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ABSTRACT. We prove that partially ordered semigroups S and T with local
units are strongly Morita equivalent if and only if there exists a surjective strict
local isomorphism to 7" from a factorizable Rees matrix posemigroup over S. We
also provide two similar descriptions which use Cauchy completions and Morita
posemigroups instead.
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1. Introduction

The Morita theory of semigroups without identity is relatively new, going
back to the paper by Talwar ([9]). It has seen quite a bit of recent development
by Lawson ([7]) and Laan and Marki ([6]), who present a number of alterna-
tive characterizations of Morita equivalent semigroups. Our work considers how
those results can be applied to the Morita theory of posemigroups and is a sequel
to [12]. We use the main result of [12] to examine how strong Morita equivalence
is connected to the existence of a strict local isomorphism between a posemi-
group 1T and several posemigroups constructed from a given posemigroup S:
the Cauchy completion C(S) viewed as a posemigroup, a Rees matrix posemi-
group over S and a Morita posemigroup over S. Along the way, we describe the
Rees matrix posemigrops corresponding to unipotent pomonoids and show that
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Morita posemigroups over S are always strongly Morita equivalent to S. Most
of the results are refinements of the Morita theory of semigroups with (various
kinds of) local units as found in [6], [7] and [10].

We use the symmetric monoidal closed category Pos of partial orders and
monotone maps (using cartesian product for monoidal tensor product) and
consider various categories enriched over Pos. Our reference for details on
Pos-categories, Pos-functors and Pos-equivalences is [3]. We just remark that
a full and faithful Pos-functor must provide a poset isomorphism instead of a
bijection between the corresponding posets of morphisms. Categorial composi-
tions will be written from right to left.

A partially ordered semigroup S (a posemigroup for short) is a (nonempty)
semigroup that is endowed with a partial order so that its operation is monotone.
For a fixed posemigroup S, (one-sided) S-posets are partially ordered S-acts
where the S-action is monotone in both arguments. A right S-poset X is said
to be wnitary if XS = X. The notion for left S-posets is dual. A poset is
called an (S, T)-biposet if it is a left S- and a right T-poset and its S- and
T-actions commute with each other. (S,T)-biposets are called unitary if they
are unitary as both left S- and right T-posets. Posemigroup homomorphisms are
monotone semigroup homomorphisms. A number of basic facts about S-posets
over pomonoids can be found in [IJ.

A (po)semigroup S is said to have local units if for any s € S there exist
idempotents e and f such that

es=s=sf.

A (po)semigroup S is said to have weak local units if for any s € S there exist not
necessarily idempotent e € S and f € S such that es = s = sf. A (po)semigroup
S is said to have common (weak) local units (cf. [5]) if for any s,s" € S there
exist e € E(S) and f € E(S) (e € S and f € S) such that es = s = sf and
es’ = s = s'f. We say that a posemigroup S has ordered (weak) local units if
for all 5,8 € S, s <&, there exist e, ¢/, f, f' € E(S) (e, €, f, f/ € S) such that

es=s=sf, s =s5=5f, e<e, f<f.

A (po)semigroup is called factorizable if S* = S. Having local units implies hav-
ing weak local units, which in turn implies factorizability. Also, a (po)semigroup
with (weak) common local units has (weak) local units. A (po)semigroup is
unipotent if it contains exactly one idempotent.

The tensor product A ®g B of a right S-poset A and a left S-poset B is
the quotient poset (A x B)/~, where (a,b) ~ (a’,V') iff (a,b) < (a’,¥’) and
(a',b') = (a,b), and (a,b) = (a’,V') iff there exist s1,...,8n, t1,...,tn € S1,
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ai,...,a, € A and by,...,b, € B such that

a<asy
art1 < asss 510 < t1b
(1)
anty < d snbn < tyb,
where we take zu = =z for every z € {ay,...,a,} and uy = y for every

y € {b,b'} U{ba,...,b,} if u € St is the externally adjoined identity. For a
pair (a,b) € A x B, the equivalence class [(a, b)]~ is denoted by a®b. The order
relation on A ®g B is defined by setting, for a ® b, '’ @ V' € A Qg B,

a®b<d @V < (a,b) < (d,b).

If Ais a (T,S)-biposet, then A ®g B is a left T-poset, where the action is
defined by t(a ® b) = (ta) ® b. Similarly, if B is an (S, T)-biposet, then A @ ¢ B
is a right T-poset.

When S is a sub(po)semigroup (with inherited order) of R, then R is called
an enlargement of S if

S=SRS and R=RSR.

For (po)semigroups S, T and R, R is said to be a joint enlargement (cf. [7]) of
S and T if it is an enlargement of its sub(po)semigroups S’ = S and 7" = T.

For a Pos-category C, we will denote by Cy its set of objects and by C(A, B)
its poset of morphisms from object A to object B.

If S is a posemigroup, then the Cauchy completion of S (cf. [7]) is the small
Pos-category C(S) that has C(S)o = E(S), morphism posets
C(S)(f.e)={(e,5,f) | s €8, esf =s},
with the order (e,s, f) < (e,s,f) iff s < ¢ in S, and the composition rule
(67 S’ f) © (f7 8/7 g) = (67 88/79)'
A category C is called strongly connected if for all A, B € Cy there always

exists a morphism f: A — B. If C is a strongly connected category, then a
consolidation on C is a map

p:CoxCy—C

(denoted by pp,a = p(B,A): A — B) such that pa a4 = 14. A small Pos-cate-
gory C (actually its set of morphisms, which we will again denote by C) with a
consolidation p can be made into a posemigroup by defining

gof:gopdomg,codfof
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and taking the order from the morphism-poset order of C. This posemigroup
will be denoted by CP. It is easy to see that if the composite g o f exists for
morphisms f and ¢g in C, then go f =go f.

