

DOI: 10.2478/s12175-014-0234-6 Math. Slovaca **64** (2014), No. 3, 691-706

ON INVERSE LIMITS OF MONOUNARY ALGEBRAS

EMÍLIA HALUŠKOVÁ

Dedikated to Professor Ján Jakubík (Communicated by Jiří Rachůnek)

ABSTRACT. We study inverse limits of monounary algebras. All monounary algebras A such that A can arise from A only by an inverse limit construction are described. We deal with an existence of an inverse limit. Some inverse limit closed classes are described. The paper ends with two problems.

©2014 Mathematical Institute Slovak Academy of Sciences

Direct and inverse limits are well-known methods for building up new algebras from given families of algebras. The construction of an inverse limit is dual to the construction of a direct limit, which yields that they have a lot of common properties, cf., e.g., [1: §21]. The analogous notions are applied also in the theory of categories under names directed colimit and directed limit, cf., e.g. [12].

The paper [5] is devoted to direct limits. In the present paper we investigate inverse limits of monounary algebras. Direct limits of monounary algebras were studied in [2].

It is possible that an inverse limit of an inverse family does not exist. Examples of such families are given in Section 3. In Section 2 we will prove that there are proper classes \mathcal{K} such that if an inverse family consists of algebras of \mathcal{K} , then this inverse family has a limit.

Theorem 1 describes all monounary algebras A such that $\{A\}$ is an inverse limit closed class, i.e. such that they satisfy the following condition:

If an algebra B can be obtained as an inverse limit of algebras which are isomorphic to A, then B is isomorphic to A.

The class of unbounded monounary algebras from [9] is important in the proof. Another inverse limit closed classes are described in Theorems 2 and 3. All of them are proper classes.

2010 Mathematics Subject Classification: Primary 08A60, 08B25; Secondary 03C05. Keywords: monounary algebra, inverse limit, closed class, term operation, retract. This work was supported by grants VEGA 2/0028/13 and VEGA 2/0035/11.

For a class of algebras \mathcal{K} we denote by $\mathbf{L}\mathcal{K}$ the class of all isomorphic copies of all algebras arising as inverse limits of families of elements of \mathcal{K} . It is obvious that $\mathbf{L}\mathcal{K} \subseteq \mathbf{L}\mathbf{L}\mathcal{K}$. We will prove that there is a class of mononary algebras \mathcal{K} with $\mathbf{L}\mathcal{K} \neq \mathbf{L}\mathbf{L}\mathcal{K}$ in Section 5.

1. Preliminaries

The set of all positive integers is denoted by \mathbb{N} . If A is a set, then |A| denotes the cardinality of A.

We deal with monounary algebras. For monounary algebras we use the terminology from [11] and [9]. The operation in algebras is denoted by f. The class of all monounary algebras is denoted by \mathcal{U} . We use the same symbol for a monounary algebra and its carrier in most of considerations in this paper.

If $A_1, \ldots, A_n \in \mathcal{U}$, then the class of all isomorphic copies of A_1, \ldots, A_n will be denoted by $[A_1, \ldots, A_n]$.

Let us denote by N the monounary algebra defined on the set \mathbb{N} with the successor operation. Further, let Z be the monounary algebra defined on the set of all integers with the successor operation.

Let $A \in \mathcal{U}$. We denote

$$R_A = \{B \subseteq A: \ B \cong Z\};$$

$$R_{A,m} = \{C \subseteq A: \ C \ \text{is a cycle of} \ A \ \text{and the length of} \ C \ \text{divides} \ m\}.$$

We denote

$$\mathcal{R} = \{ A \in \mathcal{U} : |R_A| \in \mathbb{N} \},$$

$$\mathcal{R}_m = \{ A \in \mathcal{U} : |R_{A,m}| \in \mathbb{N} \},$$

$$\mathcal{T} = \{ A \in \mathcal{U} : \text{ every component of } A \text{ is a cycle and there are no components } C, D \text{ of } A \text{ such that } C \neq D \text{ and } C \in R_{A,|D|} \}.$$

The class \mathcal{T} is the same as in [2]. Note that A is a cycle if and only if $A \in \mathcal{T}$ and A is connected.

LEMMA 1. It is obvious that:

- (i) $\mathcal{T} \subset \bigcup_{m \in \mathbb{N}} \mathcal{R}_m$;
- (ii) $Z \in \mathcal{R}$;
- (iii) $N \notin \bigcup_{m \in \mathbb{N}} \mathcal{R}_m \cup \mathcal{R};$
- (iv) if a monounary algebra A is finite, then there is $m \in \mathbb{N}$ such that $A \in \mathcal{R}_m$.

