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ABSTRACT. We prove that partially ordered semigroups S and T with local

units are strongly Morita equivalent if and only if there exists a surjective strict

local isomorphism to T from a factorizable Rees matrix posemigroup over S. We

also provide two similar descriptions which use Cauchy completions and Morita

posemigroups instead.
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1. Introduction

The Morita theory of semigroups without identity is relatively new, going
back to the paper by Talwar ([9]). It has seen quite a bit of recent development
by Lawson ([7]) and Laan and Márki ([6]), who present a number of alterna-
tive characterizations of Morita equivalent semigroups. Our work considers how

those results can be applied to the Morita theory of posemigroups and is a sequel

to [12]. We use the main result of [12] to examine how strong Morita equivalence
is connected to the existence of a strict local isomorphism between a posemi-
group T and several posemigroups constructed from a given posemigroup S:
the Cauchy completion C(S) viewed as a posemigroup, a Rees matrix posemi-

group over S and a Morita posemigroup over S. Along the way, we describe the
Rees matrix posemigrops corresponding to unipotent pomonoids and show that

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 06F05; Secondary 20M10.

Keywords: ordered semigroup, Morita equivalence, Rees matrix cover.
This research was supported by Estonian Science Foundation Grant No. 8394, Estonian Tar-

geted Financing Project SF0180039s08 and Estonian Institutional Research Project IUT20-57.



LAURI TART

Morita posemigroups over S are always strongly Morita equivalent to S. Most
of the results are refinements of the Morita theory of semigroups with (various
kinds of) local units as found in [6], [7] and [10].

We use the symmetric monoidal closed category Pos of partial orders and
monotone maps (using cartesian product for monoidal tensor product) and
consider various categories enriched over Pos. Our reference for details on
Pos-categories, Pos-functors and Pos-equivalences is [3]. We just remark that
a full and faithful Pos-functor must provide a poset isomorphism instead of a
bijection between the corresponding posets of morphisms. Categorial composi-
tions will be written from right to left.

A partially ordered semigroup S (a posemigroup for short) is a (nonempty)
semigroup that is endowed with a partial order so that its operation is monotone.
For a fixed posemigroup S, (one-sided) S-posets are partially ordered S-acts
where the S-action is monotone in both arguments. A right S-poset X is said
to be unitary if XS = X. The notion for left S-posets is dual. A poset is
called an (S, T )-biposet if it is a left S- and a right T -poset and its S- and
T -actions commute with each other. (S, T )-biposets are called unitary if they
are unitary as both left S- and right T -posets. Posemigroup homomorphisms are
monotone semigroup homomorphisms. A number of basic facts about S-posets
over pomonoids can be found in [1].

A (po)semigroup S is said to have local units if for any s ∈ S there exist
idempotents e and f such that

es = s = sf.

A (po)semigroup S is said to have weak local units if for any s ∈ S there exist not
necessarily idempotent e ∈ S and f ∈ S such that es = s = sf . A (po)semigroup

S is said to have common (weak) local units (cf. [5]) if for any s, s′ ∈ S there
exist e ∈ E(S) and f ∈ E(S) (e ∈ S and f ∈ S) such that es = s = sf and
es′ = s′ = s′f . We say that a posemigroup S has ordered (weak) local units if

for all s, s′ ∈ S, s ≤ s′, there exist e, e′, f, f ′ ∈ E(S) (e, e′, f, f ′ ∈ S) such that

es = s = sf, e′s′ = s′ = s′f ′, e ≤ e′, f ≤ f ′.

A (po)semigroup is called factorizable if S2 = S. Having local units implies hav-

ing weak local units, which in turn implies factorizability. Also, a (po)semigroup
with (weak) common local units has (weak) local units. A (po)semigroup is
unipotent if it contains exactly one idempotent.

The tensor product A ⊗S B of a right S-poset A and a left S-poset B is

the quotient poset (A × B)/∼, where (a, b) ∼ (a′, b′) iff (a, b) � (a′, b′) and
(a′, b′) � (a, b), and (a, b) � (a′, b′) iff there exist s1, . . . , sn, t1, . . . , tn ∈ S1,
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a1, . . . , an ∈ A and b2, . . . , bn ∈ B such that

a ≤ a1s1

a1t1 ≤ a2s2 s1b ≤ t1b2

...
...

antn ≤ a′ snbn ≤ tnb
′,

(1)

where we take xu = x for every x ∈ {a1, . . . , an} and uy = y for every
y ∈ {b, b′} ∪ {b2, . . . , bn} if u ∈ S1 is the externally adjoined identity. For a
pair (a, b) ∈ A×B, the equivalence class [(a, b)]∼ is denoted by a⊗ b. The order
relation on A⊗S B is defined by setting, for a⊗ b, a′ ⊗ b′ ∈ A⊗S B,

a⊗ b ≤ a′ ⊗ b′ ⇐⇒ (a, b) � (a′, b′).

If A is a (T, S)-biposet, then A ⊗S B is a left T -poset, where the action is
defined by t(a⊗ b) = (ta)⊗ b. Similarly, if B is an (S, T )-biposet, then A⊗S B
is a right T -poset.

When S is a sub(po)semigroup (with inherited order) of R, then R is called
an enlargement of S if

S = SRS and R = RSR.

For (po)semigroups S, T and R, R is said to be a joint enlargement (cf. [7]) of
S and T if it is an enlargement of its sub(po)semigroups S′ ∼= S and T ′ ∼= T .

For a Pos-category C, we will denote by C0 its set of objects and by C(A,B)
its poset of morphisms from object A to object B.