If S and T are posemigroups, then we say that a 6-tuple

(8.7, P.Q, (= =).[--])
is a Morita context if the following conditions hold:
(M1) P isan (S,T)-biposet and @ is a (T, S)-biposet;
(M2) (=, —): P®r Q — S is an (5, S)-biposet morphism and
[—,—]: Q ®s P — T is a (T, T)-biposet morphism;
(M3) the following two conditions hold for all p,p’ € P and ¢,q¢’ € Q:
(i) (v, a)p’ = plg,p'l,
(i) ¢(p,q') = g, pld".
A Morita context is called unitary if the biposets P and @ are unitary. We say
that two posemigroups S and T are strongly Morita equivalent (as introduced by

Talwar in [I0]) if there exists a unitary Morita context (S, T, P, @, (—, =), [, —])
such that the mappings (—, —) and [—, —] are surjective.

We recall from [I1: Lemma 3.2] that:

LeEMmMA 1.1. Strongly Morita equivalent posemigroups are factorizable.

If S and T are arbitrary posemigroups, then we call a posemigroup homo-
morphism 7: S — T a strict local isomorphism (cf. [7] and [6]) if the following
conditions hold:

(LI1) 7 restricted to aSb is a posemigroup isomorphism with 7(a)7'7(b) for any
a € Sa, bebs,

(L12) idempotents lift along T, i.e. if ¢’ = 7(s) € E(T) for some s € S, then
there exists e € E(S) such that ¢/ = 7(e),

(LI3) for any e € E(T') there exists f € E(T) such that f = 7(s) for some s € S
and eDf.

When S and T have trivial order, then a strict local isomorphism S — T is a
local isomorphism in the sense of [7] and every surjective strict local isomorphism
that lifts idempotents (as in [6]) is a strict local isomorphism.

LEMMA 1.2. Let S and T be posemigroups with local units and let 7: S — T be
a surjective posemigroup homomorphism. Then (LI1) is equivalent to

(LI1") 7 restricted to eSf is a posemigroup isomorphism with 7(e)TT(f) for any
e, f € E(S).
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Proof. It is clear that (LI1) implies (LI1’). For the converse, take a € Sa
and b € bS. As S has local units, a = ea and b = bf for some e, f € E(S5).
So Tlesf: eSf — 7(e)TT(f) is a posemigroup isomorphism by (LI1’). Since
aSb C eSf, Tlasy = (Tless)|asy: aSb — 7(a)T'7(b) is a surjective posemigroup
embedding, i.e. a posemigroup isomorphism. U

Remark 1.1. Note that by [2: Proposition 2.3.5], the requirement eDf in con-
dition (LI3) can be rephrased as follows: there exist z € S and 2’ € V(z) such
that xzz’ = e and 2’z = f. Also, (LI3) is obviously satisfied for a surjective
homomorphism 7.

2. Strong Morita equivalence

The principal result of the article is the following theorem. Roughly half of
it has been proved in [12] and the subsequent sections of the article are devoted
to examining each of the three remaining conditions in detail and establishing
their equivalence with the others.

THEOREM 2.1. (cf. [0], [Tt Theorems 1.1, 1.2]) Let S and T be posemigroups
with local units. Then the following are equivalent:

(1) S and T are strongly Morita equivalent;

(2) S and T have a joint enlargement;

(3) the categories C(S) and C(T) are Pos-equivalent;

(1)

there exist a consolidation ¢ on C(S) and
a strict local isomorphism C(S)? — T;
(5) there exist a Rees matriz posemigroup M = M(S,U,V, M) for which
S =8Im(M)S and a surjective strict local isomorphism M — T.
Moreover, if S and T have ordered local units then the following condition is
also equivalent to (1)—(5):

(6) there exist a surjectively defined unitary Morita posemigroup Q ®gs P and
a surjective strict local isomorphism Q ®g P — T.

Proof. [I2t Theorem 2.1, Remark 2.3] established that (1) <= (2) <= (3).
From below, we use Proposition 3.2 for (2) = (4), Proposition Bl for (4) = (3),
Theorem 2] for (1) <= (5) and Theorem [6.3] for (1) <= (6). O

The following is an important observation about the structure of strongly
Morita equivalent posemigroups, namely that they have the same local structure.
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COROLLARY 2.1. (cf. [4: Corollary 6]) If S and T are strongly Morita equivalent
posemigroups with local units, then each local subpomonoid of S is isomorphic
to a local subpomonoid of T'.

Proof. By Theorem2.1)(2), C(S) and C(T') are Pos-equivalent. Any local sub-
pomonoid eSe of S is isomorphic to the pomonoid C(S)(e, ), which is isomorphic

to some pomonoid C(T)(f, f), which in turn is isomorphic to the subpomonoid
fTf of T for some f € E(T). O

3. Consolidations and strict local isomorphisms

In this section we transfer more of Lawson’s work on semigroups in [7] to
posemigroups and prove that condition (4) of Theorem 2Ilis equivalent to con-
ditions (1)—(3).