We will use the definition of an inverse limit of sets and of universal algebras from [1: §21]. We formulate it for monounary algebras.

Let $\langle I, \leq \rangle$ be an upward directed partially ordered set, $I \neq \emptyset$. For each $i \in I$ let A_i be an monounary algebra. Suppose that for each pair of elements i and j in I with i > j, there is defined a homomorphism φ_j^i of A_i into A_j such that i > j > k implies that $\varphi_k^i = \varphi_j^i \circ \varphi_k^j$. For each $i \in I$ let φ_i^i be the identity on A_i .

The triplet (I, A_i, φ_i^i) is called an *inverse family of algebras*.

Let the set A^{∞} consist of those $p \in \prod_{i \in I} A_i$ for which

$$\varphi_j^i(p_i) = p_j.$$

If $A^{\infty} \neq \emptyset$, then A^{∞} is a subalgebra of the algebra $\prod_{i \in I} A_i$ and it is called the *inverse limit* of the inverse family (I, A_i, φ_i^i) .

If $A^{\infty} = \emptyset$, then we will say that an inverse limit of the inverse family (I, A_i, φ_j^i) does not exist or that the inverse family (I, A_i, φ_j^i) has no inverse limit.

Following two lemmas follow from the definition of an inverse limit.

Lemma 2. Let (I, A_i, φ_j^i) be an inverse family. Suppose that B_i is a subalgebra of A_i for every $i \in I$ and $(I, B_i, \varphi_j^i | B_i)$ is the inverse family.

Then B^{∞} is a subalgebra of A^{∞} .

Lemma 3. Let P be a set and $\langle I, \leq \rangle$ be an upward directed partial ordered set. Let $\mathcal{A}^{\alpha} = (I, A_i^{\alpha}, \varphi_j^{\alpha i})$ be an inverse family for every $\alpha \in P$. Suppose that if $\alpha, \beta \in P, \ \alpha \neq \beta$ and $i \in I$, then $A_i^{\alpha} \cap A_i^{\beta} = \emptyset$.

For $i, j \in I$, $i \geq j$ denote by ξ_j^i the mapping from $\bigcup_{\alpha \in P} A_i^{\alpha}$ into $\bigcup_{\alpha \in P} A_j^{\alpha}$ such that if $x \in A_i^{\alpha}$, then $\xi_j^i(x) = \varphi_j^{\alpha i}(x)$. Denote by $A^{\alpha \infty}$ the inverse limit of \mathcal{A}^{α} .

Then $(I, \bigcup_{\alpha \in P} A_i^{\alpha}, \xi_j^i)$ is the inverse family and the inverse limit of this family is equal to $\bigcup_{\alpha \in P} A^{\alpha \infty}$.

Lemma 4. Let $A \in \mathcal{U}$. Let (I, A_i, φ_j^i) be an inverse family of algebras such that φ_j^i is an isomorphism for every $i, j \in I$, $i \geq j$. Then $A^{\infty} \cong A_i$ for every $i \in I$.

Proof. Choose $i \in I$. Let ψ is a projection of A^{∞} on the ith coordinate.

We will show that ψ is surjective. Let $p_i \in A_i$. Let $j \in I$. If $j \geq i$, then denote by p_j an (unique) element of A_j such that $\varphi_i^j(p_j) = p_i$. If $j \leq i$, then let $p_j = \varphi_i^j(p_i)$. Else take $k \in I$ such that $k \geq i, j$ and take $p_k \in A_k$ as in the first case and put $p_j = \varphi_i^k(p_k)$.

We have that $(p_j)_{j\in I}\in A^{\infty}$ and $\psi((p_j)_{j\in I})=p_i$.

To see the injectivity of ψ let $p, q \in A^{\infty}$ be such that there exists $j \in I$ such that $p_j \neq q_j$. Choose $k \geq i, j$. We have $\varphi_j^k(p_k) = p_j \neq q_j = \varphi_j^k(q_k)$. Thus $p_k \neq q_k$. Further, $p_i = \varphi_i^k(p_k) \neq \varphi_i^k(q_k) = q_i$ according to injectivity of φ_i^k .

Conclude that the mapping ψ is an isomorphism from A^{∞} onto A_i .

Lemma 5. Let (I, A_i, φ_j^i) be an inverse family of algebras such that algebras A_i are connected and homomorphisms φ_j^i are injective for all $i, j \in I$, $i \geq j$. If $A^{\infty} \neq \emptyset$, then the algebra A^{∞} is connected.