If S is a posemigroup, then the Cauchy completion of S (cf. [7]) is the small
Pos-category C(S) that has C(S)0 = E(S), morphism posets

C(S)(f, e) =
{
(e, s, f) | s ∈ S, esf = s

}
,

with the order (e, s, f) ≤ (e, s′, f) iff s ≤ s′ in S, and the composition rule

(e, s, f) ◦ (f, s′, g) = (e, ss′, g).
A category C is called strongly connected if for all A,B ∈ C0 there always

exists a morphism f : A → B. If C is a strongly connected category, then a
consolidation on C is a map

p : C0 × C0 → C
(denoted by pB,A := p(B,A) : A → B) such that pA,A = 1A. A small Pos-cate-
gory C (actually its set of morphisms, which we will again denote by C) with a
consolidation p can be made into a posemigroup by defining

g � f = g ◦ pdom g,cod f ◦ f
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and taking the order from the morphism-poset order of C. This posemigroup
will be denoted by Cp. It is easy to see that if the composite g ◦ f exists for
morphisms f and g in C, then g � f = g ◦ f .

If S and T are posemigroups, then we say that a 6-tuple
(
S, T, P,Q, 〈−,−〉, [−,−]

)

is a Morita context if the following conditions hold:

(M1) P is an (S, T )-biposet and Q is a (T, S)-biposet;

(M2) 〈−,−〉 : P ⊗T Q → S is an (S, S)-biposet morphism and
[−,−] : Q⊗S P → T is a (T, T )-biposet morphism;

(M3) the following two conditions hold for all p, p′ ∈ P and q, q′ ∈ Q:
(i) 〈p, q〉p′ = p[q, p′],
(ii) q〈p, q′〉 = [q, p]q′.

A Morita context is called unitary if the biposets P and Q are unitary. We say
that two posemigroups S and T are strongly Morita equivalent (as introduced by
Talwar in [10]) if there exists a unitary Morita context (S, T, P,Q, 〈−,−〉, [−,−])
such that the mappings 〈−,−〉 and [−,−] are surjective.

We recall from [11: Lemma 3.2] that:

����� 1.1� Strongly Morita equivalent posemigroups are factorizable.

If S and T are arbitrary posemigroups, then we call a posemigroup homo-
morphism τ : S → T a strict local isomorphism (cf. [7] and [6]) if the following
conditions hold:

(LI1) τ restricted to aSb is a posemigroup isomorphism with τ(a)Tτ(b) for any
a ∈ Sa, b ∈ bS,

(LI2) idempotents lift along τ , i.e. if e′ = τ(s) ∈ E(T ) for some s ∈ S, then
there exists e ∈ E(S) such that e′ = τ(e),

(LI3) for any e ∈ E(T ) there exists f ∈ E(T ) such that f = τ(s) for some s ∈ S
and eDf .

When S and T have trivial order, then a strict local isomorphism S → T is a
local isomorphism in the sense of [7] and every surjective strict local isomorphism
that lifts idempotents (as in [6]) is a strict local isomorphism.

����� 1.2� Let S and T be posemigroups with local units and let τ : S → T be
a surjective posemigroup homomorphism. Then (LI1) is equivalent to

(LI1’) τ restricted to eSf is a posemigroup isomorphism with τ(e)Tτ(f) for any
e, f ∈ E(S).

792



CHARACTERIZATIONS OF MORITA EQUIVALENCE FOR ORDERED SEMIGROUPS

P r o o f. It is clear that (LI1) implies (LI1’). For the converse, take a ∈ Sa
and b ∈ bS. As S has local units, a = ea and b = bf for some e, f ∈ E(S).
So τ |eSf : eSf → τ(e)Tτ(f) is a posemigroup isomorphism by (LI1’). Since
aSb ⊆ eSf , τ |aSb = (τ |eSf )|aSb : aSb → τ(a)Tτ(b) is a surjective posemigroup
embedding, i.e. a posemigroup isomorphism. �

Remark 1.1� Note that by [2: Proposition 2.3.5], the requirement eDf in con-
dition (LI3) can be rephrased as follows: there exist x ∈ S and x′ ∈ V (x) such
that xx′ = e and x′x = f . Also, (LI3) is obviously satisfied for a surjective
homomorphism τ .

2. Strong Morita equivalence

The principal result of the article is the following theorem. Roughly half of
it has been proved in [12] and the subsequent sections of the article are devoted
to examining each of the three remaining conditions in detail and establishing
their equivalence with the others.

������� 2.1� (cf. [6], [7: Theorems 1.1, 1.2]) Let S and T be posemigroups
with local units. Then the following are equivalent:

(1) S and T are strongly Morita equivalent;

(2) S and T have a joint enlargement;

(3) the categories C(S) and C(T ) are Pos-equivalent;

(4) there exist a consolidation q on C(S) and
a strict local isomorphism C(S)q → T ;

(5) there exist a Rees matrix posemigroup M = M(S, U, V,M ) for which

S = S Im(M )S and a surjective strict local isomorphism M → T .

Moreover, if S and T have ordered local units then the following condition is
also equivalent to (1)–(5):

(6) there exist a surjectively defined unitary Morita posemigroup Q⊗S P and
a surjective strict local isomorphism Q⊗S P → T .

P r o o f. [12: Theorem 2.1, Remark 2.3] established that (1) ⇐⇒ (2) ⇐⇒ (3).
From below, we use Proposition 3.2 for (2)=⇒(4), Proposition 3.1 for (4)=⇒(3),
Theorem 4.2 for (1) ⇐⇒ (5) and Theorem 6.3 for (1) ⇐⇒ (6). �

The following is an important observation about the structure of strongly
Morita equivalent posemigroups, namely that they have the same local structure.
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	���

��� 2.1� (cf. [4: Corollary 6]) If S and T are strongly Morita equivalent
posemigroups with local units, then each local subpomonoid of S is isomorphic
to a local subpomonoid of T .

P r o o f. By Theorem 2.1(2), C(S) and C(T ) are Pos-equivalent. Any local sub-
pomonoid eSe of S is isomorphic to the pomonoid C(S)(e, e), which is isomorphic
to some pomonoid C(T )(f, f), which in turn is isomorphic to the subpomonoid
fTf of T for some f ∈ E(T ). �

3. Consolidations and strict local isomorphisms

In this section we transfer more of Lawson’s work on semigroups in [7] to
posemigroups and prove that condition (4) of Theorem 2.1 is equivalent to con-
ditions (1)–(3).