LEMMA 3.1. Let S and T be two factorizable posemigroups and let T be an
enlargement of S. Then each idempotent of T is D-related to an idempotent

of S.

Proof. This follows from |7t Lemma 4.1]. O

LEMmMA 3.2.

(1) Let 7: S — T be a surjective strict local isomorphism and 7': T — U a
strict local isomorphism between posemigroups S, T and U, all with local
units. Then 7'7: S — U 1is also a strict local isomorphism.

(2) Let T be a posemigroup with local units and let S be a subposemigroup of
T which also has local units. Then T is an enlargement of S if and only if
the posemigroup embedding of S in T is a strict local isomorphism.

(3) Let S and T be posemigroups with local units and let 7: S — T be a strict
local isomorphism. Then the posemigroup T is an enlargement of 7(S).

Proof. The proof is almost exactly the same as in |7t Lemma 4.2]. O

PROPOSITION 3.1. Let S and T be posemigroups with local units. If there exist
a consolidation g on C(S) and a strict local isomorphism 7: C(S)? — T, then
C(S) and C(T) are Pos-equivalent Pos-categories.

Proof. The proof carries over from [7t Theorem 1.2], with very minor additional
verifications. O
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PRrROPOSITION 3.2. Let S and T be posemigroups with local units and a joint
enlargement R. Then there exist a consolidation ¢ on C(S) and a strict local
isomorphism T: C(S)? — T.

Proof. Without loss of generality, assume that S and T are subposemigroups
of R. We will construct a subposemigroup 7’ of T such that T' is an enlarge-
ment of 77, a consolidation ¢ on C(S) and a surjective strict local isomorphism
7: C(S)? — T'. Then we have a strict local isomorphism from C(S)? to T by
Lemma[3.2)(1) and (2). Since we use the construction from [7t Theorem 1.2], we
need not check the purely algebraic conditions, such as 7 being a homomorphism,
lifting idempotents, T being an enlargement of 1", etc.

For each e € E(S) C E(R) there exists ¢ € E(T') such that eDi in R due to
Lemma 31l Therefore Remark [[LT] provides z, € R and z/, € V(z.) such that

rixe =e€ E(S) and z.2,=1i¢€ E(T). (2)
Define the consolidation g on C(S) by qe,5 = (e, Lz, f). Now define a mapping
7:C(S)1 — T by

(e, s, f) = wesay.
If (61,81,f1) S (62,82,f2) in C(S), then €1 = €9, f1 = f2 and S1 S S9 in S.
Thus
T(e1, 81, f1) = melslx}l < me282x'f2 = 7(ez, S2, f2).

So T is a posemigroup homomorphism. Take 7" = Im 7.

We show that 7: C'(S)? — T" is a strict local isomorphism. By Lemma [[.2]
we can replace condition (LI1) with (LI1’). So we only need to examine the
restriction 7: (eg, e, e1)C(S)?(fo, f, f1) — 7(eo,e,e))T'7(fo, f, f1) for arbitrary
(eo,e,e1), (fo, f, f1) € E(C(S)?). We already know that 7 is a surjective posemi-
group homomorphism. Thus we only need to verify that it reflects order. Now
take (so, s, 51), (20,2, 21) € C(S) and assume that

7—(607 €, 61)7—(807 S, Sl)T(f()v f7 fl) S 7-(607 €, 61)7-(207 Z, Zl)T(fO; f7 fl)
inT,ie.
7(eo, exy, xso sty 5, f, f1) < T(eo, ex, xozal, xp f, f1).
Then by (2)
ey, Loy STy T gy f = eoery, woo sy Tpo [ 1 = x) (Tep€Xl, Tay ST, T 5y f27 )5,
< I:ao (xeoe‘rial‘rzozxlexfofx}l )If1 = eoex,elxzolezleoffl
= ex, T,,2x, Tg, f
inS. So
(607 €, 61) < <507 S, 81) o (va fa fl) S (607 €, 61) <o <207 Z, Zl) © (an fv fl)
in C(5)4, as required. |
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THEOREM 3.1. (cf. [7t Theorem 1.2]) Let S and T be posemigroups with lo-
cal units. Then S and T satisfy conditions (1)—=(3) of Theorem 211 if and
only if there exist a consolidation g on C(S) and a strict local isomorphism
T:C(S)? —=T.

Proof. Sufficiency is proved in Proposition [3.1] and necessity in Proposition 3.2
O

4. Rees matrix covers

We will now investigate how the existence of a Rees matrix cover connection
relates to strong Morita equivalence.

For a Rees matrix semigroup M(S, U, V, M) over a posemigroup S, let Im(M)
denote the image of the mapping M : V x U — S. Being a classical Rees matriz
posemigroup over a pomonoid S means that for every u € U there exists v € V
such that M (v,u) is invertible and for every v € V there also exists a u € U
such that M (v,u) is invertible (i.e. every row and every column of M contains
an invertible element).