Proof. Let $p, q \in A^{\infty}$ and $i \in I$. Then there exist $m, n \in \mathbb{N}$ such that $f^m(p_i) = f^n(q_i)$. Consider $j \in I$. Choose $k \in I$ such that $k \geq i, j$. We have

$$\varphi_i^k(f^m(p_k)) = f^m(\varphi_i^k(p_k)) = f^m(p_i) = f^n(q_i) = f^n(\varphi_i^k(q_k)) = \varphi_i^k(f^n(q_k)).$$

We obtain $f^m(p_k) = f^n(q_k)$ in view of injectivity of φ_i^k . Then

$$f^m(p_j) = f^m(\varphi_j^k(p_k)) = \varphi_j^k(f^m(p_k)) = \varphi_j^k(f^n(q_k)) = f^n(\varphi_j^k(q_k)) = f^n(q_j).$$
 Conclude $f^m(p) = f^n(q)$.

Let \mathcal{K} be a class of monounary algebras and $\underset{\leftarrow}{\mathbf{L}}\mathcal{K}$ be the class of all isomorphic copies of inverse limits of algebras of \mathcal{K} .

If every algebra from $\not\sqsubseteq \mathcal{K}$ has its isomorphic copy in \mathcal{K} , then we will write that $\not\sqsubseteq \mathcal{K} = \mathcal{K}$ or that \mathcal{K} is an $\not\sqsubseteq$ -class or that \mathcal{K} is an inverse limit closed class.

We remark that an intersection of \not L-classes is an \not L-class. A union of finitely many \not L-classes is an \not L-class.

A lot of \not L-classes are found in [3]. For example the class of all algebras $A \in \mathcal{U}$ such that A does not contain a cycle of the length which divides n, cf. [3: Ex. 5]. We will use the following assertion which is proved in [3: Theorems 5, 6].

PROPOSITION 1. The class of all algebras $A \in \mathcal{U}$ such that if B is a component of A, then B is a cycle or $B \in [N, Z]$ is an **L**-class.

The class of all algebras $A \in \mathcal{U}$ such that if B is a component of A, then B is a cycle or $B \cong Z$ is an \mathbf{L} -class.

Lemma 6. Let (I, A_i, φ_j^i) be an inverse family of algebras such that A_i is a cycle for every $i \in I$. Then

- (i) there exists $s \in I$ such that $A^{\infty} \cong A_s$ or
- (ii) A^{∞} has uncountable many components and every component of A is isomorphic to Z.

Proof. We have $A^{\infty} \neq \emptyset$ since A_i are finite, cf. [1: Thm. 21.1]. If B is a component of A^{∞} , then B is a cycle or $B \cong Z$ according to the previous proposition. We have that $\varphi_j^i(A_i) = A_j$ for every $i, j \in I$, $i \geq j$. That means that the length of A_j is a divisor of $|A_i|$ and for every $b \in A_j$ there exists $(a_k)_{k \in I} \in A^{\infty}$ such that $a_j = b$.

Let the set $\{|A_i|: i \in I\}$ be finite. Denote by l the least common multiple of members of this set. The inverse limit construction yields that there exists $s \in I$ such that A_s is a cycle of length l.

Let $a=(a_i)_{i\in I}\in A^{\infty}$. We have $f^l(a)=a$. Further, $a,f(a),\ldots,f^{l-1}(a)$ are different since $a_s,f(a_s),\ldots f^{l-1}(a_s)$ are different. Consider $b=(b_i)_{i\in I}\in A^{\infty}$. Then there is $k\in\mathbb{N}$ such that $k\leq l$ and $b_s=f^k(a_s)$. We obtain $f^k(a)=b$. Conclude $A^{\infty}\cong A_s$.

Assume that the set $\{|A_i|: i \in I\}$ is infinite. Then A^{∞} does not contain a cycle.

Let $i \in I$, $a \in A_i$. Take $j \in I$ such that $j \ge i$ and $|A_j| > |A_i|$. Therefore there are $b, c \in A_j$ such that $b \ne c$ and $\varphi_i^j(b) = \varphi_i^j(c) = a$. Therefore A^{∞} contains uncountable many elements. Conclude A^{∞} has uncountable many components.

Corollary 1. The class \mathcal{T} and the class of all connected monounary algebras fail to be inverse limit closed.

2. Inverse families with $A^{\infty} \neq \emptyset$

Let (I, A_i, φ_i^i) be an inverse family of algebras.

As we have already mentioned, if A_i are finite, then $A^{\infty} \neq \emptyset$. In this section we will see that for monounary algebras also stronger assertions are valid.

Lemma 7. If $A_i \in \mathcal{R}_m$ for every $i \in I$, then $A^{\infty} \neq \emptyset$.