����� 3.1� Let S and T be two factorizable posemigroups and let T be an
enlargement of S. Then each idempotent of T is D-related to an idempotent
of S.

P r o o f. This follows from [7: Lemma 4.1]. �

����� 3.2�

(1) Let τ : S → T be a surjective strict local isomorphism and τ ′ : T → U a
strict local isomorphism between posemigroups S, T and U , all with local
units. Then τ ′τ : S → U is also a strict local isomorphism.

(2) Let T be a posemigroup with local units and let S be a subposemigroup of

T which also has local units. Then T is an enlargement of S if and only if

the posemigroup embedding of S in T is a strict local isomorphism.

(3) Let S and T be posemigroups with local units and let τ : S → T be a strict

local isomorphism. Then the posemigroup T is an enlargement of τ(S).

P r o o f. The proof is almost exactly the same as in [7: Lemma 4.2]. �

���
������� 3.1� Let S and T be posemigroups with local units. If there exist
a consolidation q on C(S) and a strict local isomorphism τ : C(S)q → T , then

C(S) and C(T ) are Pos-equivalent Pos-categories.

P r o o f. The proof carries over from [7: Theorem 1.2], with very minor additional

verifications. �
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���
������� 3.2� Let S and T be posemigroups with local units and a joint
enlargement R. Then there exist a consolidation q on C(S) and a strict local
isomorphism τ : C(S)q → T .

P r o o f. Without loss of generality, assume that S and T are subposemigroups
of R. We will construct a subposemigroup T ′ of T such that T is an enlarge-
ment of T ′, a consolidation q on C(S) and a surjective strict local isomorphism
τ : C(S)q → T ′. Then we have a strict local isomorphism from C(S)q to T by
Lemma 3.2(1) and (2). Since we use the construction from [7: Theorem 1.2], we
need not check the purely algebraic conditions, such as τ being a homomorphism,
lifting idempotents, T being an enlargement of T ′, etc.

For each e ∈ E(S) ⊆ E(R) there exists i ∈ E(T ) such that eDi in R due to
Lemma 3.1. Therefore Remark 1.1 provides xe ∈ R and x′

e ∈ V (xe) such that

x′
exe = e ∈ E(S) and xex

′
e = i ∈ E(T ). (2)

Define the consolidation q on C(S) by qe,f = (e, x′
exf , f). Now define a mapping

τ : C(S)q → T by

τ(e, s, f) = xesx
′
f .

If (e1, s1, f1) ≤ (e2, s2, f2) in C(S), then e1 = e2, f1 = f2 and s1 ≤ s2 in S.
Thus

τ(e1, s1, f1) = xe1s1x
′
f1 ≤ xe2s2x

′
f2 = τ(e2, s2, f2).

So τ is a posemigroup homomorphism. Take T ′ = Im τ .

We show that τ : C(S)q → T ′ is a strict local isomorphism. By Lemma 1.2,
we can replace condition (LI1) with (LI1’). So we only need to examine the
restriction τ : (e0, e, e1)C(S)q(f0, f, f1) → τ(e0, e, e1)T

′τ(f0, f, f1) for arbitrary
(e0, e, e1), (f0, f, f1) ∈ E(C(S)q). We already know that τ is a surjective posemi-
group homomorphism. Thus we only need to verify that it reflects order. Now
take (s0, s, s1), (z0, z, z1) ∈ C(S) and assume that

τ(e0, e, e1)τ(s0, s, s1)τ(f0, f, f1) ≤ τ(e0, e, e1)τ(z0, z, z1)τ(f0, f, f1)

in T , i.e.

τ(e0, ex
′
e1xs0sx

′
s1xf0f, f1) ≤ τ(e0, ex

′
e1xz0zx

′
z1xf0f, f1).

Then by (2)

ex′
e1
xs0sx

′
s1
xf0f = e0ex

′
e1
xs0sx

′
s1
xf0ff1 = x′

e0
(xe0ex

′
e1
xs0sx

′
s1
xf0fx

′
f1
)xf1

≤ x′
e0
(xe0ex

′
e1
xz0zx

′
z1
xf0fx

′
f1
)xf1 = e0ex

′
e1
xz0zx

′
z1
xf0ff1

= ex′
e1xz0zx

′
z1xf0f

in S. So

(e0, e, e1) � (s0, s, s1) � (f0, f, f1) ≤ (e0, e, e1) � (z0, z, z1) � (f0, f, f1)
in C(S)q, as required. �
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������� 3.1� (cf. [7: Theorem 1.2]) Let S and T be posemigroups with lo-
cal units. Then S and T satisfy conditions (1)–(3) of Theorem 2.1 if and
only if there exist a consolidation q on C(S) and a strict local isomorphism
τ : C(S)q → T .

P r o o f. Sufficiency is proved in Proposition 3.1 and necessity in Proposition 3.2.
�

4. Rees matrix covers

We will now investigate how the existence of a Rees matrix cover connection
relates to strong Morita equivalence.

For a Rees matrix semigroup M(S, U, V,M ) over a posemigroup S, let Im(M )
denote the image of the mapping M : V ×U → S. Being a classical Rees matrix
posemigroup over a pomonoid S means that for every u ∈ U there exists v ∈ V
such that M (v, u) is invertible and for every v ∈ V there also exists a u ∈ U
such that M (v, u) is invertible (i.e. every row and every column of M contains
an invertible element).

When we speak about Rees matrix posemigroups, we assume that S is a
posemigroup, but in general we do not impose additional order-related conditions
on U , V and M . Such a Rees matrix semigroup M(S, U, V,M ) can be equipped
with a compatible order as follows:

(u, s, v) ≤ (u′, s′, v′) ⇐⇒ u = u′ & v = v′ & s ≤ s′.

����� 4.1� Let T , P and Q be subposemigroups of some posemigroup R. Fur-
thermore, let P be a right T -poset and Q a left T -poset with respect to actions
defined by multiplication in R. If p⊗ q ≤ p′⊗ q′ in P ⊗T Q, then pq ≤ p′q′ in R.