When we speak about Rees matrix posemigroups, we assume that S is a
posemigroup, but in general we do not impose additional order-related conditions
on U, V and M. Such a Rees matrix semigroup M (S, U, V, M) can be equipped
with a compatible order as follows:

(u,8,0) < (U, s',0) &= u=u & v=1v & s<5.
LEMMA 4.1. Let T, P and Q be subposemigroups of some posemigroup R. Fur-

thermore, let P be a right T-poset and @ a left T-poset with respect to actions
defined by multiplication in R. If pRq < p' ®q" in P71 Q, then pqg < p'q’ in R.

Proof. Assume that p®¢ < p’®¢ in P®r Q. Then by ({l) we have uq, ..., uy,,
ViyeoyUn €T pi,...,pp € Pand qo,...,q, € Q such that
p < prug
P11 < paug u1q < v14g2

Prvn <P’ UnGn < Vg
Therefore in R we get that
g < (pru1)g = p1(uiq) < p1(vige) = (P1v1)g2 < (P2u2)ge
= pa(u2q2) < ... < pu(tngn) < Pu(vnq’) = (Pavn)d < P'q.
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THEOREM 4.1. (cf. [6t Theorem 3)) Let S and T be strongly Morita equivalent
posemigroups. Then there exist a Rees matriz posemigroup M = M(S,U,V, M)
with SIm(M)S = S and a surjective strict local isomorphism 7: M — T.

Proof. Let (S,T,P,Q,{(—,—),[—, —]) be a Morita context. As T is factorizable
due to Lemma [[.T] we can pick subsets U,V C T such that T = UT =TV. For
all z € UUV, fix p, € P and ¢, € @ such that x = [q,,p,]. Now, define
M:V xU — S by

M (v,u) = (P, qu)-
This gives us a Rees matrix posemigroup M = M(S,U,V, M). Since S and T

are also strongly Morita equivalent as semigroups and we follow the construction
in [6t Theorem 3], we deduce that SIm(M)S = S.

We define our strict local isomorphism 7: M — T by
T(uy S, U) = [qua Spv]-

Since P is a left S-poset and [—, —] is monotone, 7 is also monotone. Again, as
we are following the construction of [6} Theorem 3], 7 is a surjective posemigroup
homomorphism along which idempotents and regular elements lift, so (LI2) and
(LI3) are satisfied. To prove that (LI1) holds as well, we need to show that 7
reflects order when restricted to certain subposemigroups.

Take (u1,s1,v1), (U2, S2,v2) € M such that

(u1,5,1,7)'1)(u1,81,v1) = (u1,s1,v1) and (U2782,v2)(U'278/2,v2) = (uz, 52, v2)
for some (uq, 1, v)), (uh, s5,v2) € M. Suppose that 7(u1, s, v2) < 7(u1, 2, v2) for
some (u1, s,v2), (u1, z,v2) € (u1, s1,v1)M(uz, $2,v2), i.e.
[quu Spv2] S [qu1 I va2}'

As (u1, s,v2), (u1, z,v2) € (u1, $1,v1) M (uz, s2,v2), we get that

(w1, s1,01)(u1, 8,v2) = (u1, 5,v2), (u1, 8, v2)(u, 85, v2) = (u1,8,v2),

(u, 81, v))(u1, z,v9) = (u1,2,v2)  and  (uq, z,ve)(ub, s5,v2) = (ug, z,v9).

So

5/1 <p’ui 9 QU1 <ZpU2 ? qu; >>8/2
i

SYM (v, up)zM (vg, uy)sh = 2.

§= S&M(Ui, ul)SM<v27 UIQ)SIQ = Sll <pv’1 ) qu1>5<pv2,qu’2>3/2
o ! /
= $1(Puf > Quy (8Pvy> Quy)) 85 = 81(Dvl s [Quy s SPvs)quy ) 52
S 8/1 <pl}£7 [Qula ZPUQMu;>5l2

/
1

81 (P!> Guy ) 2(Doss Gusy) 55

Theorem [£.T] admits the following converse:
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LEMMA 4.2. (cf. [6f Lemma 7)) If S and T are factorizable posemigroups,
M= M(S,U,V, M) is a Rees matriz posemigroup over S with SIm(M)S = S
and there exists a surjective strict local isomorphism 7: M — T, then C(S) and
C(T) are Pos-equivalent.

Proof. Again, we use the fact that all surjective strict local isomorphisms of
posemigroups are idempotent-lifting strict local isomorphisms of their underlying
semigroups and make use of the construction in [6i Lemma 7] to get a full
essentially surjective functor F': C(S) — C(T). The construction itself is as
follows. Take e € E(S) and pick ae,b. € S, u. € U and v, € V such that

€ = aeM (Ve, te)be.
Then e = (ue, beeae, ve) € E(M) and 7(e) € E(T). The assignment

el > 7(e€)

(f,s,e) (T(f),T(Uf,bfsae,’ue)ﬂ'(e))
% \
fro=7(f)

defines a functor F': C(S) — C(T'). As 7 is monotone, F' is a Pos-functor. We
now only need to verify that it reflects the order of morphisms. Suppose that
T(ug,bysac,ve) < T(ug, bys'ae,ve) for some (f,s,e),(f,s,e): e = f in C(9).
First,
flug,brsac,ve)e = (ugp, by farM(ve, up)brsaeM (ve, ue)beeae, ve)
= (uf, by fseac,ve) = (uf,bfsae, ve)
and likewise
flug,bps’ac,ve)e = (uf,bys'ac, ve).
Since f, e € E(M) and 7 is a strict local isomorphism, due to (LI1) we get that
(ug,bysac,ve) < (uf,bgs’ac,ve) in M and thus bysa. < bys’a. in S. But then
s= fse=arMv,up)bpsacM (ve, te)be
<arM(vy,up)bys’'acM(ve, ue)be = fs'e =s'.
]

In conclusion, we have the following description of strong Morita equivalence.