Proof. Let $i \in I$. Suppose that $B_i = \bigcup_{C \in R_{A_i,m}} C$. In view of $\varphi_j^i(B_i) \subseteq B_j$ for

every $i \geq j$ we have that $(I, B_i, \varphi_j^i | B_i)$ is an inverse family of algebras. The assumption gives that B_i is finite for every $i \in I$. Thus $B^{\infty} \neq \emptyset$. The algebra B^{∞} is a subalgebra of A^{∞} according to Lemma 1.

Lemma 8. If $A_i \in \mathcal{R}$ for every $i \in I$ and there exists $k \in I$ such that A_k has no cycle or A_k has finitely many cycles, then $A^{\infty} \neq \emptyset$.

Proof. Suppose that A_k has no cycle. Let $J = \{i \in I : k \leq i\}$. Then (J, A_j, φ_i^j) is an inverse family of algebras. In view of cofinality of J we have that an inverse limit of (I, A_i, φ_j^i) exists if and only if an inverse limit of (J, A_j, φ_i^j)

exists. Further, if an inverse limit of (I, A_i, φ_j^i) exists, then an inverse limit of (I, A_i, φ_j^i) is isomorphic to an inverse limit of (J, A_j, φ_i^j) .

We will show that there are finite sets B_j such that $B_j \subseteq A_j$ for all $j \in J$ and $(J, B_j, \varphi_j^j | B_j)$ is an inverse family of sets.

First we will determine B_k . Let D be a component of A_k with $R_D \neq \emptyset$. Suppose that $R_D = \{Z_1, \ldots, Z_l\}$, where $l \in \mathbb{N}$ according to $A_k \in \mathcal{R}$. Choose $z_s \in Z_s$ for every $s \in \{1, \ldots, l\}$. Then there are positive integers m_1, \ldots, m_l such that $f^{m_1}(z_1) = f^{m_2}(z_2) = \cdots = f^{m_l}(z_l)$ in view of connectivity of D. We put the element $f^{m_1}(z_1)$ into B_k . We do the same with every component of A_k which contains a subalgebra isomorphic to Z. We obtain that B_k is finite since $A_k \in \mathcal{R}$.

Let $j \in J$, $j \neq k$. Put $B_j = \{b \in A_j : b \text{ belongs to a subalgebra of } A_j \text{ which is isomorphic to } Z \text{ and } \varphi_k^j(b) \in B_k\}$ for $j \neq k$. We have $B_j \neq \emptyset$ since B_k does not contain a cycle. Further, B_j is finite in view of $|B_j| \leq |R_{A_j}| \in \mathbb{N}$.

Let $i, j \in J$, $i \leq j$ and $b \in B_j$. Then $\varphi_k^i(\varphi_i^j(b)) = \varphi_k^j(b) \in B_k$, i.e., $\varphi_i^j \in B_i$. Thus $\varphi_i^j|B_j$ is a mapping from B_j into B_i .

If A_k has a cycle, then we add one element of every cycle of A_k into B_k and continue the proof by the same way.

3. Uniform inverse families

Let $A \in \mathcal{U}$. In this section we will deal with inverse families which have all algebras isomorphic to A .

If $A \in \bigcup_{m \in \mathbb{N}} \mathcal{R}_m$, then $A^{\infty} \neq \emptyset$ according to Lemma 7. If $A \in \mathcal{R}$ and A contains no cycle, then $A^{\infty} \neq \emptyset$ according to Lemma 8. If A is finite, then A^{∞} is a retract of A according to [3: Cor. 2]. We will describe all algebras A such that $\{A\}$ is an **L**-class.

The following three examples describe some inverse families which have no inverse limit. We consider \mathbb{N} with a usual linear order and $A_i = A$ for all $i \in \mathbb{N}$ in every example.

Example 1. Let A be a monounary algebra which contains no cycle and no subalgebra isomorphic to Z.

Consider the inverse family $(\mathbb{N}, A_i, \varphi_j^i)$ such that $\varphi_j^i = f^{i-j}$ for all $i \geq j$, $i, j \in \mathbb{N}$, see Fig. 1.

Let $p \in A^{\infty}$. Then $p_i = \varphi_i^{i+1}(p_{i+1}) = f(p_{i+1})$. Thus the set

$$\{p_i: i \in I\} \cup \{f^k(p_1): k \in \mathbb{N}\}$$

creates a cycle of A_1 or a subalgebra of A_1 which is isomorphic to Z, a contradiction.



Figure 1.

Example 2. Let A be a monounary algebra and $\{B_k : k \in \mathbb{N}\}$ be the set of all components of A. Suppose that for every $k \in \mathbb{N}$ there exists a homomorphism ψ_k from B_k into B_{k+1} .