P r o o f. Assume that p⊗q ≤ p′⊗q′ in P ⊗T Q. Then by (1) we have u1, . . . , un,
v1, . . . , vn ∈ T 1, p1, . . . , pn ∈ P and q2, . . . , qn ∈ Q such that

p ≤ p1u1

p1v1 ≤ p2u2 u1q ≤ v1q2

...
...

pnvn ≤ p′ unqn ≤ vnq
′

Therefore in R we get that

pq ≤ (p1u1)q = p1(u1q) ≤ p1(v1q2) = (p1v1)q2 ≤ (p2u2)q2

= p2(u2q2) ≤ . . . ≤ pn(unqn) ≤ pn(vnq
′) = (pnvn)q

′ ≤ p′q′.

�
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������� 4.1� (cf. [6: Theorem 3]) Let S and T be strongly Morita equivalent
posemigroups. Then there exist a Rees matrix posemigroup M = M(S, U, V,M )
with S Im(M )S = S and a surjective strict local isomorphism τ : M → T .

P r o o f. Let (S, T, P,Q, 〈−,−〉, [−,−]) be a Morita context. As T is factorizable
due to Lemma 1.1, we can pick subsets U, V ⊆ T such that T = UT = TV . For
all x ∈ U ∪ V , fix px ∈ P and qx ∈ Q such that x = [qx, px]. Now, define
M : V × U → S by

M (v, u) = 〈pv, qu〉.
This gives us a Rees matrix posemigroup M = M(S, U, V,M ). Since S and T
are also strongly Morita equivalent as semigroups and we follow the construction
in [6: Theorem 3], we deduce that S Im(M )S = S.

We define our strict local isomorphism τ : M → T by

τ(u, s, v) = [qu, spv].

Since P is a left S-poset and [−,−] is monotone, τ is also monotone. Again, as
we are following the construction of [6: Theorem 3], τ is a surjective posemigroup
homomorphism along which idempotents and regular elements lift, so (LI2) and
(LI3) are satisfied. To prove that (LI1) holds as well, we need to show that τ
reflects order when restricted to certain subposemigroups.

Take (u1, s1, v1), (u2, s2, v2) ∈ M such that

(u1, s
′
1, v

′
1)(u1, s1, v1) = (u1, s1, v1) and (u2, s2, v2)(u

′
2, s

′
2, v2) = (u2, s2, v2)

for some (u1, s
′
1, v

′
1), (u

′
2, s

′
2, v2) ∈ M. Suppose that τ(u1, s, v2) ≤ τ(u1, z, v2) for

some (u1, s, v2), (u1, z, v2) ∈ (u1, s1, v1)M(u2, s2, v2), i.e.

[qu1
, spv2

] ≤ [qu1
, zpv2

].

As (u1, s, v2), (u1, z, v2) ∈ (u1, s1, v1)M(u2, s2, v2), we get that

(u1, s
′
1, v

′
1)(u1, s, v2) = (u1, s, v2), (u1, s, v2)(u

′
2, s

′
2, v2) = (u1, s, v2),

(u1, s
′
1, v

′
1)(u1, z, v2) = (u1, z, v2) and (u1, z, v2)(u

′
2, s

′
2, v2) = (u1, z, v2).

So

s = s′1M (v′1, u1)sM (v2, u
′
2)s

′
2 = s′1〈pv′

1
, qu1

〉s〈pv2
, qu′

2
〉s′2

= s′1〈pv′
1
, qu1

〈spv2
, qu′

2
〉〉s′2 = s′1〈pv′

1
, [qu1

, spv2
]qu′

2
〉s′2

≤ s′1〈pv′
1
, [qu1

, zpv2
]qu′

2
〉s′2 = s′1〈pv′

1
, qu1

〈zpv2
, qu′

2
〉〉s′2

= s′1〈pv′
1
, qu1

〉z〈pv2
, qu′

2
〉s′2 = s′1M (v′1, u1)zM (v2, u

′
2)s

′
2 = z.

�

Theorem 4.1 admits the following converse:
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����� 4.2� (cf. [6: Lemma 7]) If S and T are factorizable posemigroups,
M = M(S, U, V,M ) is a Rees matrix posemigroup over S with S Im(M )S = S
and there exists a surjective strict local isomorphism τ : M → T , then C(S) and
C(T ) are Pos-equivalent.

P r o o f. Again, we use the fact that all surjective strict local isomorphisms of
posemigroups are idempotent-lifting strict local isomorphisms of their underlying
semigroups and make use of the construction in [6: Lemma 7] to get a full
essentially surjective functor F : C(S) → C(T ). The construction itself is as
follows. Take e ∈ E(S) and pick ae, be ∈ S, ue ∈ U and ve ∈ V such that

e = aeM (ve, ue)be.

Then e = (ue, beeae, ve) ∈ E(M) and τ(e) ∈ E(T ). The assignment

f τ(f)� ��

e

f

(f,s,e)

��

e τ(e)
� �� τ(e)

τ(f)

(τ(f),τ(uf ,bfsae,ve),τ(e))

��

defines a functor F : C(S) → C(T ). As τ is monotone, F is a Pos-functor. We
now only need to verify that it reflects the order of morphisms. Suppose that
τ(uf , bfsae, ve) ≤ τ(uf , bfs

′ae, ve) for some (f, s, e), (f, s′, e) : e → f in C(S).
First,

f(uf , bfsae, ve)e = (uf , bffafM (vf , uf )bfsaeM (ve, ue)beeae, ve)

= (uf , bffseae, ve) = (uf , bfsae, ve)

and likewise

f(uf , bfs
′ae, ve)e = (uf , bfs

′ae, ve).

Since f , e ∈ E(M) and τ is a strict local isomorphism, due to (LI1) we get that
(uf , bfsae, ve) ≤ (uf , bfs

′ae, ve) in M and thus bfsae ≤ bfs
′ae in S. But then

s = fse = afM (vf , uf )bfsaeM (ve, ue)be

≤ afM (vf , uf )bfs
′aeM (ve, ue)be = fs′e = s′.