THEOREM 4.2. (cf. [6: Theorem 8]) Let S and T be posemigroups with local
units. Then S and T are strongly Morita equivalent if and only if there exist
a Rees matriz posemigroup M = M(S,U,V, M) with SITm(M)S = S and a
surjective strict local isomorphism 7: M — T.
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Proof. Necessity follows from Theorem [£.1l For sufficiency, we use Lemma [4.2]
and [I2: Theorem 2.1]. d

COROLLARY 4.1. (cf. [0 Proposition 2]) Let S be a factorizable posemigroup. A
Rees matriz posemigroup M = M(S,U,V, M) over S is strongly Morita equiv-
alent to S if and only if STm(M)S = S.

Proof. This follows from Lemma [T and Theorem E2] using the identity
map 1. O

The preceding theorem can be specified to unipotent pomonoids as follows:

THEOREM 4.3. Let T be a posemigroup with local units. Then T is strongly
Morita equivalent to a unipotent pomonoid S if and only if there exist a classical
Rees matriz posemigroup M = M(S,U,V, M) over S and a surjective strict
local isomorphism 7: M — T.

Proof. For necessity, let (S,T,P,Q,(—,—),[—,—]) be a Morita context. We
follow the proof of Theorem H.I] and use the existence of local units in T to
put U =V = E(T). We also use [11: Proposition 4.2] to find an idempotent
e =[q1,p1]? € E(T) so that T = TeT, where (p1,q1) =1 € S. By Corollary 1]
every local subpomonoid of T is isomorphic to S. Hence eT'e is a unipotent
pomonoid. For every u € U, fix p, € P and ¢, € Q such that u = [qy, pu].

We only prove the row part of being a classical Rees matrix posemigroup,
as the column part is proved similarly. Take v € V = E(T), then v? = v and
v = [qu,pv]. We will show that M (v,v) = (py,q), as constructed in Theo-
rem 7] is invertible in S.

If we take x = e[q1,py]v[qu, p1]e € eTe, then

= e[q1, po]v[qu, P1lelqr, polv]aw, p1le = elg1, Pulv(gu, (1, eqr)pu]v]gy, p1le

Jv
elqr, polvlgw, (p1, (g1, p1)2q1)polvlgqw, prle
elqr, polvlgu, (P1, 1) polvlaw, Prle = elar, Poldv, Pol[gws 1°Po]v[gw. p1)e
g1, 0]
[q1, 0]

= elq1, pol[qv; ((Pv, @) 1)po]v(qu, p1le = elq1, pol(qv, (Pv, @) Pu]v(gv, P1le
= e[q1, po[qv, Po)*0lqu, p1]e = elqr, po]v®[qu, prle = .
So x € E(T). Since eT'e has only one idempotent, we must have = = e. Hence

(Po, @) (P, vqu) = (P1,@1)* (o, Qo) (Pvs v40) (P1, @1)°
= (p1, €[q1, Po][qvs Pu]V[qw, P1]eq1)
= (p1, elq1, po]v*[qv, P1]eqr)

= (p1,2q1) = (p1,eq1)

=

b1, [Q1,pﬂ2fh> = <p17Q1>3 =1
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For sufficiency, we note that Theorem applies, since every s € S can be
factorized as s = szz~! for any invertible z € 3(M). O

5. Regular Rees matrix covers

Drawing on [§] for inspiration, we convert our results on Rees matrix covers
to the special case of regular posemigroups.

Let S be a regular posemigroup. Following the terminology of [§], we call the
subposemigroup of M(S,U,V, M) consisting of all regular elements a regular
Rees matriz posemigroup over S and denote it by RM(S,U,V, M). Note that
in our case, the order is weaker than that used by McAlister. [8: Lemma 2.1]
shows that RM(S,U,V, M) is indeed a subsemigroup of M(S,U,V, M).

THEOREM 5.1. (cf. [8 Theorem 2.9] and Theorem (1)) Let S and T be strongly
Morita equivalent reqular posemigroups. Then there exist a reqular Rees matrix
posemigroup R = RM(S,U,V, M) with SI(M)S = S and a surjective strict
local isomorphism 7: R — T.

Proof. By Theorem M there is a Rees matrix posemigroup M =
M(S,U,V, M) with SI(M)S = S and a surjective strict local isomorphism
7't M — T that lifts regular elements. Take R = RM(S,U,V, M) and 7 = 7/|%.
Then 7 is surjective because 7’ lifts regular elements. Being a restriction of an
idempotent-lifting map, it still lifts idempotents. Since the idempotents of R
are idempotents of M, condition (LI1) can be verified by an argument similar
to the one used for proving Lemma O

LEMMA 5.1. (cf. Lemma [£2) Let S and T be two regular posemigroups. If
R = RM(S,U,V,M) is a regular Rees matriz posemigroup over S such that
SS(M)S = S and there exists a surjective strict local isomorphism 7: R — T,
then C(S) and C(T) are Pos-equivalent.