Consider the inverse family $(\mathbb{N}, A_i, \varphi_j^i)$ such that

$$\varphi_i^{i+1} \mid B_k = \psi_k \circ \psi_{k+1} \circ \dots \circ \psi_{2k-1}$$

for all $i \in \mathbb{N}$, $k \in \mathbb{N}$, see Fig. 2.

To show that $A^{\infty} = \emptyset$ we will prove that for every $x \in A_1$ there exists $i \in \mathbb{N}$ such that $x \notin \varphi_1^i(A_i)$.

Assume that $x \in B_k$ for $k \in \mathbb{N}$.

If k is odd, then we put i = 2.

Let k be even. Consider i such that $k = 2^{i-2} \cdot j$ where j is odd. We have $x \in \varphi_1^{i-1}(B_j)$ and $B_j \not\subseteq \varphi_{i-1}^i(A_i)$. Therefore $x \notin \varphi_1^i(A_i)$.

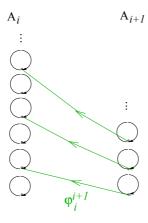


Figure 2.

Example 3. Let $A = \mathbb{N} \cup \{m_n : m, n \in \mathbb{N}\}$. Further, let f(i) = i + 1 for all $i \in \mathbb{N}$, $f(1_n) = 1$ for all $n \in \mathbb{N}$ and $f(m_n) = (m-1)_n$ for all m > 1, $m, n \in \mathbb{N}$.

Consider the inverse family $(\mathbb{N}, A_i, \varphi_j^i)$ such that $\varphi_{i-1}^i(m) = m+1$, $\varphi_{i-1}^i(1_n) = 1$, $\varphi_{i-1}^i(m_n) = (m-1)_{n+1}$ for all $i, m, n \in \mathbb{N}, i > 1$, see Fig. 3.

We have $\varphi_j^i(m) = m + i - j$, $\varphi_j^i(1_n) = i - j$ and

 $\varphi_j^i(m_n) = (m-i+j)_{n+i-j}$ for m > 1. Further, $\varphi_j^i(A) \cap \{m_1 : m \in \mathbb{N}\} = \emptyset$ for i > j.

Let $a \in A^{\infty}$, $j \in \mathbb{N}$. Suppose that $a_j = m_n$. Then

$$\varphi_j^{j+n-1}((m+n-1)_1) = (m+n-1-(n-1))_{1+n-1} = m_n.$$

Therefore $a_{j+n-1} = (m+n-1)_1$. This contradicts to $a_{j+n-1} \in \varphi_{j+n-1}^{j+n}(A)$.

If $a_1 = m$, then $a_m = 1$ and $a_{m+1} = 1_n$.

We conclude $A^{\infty} = \emptyset$.

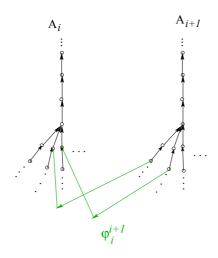


Figure 3.

The rest of this section we will study $\not\sqsubseteq \{A\}$ -classes. It is easy to see that every retract of A belongs to $\not\sqsubseteq \{A\}$. The notion of a retract of an algebra is substantial. For retracts of monounary algebras see [6]–[10].

Lemma 9. Let $A \in \mathcal{U}$.

- (i) If A contains a cycle, then $L\{A\} \cap T \neq \emptyset$.
- (ii) If A has no cycle and it contains a subalgebra isomorphic to Z, then $Z \in \mathbf{L}\{A\}$.

Proof.

- (i) The algebra A has a retract from \mathcal{T} , cf. [2: Lemma 20].
- (ii) An algebra isomorphic to Z is a retract of A.

The following notion is used in [9: Df. 6.2.1, Thm. 6.2.5].

DEFINITION. Let A be a connected monounary algebra. We say that A is unbounded, if

- (i) A does not contain a cycle and a subalgebra isomorphic to Z;
- (ii) A does not contain a retract isomorphic to N.

Lemma 10. Let A be a connected monounary algebra. If A is unbounded, then A contains at least two nonisomorphic retracts.

Proof. We have that if $a \in A$ and $n \in \mathbb{N}$, then there is $m \in \mathbb{N}$ such that

$$f^{-(m+n)}(f^m(a)) \neq \emptyset$$

according to [9: Df. 6.2.1, Thm. 6.2.5].

We construct a sequence $\{a_k\}_{k=0}^{\infty}$ by the following way:

Let $a_0 \in A$. Let $k \in \mathbb{N}$ and a_k be determined. If $f^{-1}(a_k) \neq \emptyset$, then put a_{k+1} an element of $f^{-1}(a_k)$. If $f^{-1}(a_k) = \emptyset$, then we take the least possible m such that $f^{-(m+1)}(f^m(a_k)) \neq \emptyset$ and put a_{k+1} an element of $f^{-(m+1)}(f^m(a_k))$.