�

In conclusion, we have the following description of strong Morita equivalence.

������� 4.2� (cf. [6: Theorem 8]) Let S and T be posemigroups with local

units. Then S and T are strongly Morita equivalent if and only if there exist
a Rees matrix posemigroup M = M(S, U, V,M ) with S Im(M )S = S and a
surjective strict local isomorphism τ : M → T .
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P r o o f. Necessity follows from Theorem 4.1. For sufficiency, we use Lemma 4.2
and [12: Theorem 2.1]. �
	���

��� 4.1� (cf. [6: Proposition 2]) Let S be a factorizable posemigroup. A
Rees matrix posemigroup M = M(S, U, V,M ) over S is strongly Morita equiv-
alent to S if and only if S Im(M )S = S.

P r o o f. This follows from Lemma 1.1 and Theorem 4.2, using the identity
map 1M. �

The preceding theorem can be specified to unipotent pomonoids as follows:

������� 4.3� Let T be a posemigroup with local units. Then T is strongly
Morita equivalent to a unipotent pomonoid S if and only if there exist a classical
Rees matrix posemigroup M = M(S, U, V,M ) over S and a surjective strict
local isomorphism τ : M → T .

P r o o f. For necessity, let (S, T, P,Q, 〈−,−〉, [−,−]) be a Morita context. We
follow the proof of Theorem 4.1 and use the existence of local units in T to
put U = V = E(T ). We also use [11: Proposition 4.2] to find an idempotent
e = [q1, p1]

2 ∈ E(T ) so that T = TeT , where 〈p1, q1〉 = 1 ∈ S. By Corollary 2.1,
every local subpomonoid of T is isomorphic to S. Hence eTe is a unipotent
pomonoid. For every u ∈ U , fix pu ∈ P and qu ∈ Q such that u = [qu, pu].

We only prove the row part of being a classical Rees matrix posemigroup,
as the column part is proved similarly. Take v ∈ V = E(T ), then v2 = v and
v = [qv, pv]. We will show that M (v, v) = 〈pv, qv〉, as constructed in Theo-
rem 4.1, is invertible in S.

If we take x = e[q1, pv]v[qv, p1]e ∈ eTe, then

x2 = e[q1, pv]v[qv, p1]e[q1, pv]v[qv, p1]e = e[q1, pv]v[qv, 〈p1, eq1〉pv]v[qv, p1]e
= e[q1, pv]v[qv, 〈p1, [q1, p1]2q1〉pv]v[qv, p1]e
= e[q1, pv]v[qv, 〈p1, q1〉3pv]v[qv, p1]e = e[q1, pv][qv, pv][qv, 1

3pv]v[qv, p1]e

= e[q1, pv][qv, (〈pv, qv〉1)pv]v[qv, p1]e = e[q1, pv][qv, 〈pv, qv〉pv]v[qv, p1]e
= e[q1, pv][qv, pv]

2v[qv, p1]e = e[q1, pv]v
3[qv, p1]e = x.

So x ∈ E(T ). Since eTe has only one idempotent, we must have x = e. Hence

〈pv, qv〉〈pv, vqv〉 = 〈p1, q1〉3〈pv, qv〉〈pv, vqv〉〈p1, q1〉3
= 〈p1, e[q1, pv][qv, pv]v[qv, p1]eq1〉
= 〈p1, e[q1, pv]v2[qv, p1]eq1〉
= 〈p1, xq1〉 = 〈p1, eq1〉
= 〈p1, [q1, p1]2q1〉 = 〈p1, q1〉3 = 1.
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For sufficiency, we note that Theorem 4.2 applies, since every s ∈ S can be
factorized as s = szz−1 for any invertible z ∈ �(M ). �

5. Regular Rees matrix covers

Drawing on [8] for inspiration, we convert our results on Rees matrix covers
to the special case of regular posemigroups.

Let S be a regular posemigroup. Following the terminology of [8], we call the
subposemigroup of M(S, U, V,M ) consisting of all regular elements a regular
Rees matrix posemigroup over S and denote it by RM(S, U, V,M ). Note that
in our case, the order is weaker than that used by McAlister. [8: Lemma 2.1]
shows that RM(S, U, V,M ) is indeed a subsemigroup of M(S, U, V,M ).

������� 5.1� (cf. [8: Theorem 2.9] and Theorem 4.1) Let S and T be strongly
Morita equivalent regular posemigroups. Then there exist a regular Rees matrix
posemigroup R = RM(S, U, V,M ) with S�(M )S = S and a surjective strict
local isomorphism τ : R → T .

P r o o f. By Theorem 4.1, there is a Rees matrix posemigroup M =
M(S, U, V,M ) with S�(M )S = S and a surjective strict local isomorphism
τ ′ : M → T that lifts regular elements. TakeR = RM(S, U, V,M ) and τ = τ ′|R.
Then τ is surjective because τ ′ lifts regular elements. Being a restriction of an
idempotent-lifting map, it still lifts idempotents. Since the idempotents of R
are idempotents of M, condition (LI1) can be verified by an argument similar
to the one used for proving Lemma 1.2. �

����� 5.1� (cf. Lemma 4.2) Let S and T be two regular posemigroups. If
R = RM(S, U, V,M ) is a regular Rees matrix posemigroup over S such that
S�(M )S = S and there exists a surjective strict local isomorphism τ : R → T ,

then C(S) and C(T ) are Pos-equivalent.

P r o o f. We use the proof of Lemma 4.2 and check that if we assume S to be reg-
ular, we can use τ : R → T instead of the more general morphism M(S, U, V,M )

→ T . This amounts to checking that if s = fse (e, f ∈ E(S)) is a regu-
lar element of S, then (uf , bfsae, ve) ∈ M is also a regular element; and if
s = sM (v, u)s and e = sM (v, u) ∈ E(S), then (u, eae, ve) and (ue, bes, v) are

regular elements of M. Note that the latter requirement is necessary to re-
tain the validity of the proof in [6: Lemma 7] that we obtain an essentially
surjective functor. Indeed, it is straightforward to check that if s = fse then
(ue, bes

′af , vf ) ∈ V (uf , bfsae, ve) for all s′ ∈ V (s). Moreover, if s = sM (v, u)s
and e = sM (v, u) then (ue, bes, v) ∈ V (u, eae, ve). �
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������� 5.2� (cf. Theorem 4.2) Let S and T be regular posemigroups. Then
S and T are strongly Morita equivalent if and only if there exist a regular Rees
matrix posemigroup R = RM(S, U, V,M ) with S�(M )S = S and a surjective
strict local isomorphism τ : R → T .