Proof. We use the proof of Lemmald.2land check that if we assume S to be reg-
ular, we can use 7: R — T instead of the more general morphism M (S, U, V, M)
— T. This amounts to checking that if s = fse (e,f € E(S)) is a regu-
lar element of S, then (uf,bfsac,v.) € M is also a regular element; and if
s = sM(v,u)s and e = sM(v,u) € E(S), then (u,ea.,ve) and (ue,bes,v) are
regular elements of M. Note that the latter requirement is necessary to re-
tain the validity of the proof in [6: Lemma 7] that we obtain an essentially
surjective functor. Indeed, it is straightforward to check that if s = fse then
(Ue,bes’ar,vy) € V(ug,bysae,ve) for all s' € V(s). Moreover, if s = sM (v, u)s
and e = sM (v, u) then (ue,bes,v) € V(u, eae, ve). O

800



CHARACTERIZATIONS OF MORITA EQUIVALENCE FOR ORDERED SEMIGROUPS

THEOREM 5.2. (cf. Theorem [2)) Let S and T be regular posemigroups. Then
S and T are strongly Morita equivalent if and only if there exist a reqular Rees
matriz posemigroup R = RM(S,U,V, M) with SI(M)S = S and a surjective
strict local isomorphism 7: R — T.

Proof. Necessity follows from Theorem Bl Sufficiency is immediate due to
Lemma [5.1] and Theorem 211 O

COROLLARY 5.1. (cf. Cor T)) If S is a regular posemigroup, then any reqular
Rees matriz posemigroup R = RM(S,U,V, M) is strongly Morita equivalent to
S if and only if SI(M)S = S.

Proof. Like in Corollary 1] the identity morphism 1 satisfies the require-
ments of Theorem O

We conclude this section with two results about extended orders on (regu-
lar) Rees matrix posemigroups. Because the order in Cauchy completions only
features comparisons of the type (f,s,e) < (f,s’,e), we can generalize Lemmas
and [5.1] to the following corollaries, the latter of which can be considered a
converse to [8 Theorem 2.9].

COROLLARY 5.2. Let S and T be two factorizable posemigroups. Suppose that
M = M(S,U,V, M) is a Rees matriz semigroup over S with a partial order
that coincides with that of the corresponding Rees matriz posemigroup on local
subpomonoids, such that SI(M)S = S, and that there exists a surjective strict
local isomorphism 7: M — T. Then the Pos-categories C(S) and C(T) are
Pos-equivalent.

COROLLARY 5.3. If S and T are two regular posemigroups, R = R(S,U,V, M)
is a regular Rees matriz semigroup over S with a partial order that coincides
with that of the corresponding Rees matriz posemigroup on local subpomonoids,

SS(M)S = S and there is a surjective strict local isomorphism 7: R — T, then
C(S) and C(T) are Pos-equivalent.

6. Morita posemigroups

We extend a construction from [I0] to the ordered situation. Let S be a
posemigroup and let g P and Qg be respectively a left and a right S-poset. If
we have an (5, S)-biposet morphism

<—,—>:SPXQS—>S,
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then it turns out that the assignment

(qep)(d@p) =9 p,d ) (3)

defines a posemigroup structure on Q ®g P. It is straightforward to check
that this operation is associative. Verifying that the assignment is monotone
(implying it is well-defined) is a bit more involved. Assume that ¢®@p < ¢® p
and ¢ ®@p' < ¢ ®p in Q®s P. By ([l) we have a scheme

q<qs1
qit1 < q282 s1p < tipo

Gntn < q SpPn < thDp,

where q1,...,q, € Q, p2,...,pn € P and sq,...,8,,t1,...,t, € S'. But then
also
< 151

ottt < qes2 51, d)p" < ti(p2,d)p

qntn < q $n{pn, Y0 < tn(p,d" )P,
SO

(q@p)(d @p)=q®{p,d)W <q@{p,d ) =(q2p)(dp).

A symmetric argument shows that (¢ ® p)(¢’ ® p’) < (¢ ® p)(¢’ ® p'), thus
(g2p)(d ®p) <(qep)(¢ ®@p'), as required.

We say that @ ®g P with the multiplication defined by (B) is the Morita
posemigroup over S defined by (—,—). If Qs and gP are unitary S-posets, then
we call the Morita posemigroup unitary; if (—, —) is surjective then we say that
the Morita semigroup is surjectively defined.

We recall an auxiliary result from [13].

LEMMA 6.1. Let A be an (S,T)-biposet and B a (T,S)-biposet. A (T,T)-act
morphism f: 7B x Ap — 7Cr which preserves the order in both arguments and
satisfies the condition

f(b-s,a)= f(b,s-a) (4)

(called a balanced morphism) yields a well-defined (T, T)-biposet morphism f' :
(B ®g A)r — Cr by taking

flb®a) = f(b,a).
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THEOREM 6.1. (cf. [I0: Theorem 5]) Let S be a factorizable posemigroup, let
sP and Qg be unitary left and right S-posets, respectively. Furthermore, let

<—,—>: SPX QS — S
be a surjective (S, S)-biposet morphism. Then the Morita semigroup Q Qg P
defined by (—, —) is strongly Morita equivalent to S.

Proof. We can define a right (Q ®g P)-action on P by
p-(d®@p)=(p.d)W.