Let B be a subalgebra of A generated by $\{a_k\}_{k=0}^{\infty}$. We have that B is a retract of A since for every element $b \in B$ we have that the degree of b in the algebra B equals to the degree of b in the algebra A. If B is not isomorphic to A, then the proof is finished.

Let $B \cong A$. Let i be the least such that $f^{-1}(a_i) = \emptyset$. Let j be the least such that j > i and $f^{-1}(a_j) = \emptyset$. Take the least possible $m, n \in \mathbb{N}$ such that $f^m(a_i) = f^n(a_j)$. We have m < n. Further, if $k, l \in \mathbb{N}$ are such that $k \neq l$ and $f^{-1}(a_k) = f^{-1}(a_l) = \emptyset$ and k > i or l > i, then $f^m(a_k) \neq f^n(a_l)$ according to the construction. Consider B' a subalgebra of A which is generated by $\{a_k\}_{k=j}^{\infty}$. We obtain B' a retract of B. Therefore B' is a retract of A.

Assume that $B' \cong B$. Let φ be an isomorphism from B onto B'. We have $\varphi(a_i), \varphi(a_j) \in \{a_k\}_{k=j}^{\infty}$ and $f^{-1}(\varphi(a_i)) = f^{-1}(\varphi(a_j)) = \emptyset$. Further, $f^m(\varphi(a_i)) = \varphi(f^m(a_i)) = \varphi(f^n(a_j)) = f^n(\varphi(a_j))$, a contradiction. Thus B' is not isomorphic to B.

COROLLARY 2. Let A be a connected monounary algebra. If A is unbounded, then $L\{A\}$ contains infinitely many nonisomorphic algebras.

Proof. The above lemma gives a retract of A which is not isomorphic to A and which is an unbounded algebra again.

THEOREM 1. Let $A \in \mathcal{U}$. Then $\{A\}$ is an $\underline{\mathbf{L}}$ -class if and only if $A \in \mathcal{T} \cup [N, Z]$.

Proof. Suppose that $A \notin \mathcal{T} \cup [N, Z]$.

If A contains a cycle or A contains a retract isomorphic to Z or N, then $L\{A\}$ possesses an algebra which is not isomorphic to A. Else A contains a retract B such that every component of B is unbounded. If B is not isomorphic to A, then $L\{A\} \neq \{A\}$.

Assume that $B \cong A$. Choose E a component of B. Let $\{E_{\alpha} : \alpha \in K\}$ be the set of all components of B isomorphic to E. Take D a retract of E which is not isomorphic to E by the previous lemma. Put D_{α} a retract of E_{α} which is isomorphic to E for every E

Conclude $\{A\}$ fails to be an **L**-class.

Let $A \in \mathcal{T} \cup [Z]$. Then $\{A\}$ is an \mathcal{L} -class according to Lemma 4.

Let (I, A_i, φ_j^i) be an inverse family of algebras and $A_i \cong N$ for every $i \in I$. Suppose that $A^{\infty} \neq \emptyset$. Then A^{∞} is connected according to Lemma 5. We obtain that A^{∞} is isomorphic to N or Z or it is a cycle in view of Theorem. 1.

Let $p \in A^{\infty}$ be such that $p_i = 1$ for some $i \in I$. (If $p_k \neq 1$ for all $k \in I$, then $(p_k - 1)_{k \in I} \in A^{\infty}$.) If $p' \in A^{\infty}$ is such that f(p') = p, then $f(p'_i) = p_i = 1$, a contradiction. Conclude $A^{\infty} \cong N$.

4. Inverse limit closed classes

First, some inverse limit closed classes in monounary case from [3] will be studied in this section. Further, some new inverse limit closed classes will be recognized.

We use the symbol \subset for proper subsets.

We denote by T the smallest set of operations such that T contains all projections, $f \in T$ and T is closed under compositions. Elements of T are called terms, cf. e.g. [4].

It is clear that terms of monounary algebras have very special and easy form:

LEMMA 11. If $h \in T$ is n-ary, then there exist $j \in \{1, ..., n\}$ and a nonnegative integer k such that $h(x_1, ..., x_n) = f^k(x_j)$.

Let $h \in T$. Let $A \in \mathcal{U}$ and h be unary.

The following notation is used in the paper [3].