P r o o f. Necessity follows from Theorem 5.1. Sufficiency is immediate due to
Lemma 5.1 and Theorem 2.1. �

	���

��� 5.1� (cf. Cor 4.1) If S is a regular posemigroup, then any regular
Rees matrix posemigroup R = RM(S, U, V,M ) is strongly Morita equivalent to
S if and only if S�(M )S = S.

P r o o f. Like in Corollary 4.1, the identity morphism 1R satisfies the require-
ments of Theorem 5.2. �

We conclude this section with two results about extended orders on (regu-
lar) Rees matrix posemigroups. Because the order in Cauchy completions only
features comparisons of the type (f, s, e) ≤ (f, s′, e), we can generalize Lemmas
4.2 and 5.1 to the following corollaries, the latter of which can be considered a
converse to [8: Theorem 2.9].

	���

��� 5.2� Let S and T be two factorizable posemigroups. Suppose that
M = M(S, U, V,M ) is a Rees matrix semigroup over S with a partial order
that coincides with that of the corresponding Rees matrix posemigroup on local
subpomonoids, such that S�(M )S = S, and that there exists a surjective strict
local isomorphism τ : M → T . Then the Pos-categories C(S) and C(T ) are
Pos-equivalent.

	���

��� 5.3� If S and T are two regular posemigroups, R = R(S, U, V,M )

is a regular Rees matrix semigroup over S with a partial order that coincides
with that of the corresponding Rees matrix posemigroup on local subpomonoids,
S�(M )S = S and there is a surjective strict local isomorphism τ : R → T , then

C(S) and C(T ) are Pos-equivalent.

6. Morita posemigroups

We extend a construction from [10] to the ordered situation. Let S be a
posemigroup and let SP and QS be respectively a left and a right S-poset. If

we have an (S, S)-biposet morphism

〈−,−〉 : SP ×QS → S,
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then it turns out that the assignment

(q ⊗ p)(q′ ⊗ p′) = q ⊗ 〈p, q′〉p′ (3)

defines a posemigroup structure on Q ⊗S P . It is straightforward to check
that this operation is associative. Verifying that the assignment is monotone
(implying it is well-defined) is a bit more involved. Assume that q ⊗ p ≤ q ⊗ p
and q′ ⊗ p′ ≤ q′ ⊗ p′ in Q⊗S P . By (1) we have a scheme

q ≤ q1s1

q1t1 ≤ q2s2 s1p ≤ t1p2

...
...

qntn ≤ q snpn ≤ tnp,

where q1, . . . , qn ∈ Q, p2, . . . , pn ∈ P and s1, . . . , sn, t1, . . . , tn ∈ S1. But then
also

q ≤ q1s1

q1t1 ≤ q2s2 s1〈p, q′〉p′ ≤ t1〈p2, q′〉p′
...

...

qntn ≤ q sn〈pn, q′〉p′ ≤ tn〈p, q′〉p′,
so

(q ⊗ p)(q′ ⊗ p′) = q ⊗ 〈p, q′〉p′ ≤ q ⊗ 〈p, q′〉p′ = (q ⊗ p)(q′ ⊗ p′).

A symmetric argument shows that (q ⊗ p)(q′ ⊗ p′) ≤ (q ⊗ p)(q′ ⊗ p′), thus
(q ⊗ p)(q′ ⊗ p′) ≤ (q ⊗ p)(q′ ⊗ p′), as required.

We say that Q ⊗S P with the multiplication defined by (3) is the Morita
posemigroup over S defined by 〈−,−〉. If QS and SP are unitary S-posets, then
we call the Morita posemigroup unitary ; if 〈−,−〉 is surjective then we say that
the Morita semigroup is surjectively defined.

We recall an auxiliary result from [13].

����� 6.1� Let A be an (S, T )-biposet and B a (T, S)-biposet. A (T, T )-act
morphism f : TB×AT → TCT which preserves the order in both arguments and
satisfies the condition

f(b · s, a) = f(b, s · a) (4)

(called a balanced morphism) yields a well-defined (T, T )-biposet morphism f ′ :
T (B ⊗S A)T → CT by taking

f ′(b⊗ a) = f(b, a).
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������� 6.1� (cf. [10: Theorem 5]) Let S be a factorizable posemigroup, let

SP and QS be unitary left and right S-posets, respectively. Furthermore, let

〈−,−〉 : SP ×QS → S

be a surjective (S, S)-biposet morphism. Then the Morita semigroup Q ⊗S P
defined by 〈−,−〉 is strongly Morita equivalent to S.

P r o o f. We can define a right (Q⊗S P )-action on P by

p · (q′ ⊗ p′) = 〈p, q′〉p′.
To show that such an action makes P into a unitary (S,Q⊗SP )-biposet, we need
to verify that this action is monotone (which implies that it is well-defined), asso-
ciative, satisfies the equality P (Q⊗S P ) = P and that the S- and (Q⊗S P )-act-
ions on P commute.

First, let q′ ⊗ p′ ≤ q′′ ⊗ p′′ in Q ⊗S P and p ≤ p in P . Then there are
q1, . . . , qn ∈ Q, p2, . . . , pn ∈ P and s1, . . . , sn, t1, . . . , tn ∈ S1 such that

q′ ≤ q1s1

q1t1 ≤ q2s2 s1p
′ ≤ t1p2

...
...

qntn ≤ q′′ snpn ≤ tnp
′′.

