:
pp. 18–20] or [4: pp. 422–424] or [6: p. 372–374].

����� 5� If s, t ∈ E(U ) are sections of E , over an open subset U of X, such
that ωU (s, t)|V = ωV (s|V , t|V ) �= 0, for any open V ⊆ U , then, there exists a
symplectic transvection τ on E(U ) such that τ(s) = t. On the other hand, if
ωU (s, t)|V = 0 and s|V �= t|V for some open V ⊆ U , there is no symplectic
transvection on E(U ) carrying s onto t.

P r o o f. Since ωU (s, t) is nowhere zero, and every nowhere-zero section of A is
invertible, it suffices to take

τ(u) = u− 1

ωU (s, t)
ωU (t− s, u)(t− s).

As for the second part of the lemma, suppose there exists a symplectic
transvection τ , determined by a section a ∈ E(U ), mapping s onto t. Then,
on V , we have

c|V ωV (a|V , s|V )2 = 0;

if c|V = 0 or ωV (a|V , s|V ) = 0, it follows that

τV (s|V ) = s|V = t|V ,
which contradicts the hypothesis. �

854



ON THE GROUP SHEAF OF A-SYMPLECTOMORPHISMS

����� 6� Let τ be a symplectomorphism of E(U ) and Fτ the free sub-
A(U )-module of E(U ) consisting of all fixed sections in E(U ) (by τ). Then,
there exists a transvection α such that the free sub-A(U )-module, Fφ, of fixed
sections of φ ≡ α◦τ , satisfies the property that rank Fφ > rankFτ , if and only if
there exists a section s1 such that ωU (τ(s1), s1) is nowhere zero, (which implies
that τ(s1)|V �= s1|V for any open V ⊆ U , which, in turn, implies that s1 /∈ Fτ ).

P r o o f. Suppose there exists s1 with ωU (τ(s1), s1) nowhere zero; it follows that

ωU (τ(s1)− s1, s1)|V �= 0

for any open V ⊆ U . Based on Theorem 1, there exists a symplectic basis
of (E(U ), ωU) containing τ(s1) − s1; so it is clear that (τ(s1) − s1)

⊥ is an
A(U )-hyperplane. Furthermore (τ(s1)− s1)

⊥ contains Fτ , for, if τ(s) = s,

ωU (τ(s1)− s1, s) = ωU (τ(s1), s)− ωU (s1, s) = ωU (τ(s1), τ(s))− ωU (s1, s) = 0.

Considering the transvection

α(s) = s− 1

ωU (τ(s1), s1)
ωU

(
s1 − τ(s1), s

)(
s1 − τ(s1)

)
,

one has

α(τ(s1)) = s1.

Its fixed sections yield the A(U )-hyperplane (s1 − τ(s1))
⊥, which contains Fτ .

Since

φ(s1) = (α ◦ τ)(s1) = s1

and s1 is nowhere zero and is contained in Fφ, so rank Fφ > rankFτ .

Conversely, if φ = α◦ τ for some transvection α such that rank Fφ > rankFτ ,
it follows that there exists a nowhere-zero section s1 ∈ E(U ) such that φ(s1) =
(α ◦ τ)(s1) = s1 and τ(s1)|V �= s1|V for any open V ⊆ U . Assume that the
transvection α is given by

α(s) = s+ cωU (a, s)a,

where c ∈ A(U ) and a ∈ E(U ). Then,

(α ◦ τ)(s1) = τ(s1) + cωU (a, τ(s1))a = s1,

which implies that

τ(s1)− s1 = cωU (a, τ(s1))a.

Since (τ(s1) − s1)|V �= 0 for any open V ⊆ U , ωU (a, τ(s1))|V �= 0 and c|V �= 0
for any open V ⊆ U . But, for any open V ⊆ U ,

ωU (a, τ(s1))|V = ωU (α(a), α(τ(s1)))|V = ωU (a, s1)|V �= 0
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and

ωU (s1, τ(s1)) = ωU (α(s1), α(τ(s1))) = ωU (s1 + cωU (a, s1)a, s1) = cωU (a, s1)
2,

therefore

ωU (s1, τ(s1))|V �= 0

for any open V ⊆ U . �

����� 7� Let τ be a symplectomorphism of E(U ) such that ωU (τ(s), s) ≡
ω(τ(s), s) = 0 for all s ∈ E(U ). Then, if τ is not the identity, there exists
a transvection α of E(U ) such that Fα◦τ ≡ Fφ = Fτ , where Fφ and Fτ are free
sub-A(U )-modules of E(U ) consisting of all fixed sections of φ and τ , respec-
tively. Furthermore, there exists s1 ∈ E(U ) such that ω(φ(s1), s1) is nowhere
zero.