To show that such an action makes P into a unitary (S, Q®g P)-biposet, we need

to verify that this action is monotone (which implies that it is well-defined), asso-

ciative, satisfies the equality P(Q ®gs P) = P and that the S- and (Q ®g P)-act-
ions on P commute.

First, let ¢ @ p’ < ¢" ® p” in Q ®s P and p < p in P. Then there are
Qs sqn €Q, poy....,pn € Pand sy,...,8,,t1,...,t, € S' such that

¢ <qs
qit1 < @282 s1p’ < t1ps

Gntn < q” SpPn < tnp”-
Thus
=, d"W <P, d")W < p.as1)p’ < (p,q1)tip2
< (P, q282)p2 < . <D, nSn)Pn < (D, G )tnd”
< <p’ q//>p// . (q// ®p//)‘
Now, takepe P,s€ S, ¢ ®p',¢" @p" € Q ®s P. Then
p-((d'@p) (" @p")) = (p,d") ¥, d")p" = (. ")V, d")p" = (p- (¢ @p"))-(¢" @p")

and

p-(d @p)

(sp) - (¢ ®@p) = (sp,d")p' = s(p,d)p' =5 (p- (d ®p)).
Finally, P is unitary as a right (Q ®g P)-poset since each p € P can be written
as p = sp’ for some s € S, p’ € P, and s = (p”, ¢") for some p”" € P, ¢" € Q, so

p — <p//’ q//>p/ — p// . <q// ®p/)‘
Similarly, if we define a left (Q ®g P)-action on @ by

(¢ ©p) a=d®, 9,
then ) becomes a unitary (Q ®g P, S)-biposet.
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As

(p.(d®p)-q) =, d V. q) =), = (p,d)W.q) = p- (¢ ®p),q),
the mapping (—,—): sP X Qg — S is a Q ®g P-balanced (5, .S)-biposet mor-

phism. Therefore if we define another mapping |—, —|: P ®ggsp @ — S by
Ip,q| = (p,q), it will turn out to be a well-defined (.S, S)-biposet morphism by
Lemmal[6.Jl Taking [—, -] := lggp, we get that (S,Q®s P, P,Q,|—,—|,[—, —])

is a unitary Morita context with surjective maps, since

lp,alp’ =p-(q@p)=p-lg,p'] and |q,p] ¢ =(¢®p)-q" =dqlp,q'|.

O
Remark 6.2. Note that in [I0} Theorem 5], Talwar claims that the required
Morita context is (R,Q ®r P, P,Q, (—, =), [—, —]), with (—,=): gP X Qr — R.
PropoSITION 6.1. (cf. [I0: Proposition 4]) Let (S,T, P, Q,{(—,—),[—,—]) be a

unitary Morita context of posemigroups. Then the (S, S)-biposet PR Q together
with multiplication (p ® q)(p' ® ¢') = plg, p'] ® ¢' and the (T, T)-biposet Q @g P
with multiplication (¢®@p) (¢ @p") = q@ (p,q¢")p" are posemigroups and the maps
(=, =): PRrQ — S and [—,—]: Q ®s P — T are posemigroup morphisms. If
the latter maps are also surjective, then all the posemigroups P @1 Q, Q ®g P,
S and T are strongly Morita equivalent.

Proof. The proof is essentially the same as in [I0: Proposition 4]. O

COROLLARY 6.1. (cf. [I0: Corollary 6]) Let S be a posemigroup with local units,
sP a unitary left S-poset, Qg a unitary right S-poset and (—, —): sPx Qg — S
a surjective (S, S)-biposet morphism. Then Q ®g P is a sandwich posemigroup.

Proof. This is a direct consequence of [I0: Corollary 6]. g

We now provide links between Morita posemigroups and Rees matrix posemi-
groups.

PROPOSITION 6.2. (cf. [6: Proposition 10]) Let S be a posemigroup with ordered
weak local units and let M = M(S,U,V, M) be a Rees matriz posemigroup over
S. Then M is isomorphic to a unitary Morita posemigroup. If S = SI(M)S,
then that Morita semigroup is surjectively defined.

Proof. Again, the verifications of algebraic details can be found in the proof
of [6f Proposition 10]. Let ¢P := (S x V) and Qg := (U x S)g be the free
S-posets with bases V' and U. Define a map (—,—): sP x Qg — S by

((s,v), (u,2)) = sM(v,u)z.
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Since this map is clearly monotone, we can consider the Morita semigroup Q®g P

over S defined by (—, —). Because S has weak local units, P and () are unitary, so

Q®g P is also unitary. Moreover, Q®g P is surjectively defined iff § = SI(M)S.
We can now define another map ¢: M — Q ®g P by

o(u, s,v) = (u,e) @ (s,v),
where s = es, e € S.