Thus

p · (q′ ⊗ p′) = 〈p, q′〉p′ ≤ 〈p, q′〉p′ ≤ 〈p, q1s1〉p′ ≤ 〈p, q1〉t1p2
≤ 〈p, q2s2〉p2 ≤ . . . ≤ 〈p, qnsn〉pn ≤ 〈p, qn〉tnp′′
≤ 〈p, q′′〉p′′ = p · (q′′ ⊗ p′′).

Now, take p ∈ P , s ∈ S, q′ ⊗ p′, q′′ ⊗ p′′ ∈ Q⊗S P . Then

p·((q′⊗p′)(q′′⊗p′′)) = 〈p, q′〉〈p′, q′′〉p′′ = 〈〈p, q′〉p′, q′′〉p′′ = (p·(q′⊗p′))·(q′′⊗p′′)

and

(sp) · (q′ ⊗ p′) = 〈sp, q′〉p′ = s〈p, q′〉p′ = s · (p · (q′ ⊗ p′)).

Finally, P is unitary as a right (Q⊗S P )-poset since each p ∈ P can be written
as p = sp′ for some s ∈ S, p′ ∈ P , and s = 〈p′′, q′′〉 for some p′′ ∈ P , q′′ ∈ Q, so
p = 〈p′′, q′′〉p′ = p′′ · (q′′ ⊗ p′).

Similarly, if we define a left (Q⊗S P )-action on Q by

(q′ ⊗ p′) · q = q′〈p′, q〉,
then Q becomes a unitary (Q⊗S P, S)-biposet.
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As

〈p, (q′ ⊗ p′) · q〉 = 〈p, q′〈p′, q〉〉 = 〈p, q′〉〈p′, q〉 = 〈〈p, q′〉p′, q〉 = 〈p · (q′ ⊗ p′), q〉,
the mapping 〈−,−〉 : SP × QS → S is a Q ⊗S P -balanced (S, S)-biposet mor-
phism. Therefore if we define another mapping |−,−| : P ⊗Q⊗SP Q → S by
|p, q| = 〈p, q〉, it will turn out to be a well-defined (S, S)-biposet morphism by
Lemma 6.1. Taking [−,−] := 1Q⊗SP , we get that (S,Q⊗SP, P,Q, |−,−|, [−,−])
is a unitary Morita context with surjective maps, since

|p, q|p′ = p · (q ⊗ p′) = p · [q, p′] and [q, p] · q′ = (q ⊗ p) · q′ = q|p, q′|.
�

Remark 6.2� Note that in [10: Theorem 5], Talwar claims that the required
Morita context is (R,Q⊗R P, P,Q, 〈−,−〉, [−,−]), with 〈−,−〉 : RP ×QR → R.

���
������� 6.1� (cf. [10: Proposition 4]) Let (S, T, P,Q, 〈−,−〉, [−,−]) be a
unitary Morita context of posemigroups. Then the (S, S)-biposet P⊗T Q together
with multiplication (p⊗ q)(p′ ⊗ q′) = p[q, p′]⊗ q′ and the (T, T )-biposet Q⊗S P
with multiplication (q⊗ p)(q′⊗ p′) = q⊗〈p, q′〉p′ are posemigroups and the maps
〈−,−〉 : P ⊗T Q → S and [−,−] : Q ⊗S P → T are posemigroup morphisms. If
the latter maps are also surjective, then all the posemigroups P ⊗T Q, Q⊗S P ,
S and T are strongly Morita equivalent.

P r o o f. The proof is essentially the same as in [10: Proposition 4]. �

	���

��� 6.1� (cf. [10: Corollary 6]) Let S be a posemigroup with local units,

SP a unitary left S-poset, QS a unitary right S-poset and 〈−,−〉 : SP ×QS → S
a surjective (S, S)-biposet morphism. Then Q⊗S P is a sandwich posemigroup.

P r o o f. This is a direct consequence of [10: Corollary 6]. �

We now provide links between Morita posemigroups and Rees matrix posemi-

groups.

���
������� 6.2� (cf. [6: Proposition 10]) Let S be a posemigroup with ordered
weak local units and let M = M(S, U, V,M ) be a Rees matrix posemigroup over
S. Then M is isomorphic to a unitary Morita posemigroup. If S = S�(M )S,
then that Morita semigroup is surjectively defined.

P r o o f. Again, the verifications of algebraic details can be found in the proof

of [6: Proposition 10]. Let SP := S(S × V ) and QS := (U × S)S be the free

S-posets with bases V and U . Define a map 〈−,−〉 : SP ×QS → S by

〈(s, v), (u, z)〉 = sM (v, u)z.
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Since this map is clearly monotone, we can consider the Morita semigroup Q⊗SP
over S defined by 〈−,−〉. Because S has weak local units, P andQ are unitary, so
Q⊗SP is also unitary. Moreover, Q⊗SP is surjectively defined iff S = S�(M )S.

We can now define another map ϕ : M → Q⊗S P by

ϕ(u, s, v) = (u, e)⊗ (s, v),

where s = es, e ∈ S.

To see that ϕ is monotone, take (u, s, v) ≤ (u, s′, v) in M, whence s ≤ s′ in
S. Then the existence of ordered weak local units in S provides e, e′ ∈ S such
that es = s, e′s′ = s′ and e ≤ e′. So

ϕ(u, s, v) = (u, e)⊗ (s, v) ≤ (u, e′)⊗ (s′, v) = ϕ(u, s′, v).

We now show that ϕ also reflects order. Take ϕ(u, s, v) ≤ ϕ(u′, s′, v′), where
s = es and s′ = e′s′. Then (u, e) ⊗ (s, v) ≤ (u′, e′) ⊗ (s′, v′), whence u = u′,
v = v′ and e⊗s ≤ e′⊗s′ in S⊗S S. By Lemma 4.1, s = es ≤ e′s′ = s′, implying
(u, s, v) ≤ (u′, s′, v′) in M. �

���
������� 6.3� (cf. [6: Proposition 11]) Let S be an arbitrary posemigroup
and let Q⊗SP be a unitary Morita posemigroup defined by 〈−,−〉 : SP×QS → S.
Then there exist a Rees matrix posemigroup M = M(S, U, V,M ) over S and a
surjective strict local isomorphism τ : M → Q ⊗S P . If the mapping 〈−,−〉 is
surjective, then S = S�(M )S.