NOTATION. For $a \in A$ we denote

$$h^{-n}(a) = \{ b \in A : h^n(b) = a \}.$$

Denote

$$\mathcal{S}_h = \left\{ A \in \mathcal{U} : \ h^{-1}(a) \neq \emptyset \text{ for each } a \in A \right\};$$

$$\mathcal{E}_{h,m} = \left\{ A \in \mathcal{U} : \ |h^{-1}(a)| \leq m \text{ for each } a \in A \right\}.$$

If $h = f^k$ for any nonnegative integer k, then we will write \mathcal{S}_k instead of \mathcal{S}_h and $\mathcal{E}_{k,m}$ instead of $\mathcal{E}_{h,m}$.

A component description of $\mathcal{E}_{1,1}$ and $\mathcal{E}_{1,1} \cap \mathcal{S}_1$ is given in Proposition 1.

Example 4. Let $A = \{a, b, c, d\}$ and f(a) = f(b) = c, f(c) = f(d) = d. Then $A \in \mathcal{E}_{1,2} - \mathcal{E}_{2,2}$.

Lemma 12. Let $k \in \mathbb{N}$. Then

- (i) $S_0 = \mathcal{E}_{0,m} = \mathcal{U}$;
- (ii) $S_k = S_1$ for k > 1;
- (iii) $\mathcal{E}_{k,1} = \mathcal{E}_{1,1} \text{ for } k > 1;$
- (iv) $\mathcal{E}_{k,m} \subset \mathcal{E}_{k,m+1}$;
- (v) $\mathcal{E}_{k+1,m} \subset \mathcal{E}_{k,m}$ for m > 1;
- (vi) $\mathcal{E}_{k,m} \neq \mathcal{E}_{l,n}$ for $l \in \mathbb{N}$, m > n.

Proof.

- (i) We handle an identity operation.
- (ii) Suppose that $(A, f) \in \mathcal{S}_1$. Let $u \in A$. We denote by a_1, a_2, \ldots, a_k the following elements of A: $f(a_1) = u$, $f(a_2) = a_1, \ldots, f(a_k) = a_{k-1}$. Then $f^k(a_k) = u$. Therefore $A \in \mathcal{S}_k$.

Suppose that $A \in \mathcal{S}_k$. Let $v \in A$. Let $a \in A$ be such that $f^k(a) = v$. Then $f(f^{k-1}(a)) = v$. Conclude $A \in \mathcal{S}_1$.

(iii) It is obvious that $\mathcal{E}_{k,1} \subseteq \mathcal{E}_{1,1}$.

Let $A \notin \mathcal{E}_{k,1}$. Then there exist $a, b \in A$ such that $a \neq b$ and $f^k(a) = f^k(b)$. We can assume that $f^{k-1}(a) \neq f^{k-1}(b)$. Put $c = f^{k-1}(a)$, $d = f^{k-1}(b)$. We have $c \neq d$ and f(c) = f(d). Thus $A \notin \mathcal{E}_{1,1}$

- (iv) The inclusion follows from the definition $\mathcal{E}_{k,m}$. Let $B = \{1, 2, ..., m+1\}$ and f(x) = 1 for all $x \in B$. We have $B \in \mathcal{E}_{k,m+1} \mathcal{E}_{k,m}$.
- (v) The relation $\mathcal{E}_{k+1,m} \subseteq \mathcal{E}_{k,m}$ follows from the fact that an equality $f^k(a) = f^k(b)$ implies $f^{k+1}(a) = f^{k+1}(b)$.

Let $D = \{1, 2, ..., m + 2k\}$ and D be a connected monounary algebra from Fig. 4. We have $D \in \mathcal{E}_{k,m} - \mathcal{E}_{k+1,m}$, see Fig. 5.

(vi) Let A be an infinite connected monounary algebra from Fig. 6. Then $A \in \mathcal{E}_{k,m} - \mathcal{E}_{l,n}$.

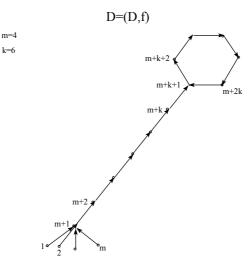
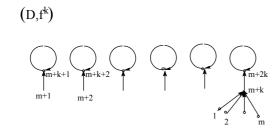


FIGURE 4.



 (D,f^{k+1}) m+1 m+k+1 m+k+1 m+k+1 m+k+1 m+k+1

FIGURE 5.

FIGURE 6.

A component description of $\mathcal{E}_{1,1}$ and $\mathcal{E}_{k,m} \cap \mathcal{S}_1$ is given in Theorem. 1.

THEOREM 2. ([3: Thm. 5, 6]) Classes $\mathcal{E}_{k,m}$ and $\mathcal{S}_1 \cap \mathcal{E}_{k,m}$ are \underline{L} -classes.