To see that ¢ is monotone, take (u,s,v) < (u,s’,v) in M, whence s < s’ in
S. Then the existence of ordered weak local units in S provides e, e’ € S such
that es =5, €/'s' = s’ and e < ¢e’. So

p(u,s,v) = (u,e) ® (s,0) < (u,€') ® (s',v) = p(u, ', v).
We now show that ¢ also reflects order. Take p(u,s,v) < ¢(u',s',v"), where
s =es and s’ = ¢€’s’. Then (u,e) ® (s,v) < (uv/,e') ® (¢',v), whence u = v/,
v=0v ande®s <e'®s in SRsS. By Lemmaldd] s = es < ¢'s’ = ¢, implying
(u, s,v) < (u/,s',v") in M. O
ProPOSITION 6.3. (cf. [6 Proposition 11]) Let S be an arbitrary posemigroup
and let Q®g P be a unitary Morita posemigroup defined by (—, —): sPxQg — S.
Then there exist a Rees matriz posemigroup M = M(S,U,V, M) over S and a

surjective strict local isomorphism 7: M — Q ®g P. If the mapping (—,—) is
surjective, then S = SS(M)S.

Proof. Once more, the purely algebraic details of the proof are the same as in
[6: Proposition 11]. Take U = @, V = P and M = (—, —). Then we can define
T: M —=(Q®gs P by

7(q,8,p) = q @ sp.
As g P is unitary, 7 is surjective and trivially satisfies (LI3). Also, 7 is a posemi-
group homomorphism as it is clearly monotone in s.

To demonstrate (LI1), we only need to show that 7 reflects order on certain
subsets. Fix (q1,s1,p1), (¢2,82,p2) € M and s},s, € S, p, € P, ¢5 € Q such
that

(q1,51,P5)(q1,51,p1) = (q1,51,p1) and (g2, s2,p2)(q3, 53, P2) = (g2, 52, P2)-
Take (¢1,s,p2), (¢1, 2,p2) € (q1, $1,p1)M(q2, s2, p2) for which

q1 @ sp2 = T(q1,8,p2) < 7(q1,2,P2) = @1 @ 2p2
in @ ®gs P. Then

((J1,5/17P/2)((J1;5;p2) = (q1,8,p2) = (CI1787P2)((J§;5/27]?2)
and
<Q1,S/1,p,2)<Q1,Z,p2) == (qlaZaPZ) = <q1727p2)<qévs/2’p2)a
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implying s} (ph, q1)s = s = s(p2,q3)s5 and s1(py,q1)z = 2z = 2(p2,¢5)s5. The

inequality g1 ® sp2 < ¢1 ® zp2 means that there are ¢, ...,¢q, € Q, p,, ..

and Uy, ..., Uy, v1,...,v, €S such that
Q1 < qur
q1v1 < qou2 u18p2 < V1Py
q,Vn < q1 UpPy < VnZP2.
Thus

s1(Ph, q1) (P2, q3) s < 81 (D, qrur)s(pa, g5) s
! /
1 2

<s <p2,q1><vlp2, >S 1<p2aQQU2><p2a(J§>S/2
S < $1<p27 qnun><pn7 é 5/2
< 81<p2,qn><vnzpz,q )8y < 51(py, q1)2(p2, 45) 55 = 2,

whence (g1, s,p2) < (q1, 2, p2)-

D, €EP

Now we check that 7 lifts idempotents, i.e. it satisfies condition (LI2). Take
an idempotent ¢ ® p = (¢ @ p)(g®p) = ¢ (p,¢)p € E(Q ®g P). The equality
q®p = q® (p,q)p is equivalent to the two inequalities ¢ ® p < ¢ ® (p,q)p

and ¢ ® p > ¢ ® (p,q)p. The latter means that there exist ¢, ...
Doy sPp € Pand uy, ..., up,,v1,...,0, € S' such that

q < quq
q1v1 < gouz  ui(p,q)p < vipy

4, Un <gq UnPp < vpp.
Thus

a(p, @) (P, q) < qui(p, @) (P, @) < q1(v1P2, @) < qaua(py, q)
< L un (P @) < g, (vnp, @) < q(p, q).

Analogously, ¢ ® p < ¢ ® (p, ¢)p implies that ¢(p,q) < ¢(p,q)(p, q), so
a(p,0) = ¢(p,q) (P, @)

Using this equality, we calculate in M that

(¢ (p.0)*,p)(a: (p.0)*,p) = (¢ (P, 0)°, p) = (¢, (P, a(p, D)*), D)
= (¢ (p.4¢(p, @), p) = (¢, (P, 0)*, D).
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Therefore (g, (p, ¢),p) € E(M) and since

(4, (p,0)%p) = q® (0, )*p = (q®p)® = ¢,
(LI2) holds. O

COROLLARY 6.2. (cf. [6f Corollary 12]) Let S and T be posemigroups with
ordered weak local units. Then the following are equivalent:

(1) there exist a Rees matriz posemigroup M = M(S,U,V, M) that satisfies
SS(M)S = S, and a surjective strict local isomorphism 7: M — T';

(2) there exist a surjectively defined unitary Morita posemigroup Q ®gs P and
a surjective strict local isomorphism 7: Q ®s P — T.

Proof.

(1) = (2) by Proposition

(2) = (1) by precomposing with the surjective strict local isomorphism from
Proposition (see also Lemma B2)(1)). O

As a consequence of Corollary and Theorem [£.2] we have

THEOREM 6.3. (cf. [t Theorem 13]) Let S and T' be posemigoups with ordered
local units. Then S is strongly Morita equivalent to T if and only if there exist a
surjectively defined unitary Morita posemigroup QQ ®s P and a surjective strict
local isomorphism 7: Q ®s P — T.

Since unordered (trivially ordered) semigroups have local units iff they have
ordered local units, our additional assumption of ordered local units is not too
restrictive.
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