P r o o f. Once more, the purely algebraic details of the proof are the same as in
[6: Proposition 11]. Take U = Q, V = P and M = 〈−,−〉. Then we can define
τ : M → Q⊗S P by

τ(q, s, p) = q ⊗ sp.

As SP is unitary, τ is surjective and trivially satisfies (LI3). Also, τ is a posemi-

group homomorphism as it is clearly monotone in s.

To demonstrate (LI1), we only need to show that τ reflects order on certain

subsets. Fix (q1, s1, p1), (q2, s2, p2) ∈ M and s′1, s
′
2 ∈ S, p′2 ∈ P , q′2 ∈ Q such

that

(q1, s
′
1, p

′
2)(q1, s1, p1) = (q1, s1, p1) and (q2, s2, p2)(q

′
2, s

′
2, p2) = (q2, s2, p2).

Take (q1, s, p2), (q1, z, p2) ∈ (q1, s1, p1)M(q2, s2, p2) for which

q1 ⊗ sp2 = τ(q1, s, p2) ≤ τ(q1, z, p2) = q1 ⊗ zp2

in Q⊗S P . Then

(q1, s
′
1, p

′
2)(q1, s, p2) = (q1, s, p2) = (q1, s, p2)(q

′
2, s

′
2, p2)

and

(q1, s
′
1, p

′
2)(q1, z, p2) = (q1, z, p2) = (q1, z, p2)(q

′
2, s

′
2, p2),
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implying s′1〈p′2, q1〉s = s = s〈p2, q′2〉s′2 and s′1〈p′2, q1〉z = z = z〈p2, q′2〉s′2. The
inequality q1⊗sp2 ≤ q1⊗zp2 means that there are q1, . . . , qn ∈ Q, p2, . . . , pn ∈ P
and u1, . . . , un, v1, . . . , vn ∈ S1 such that

q1 ≤ q1u1

q1v1 ≤ q2u2 u1sp2 ≤ v1p2

...
...

qnvn ≤ q1 unpn ≤ vnzp2.

Thus

s = s′1〈p′2, q1〉s〈p2, q′2〉s′2 ≤ s′1〈p′2, q1u1〉s〈p2, q′2〉s′2
≤ s′1〈p′2, q1〉〈v1p2, q′2〉s′2 ≤ s′1〈p′2, q2u2〉〈p2, q′2〉s′2
≤ . . . ≤ s′1〈p′2, qnun〉〈pn, q′2〉s′2
≤ s′1〈p′2, qn〉〈vnzp2, q′2〉s′2 ≤ s′1〈p′2, q1〉z〈p2, q′2〉s′2 = z,

whence (q1, s, p2) ≤ (q1, z, p2).

Now we check that τ lifts idempotents, i.e. it satisfies condition (LI2). Take
an idempotent q ⊗ p = (q ⊗ p)(q ⊗ p) = q ⊗ 〈p, q〉p ∈ E(Q⊗S P ). The equality
q ⊗ p = q ⊗ 〈p, q〉p is equivalent to the two inequalities q ⊗ p ≤ q ⊗ 〈p, q〉p
and q ⊗ p ≥ q ⊗ 〈p, q〉p. The latter means that there exist q1, . . . , qn ∈ Q,

p2, . . . , pn ∈ P and u1, . . . , un, v1, . . . , vn ∈ S1 such that

q ≤ q1u1

q1v1 ≤ q2u2 u1〈p, q〉p ≤ v1p2

...
...

qnvn ≤ q unpn ≤ vnp.

Thus

q〈p, q〉〈p, q〉 ≤ q1u1〈p, q〉〈p, q〉 ≤ q1〈v1p2, q〉 ≤ q2u2〈p2, q〉
≤ . . . ≤ qnun〈pn, q〉 ≤ qn〈vnp, q〉 ≤ q〈p, q〉.

Analogously, q ⊗ p ≤ q ⊗ 〈p, q〉p implies that q〈p, q〉 ≤ q〈p, q〉〈p, q〉, so
q〈p, q〉 = q〈p, q〉〈p, q〉.

Using this equality, we calculate in M that

(q, 〈p, q〉2, p)(q, 〈p, q〉2, p) = (q, 〈p, q〉5, p) = (q, 〈p, q〈p, q〉4〉, p)
= (q, 〈p, q〈p, q〉〉, p) = (q, 〈p, q〉2, p).
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Therefore (q, 〈p, q〉2, p) ∈ E(M) and since

τ(q, 〈p, q〉2, p) = q ⊗ 〈p, q〉2p = (q ⊗ p)3 = q ⊗ p,

(LI2) holds. �

	���

��� 6.2� (cf. [6: Corollary 12]) Let S and T be posemigroups with
ordered weak local units. Then the following are equivalent:

(1) there exist a Rees matrix posemigroup M = M(S, U, V,M ) that satisfies
S�(M )S = S, and a surjective strict local isomorphism τ : M → T ;

(2) there exist a surjectively defined unitary Morita posemigroup Q⊗S P and
a surjective strict local isomorphism τ : Q⊗S P → T .

P r o o f.

(1) =⇒ (2) by Proposition 6.2.

(2) =⇒ (1) by precomposing with the surjective strict local isomorphism from
Proposition 6.3 (see also Lemma 3.2(1)). �

As a consequence of Corollary 6.2 and Theorem 4.2, we have

������� 6.3� (cf. [6: Theorem 13]) Let S and T be posemigoups with ordered
local units. Then S is strongly Morita equivalent to T if and only if there exist a
surjectively defined unitary Morita posemigroup Q ⊗S P and a surjective strict
local isomorphism τ : Q⊗S P → T .

Since unordered (trivially ordered) semigroups have local units iff they have
ordered local units, our additional assumption of ordered local units is not too
restrictive.
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