P r o o f. By polarization, one has

0 = ω(τ(s+ t), s+ t) = ω(τ(s), t) + ω(τ(t), s),

so that

ω(τ(s), t) = ω(s, τ(t))

for all s, t ∈ E(U ). In other words, τ is a symmetric A(U )-endomorphism
(τ∗ = τ); as τ is symplectic, one has

τ∗ ◦ τ = IdE(U) ≡ 1 = τ2.

It follows that τ is a symplectic involution, which splits the A(U )-module E(U )
into two sub-A(U )-modules: E(U )+ and E(U )−, corresponding to eigen-value
sections +1 and −1, respectively, i.e.

E(U ) = E(U )+ ⊕ E(U )−.

Observe that if s ∈ E(U )+ and t ∈ E(U )− :

ω(s, t) = ω(τ(s), τ(t)) = ω(s,−t) = −ω(s, t) = 0

(assuming that the characteristic of A(U ) is not 2). Thus, E(U )+ and E(U )− are
orthogonal, hence non-isotropic. Clearly, E(U )+ is the free sub-A(U )-module Fτ

of fixed sections of τ .

If τ �= 1, E(U )− is non-void and non-isotropic. Take in E(U )− a nowhere-
zero section s0, so that by Corollary 1, there is a nowhere-zero section s1 such
that ω(s0, s1) is nowhere zero. Let α be the transvection determined by s0 and
a nowhere-zero coefficient λ ∈ A(U ). We contend that φ := α ◦ τ is not an
involution. Indeed,

ω(φ(s1), s1) = ω(−s1 − λω(s0, s1)s0, s1) = −λω(s0, s1)2

is nowhere zero.
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Since s0 ∈ E(U )−, s0 is orthogonal to E(U )+, that is, E(U )+ ⊆ s⊥0 , which is
the free sub-A(U )-module consisting of all fixed sections of α. Thus, Fτ ⊆ Fφ,
but, by virtue of Lemma 6, we necessarily have that Fφ = Fτ . �

Putting Lemmas 5, 6 and 7, we have

������� 2� Let (E , ω) be a free sympletcic A-module of rank 2n and σ ∈
EndA E an A-symplectomorphism of E . Then, for any open subset U of X,
σ ≡ σU is a product of at most 4n− 2 symplectic A(U )-transvections.

P r o o f. We use induction on the rank of the free sub-A(U )-module Fσ ≡ FσU

of fixed sections of σ, showing that if σ �= I, there exist at most two symplectic
transvections, α and β, of E(U ) such that, if φ := αβσ, rank Fφ > rankFσ.

Besides, if rank Fσ = 2n− 1, then σ is a symplectic transvection. Indeed, in
such a case, there are at most two transvections α and β such that

2n = rankFφ > rankFσ,

where φ := αβσ = IE(U). Thus,

σ = β−1α−1.

Now, suppose that rank Fσ < 2n−1; so there exist m symplectic A(U )-trans-
vections α1, . . . , αm of E(U ), where m ≤ 4n− 2, such that

αmαm−1 · · ·α1σ = I.

Hence,
σ = α−1

1 α−1
2 · · ·α−1

m ,

which is a product of symplectic A(U )-transvections. �

We thus obtain our major result, which is

������� 3� Let (E , ω) be a free symplectic A-module of finite rank. Then, the
symplectic group sheaf Sp E is generated by the symplectic transvection group
sheaf T v E .

P r o o f. Suppose that σ ∈ (Sp E)(U ) ⊆ HomA(E , E)(U ) = HomA|U (E|U , E|U ),
where U is an open subset of X. By Theorem 2, every σV , where V is open in
U , is a product of symplectic A(V )-transvections. �
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