It is obvious that:

LEMMA 13. Let k be a nonnegative integer, $A \in \mathcal{U}$ and B be a component of A. If $A \in \mathcal{S}_k$, then $B \in \mathcal{S}_k$. If $A \in \mathcal{E}_{k,m}$, then $B \in \mathcal{E}_{k,m}$.

The following lemma is an immediate consequence of [3: Lemma 1]. The set $R_{A,m}$ is defined in preliminaries of this paper.

Lemma 14. Let (I, A_i, φ_j^i) be an inverse system of algebras with a nonempty inverse limit.

- (i) If A^{∞} contains cycles C, D such that $C \neq D$ and $C \in R_{A^{\infty},|D|}$, then there exists $i \in I$ such that A_i contains cycles C', D' such that $C' \neq D'$ and $C' \in R_{A_i,|D'|}$.
- (ii) If there exist $p, q \in A^{\infty}$ such that $p \neq q$, f(p) = f(q) and q belongs to a cycle, then there exists $i \in I$ such that $p_i \neq q_i$, $f(p_i) = f(q_i)$ and q_i belongs to a cycle.

NOTATION. We denote

$$\mathcal{E}'_{k,m} = \{ A \in \mathcal{E}_{k,m} : A \text{ has no cycle} \}.$$

$$\mathcal{T}_{k,m} = \mathcal{T} \cup \mathcal{E}'_{k,m} \cup \{ A \in \mathcal{U} : A = B \cup C, B \in \mathcal{T}, C \in \mathcal{E}'_{k,m} \}.$$

Analogously as in Lemma 12 we can see that:

Lemma 15. Let $k \in \mathbb{N}$. Then

- (i) $\mathcal{E}'_{k,1} = \mathcal{E}'_{1,1} \text{ for } k > 1;$
- (ii) $\mathcal{E}'_{k,m} \subset \mathcal{E}'_{k,m+1}$;
- (iii) $\mathcal{E}'_{k+1,m} \subset \mathcal{E}'_{k,m}$ for m > 1;
- (iv) $\mathcal{E}'_{k,m} \neq \mathcal{E}'_{l,n}$ for $l \in \mathbb{N}$, m > n.

Lemma 16. Let $k \in \mathbb{N}$. Then

- (i) $\mathcal{T}_{k,1} = \mathcal{T}_{1,1} \text{ for } k > 1;$
- (ii) $\mathcal{T}_{k,m} \subset \mathcal{T}_{k,m+1}$;
- (iii) $\mathcal{T}_{k+1,m} \subset \mathcal{T}_{k,m}$ for m > 1;
- (iv) $\mathcal{T}_{k,m} \neq \mathcal{T}_{l,n}$ for $l \in \mathbb{N}$, m > n.

Lemma 17. Let $k \in \mathbb{N}$.

Then $\mathcal{T}_{1,1} \subset \mathcal{E}_{k,m}$ for $m \geq 1$ and if m > 1, then $\mathcal{T}_{1,1} \subset \mathcal{T}_{k,m} \subset \mathcal{E}_{k,m}$.

Theorem 3. Classes $\mathcal{E}'_{k,m}$, $\mathcal{E}'_{k,m} \cap \mathcal{S}_1$, $\mathcal{T}_{k,m}$ and $\mathcal{T}_{k,m} \cap \mathcal{S}_1$ are \mathbf{L} -classes.

Proof. Let (I, A_i, φ_j^i) be an inverse family. Let $A^{\infty} \neq \emptyset$.

Suppose that $A_i \in \mathcal{E}'_{k,m}$. The algebra A^{∞} is a subalgebra of a direct product of algebras without cycles. Therefore A^{∞} has no cycle. Further, $A^{\infty} \in \mathcal{E}_{k,m}$ since $A_i \in \mathcal{E}_{k,m}$. Conclude $A^{\infty} \in \mathcal{E}'_{k,m}$.

Analogously we can prove that if $A_i \in \mathcal{E}'_{k,m} \cap \mathcal{S}_1$, then $A^{\infty} \in \mathcal{E}'_{k,m} \cap \mathcal{S}_1$.

Suppose that $A_i \in \mathcal{T}_{k,m}$. Then $A_i \in \mathcal{E}_{k,m}$ according to Lemma 17. That means $A^{\infty} \in \mathcal{E}_{k,m}$. We have that every component of A^{∞} belongs to $\mathcal{E}_{k,m}$ according to Lemma 13.

Let D be a component of A^{∞} with a cycle. Then D is a cycle according to Lemma 14(ii). If D_1 , D_2 are two different cycles of A^{∞} , then $D_1 \notin R_{A^{\infty},|D_2|}$ according to Lemma 14(i).

Analogously we can prove that if $A_i \in \mathcal{T}_{k,m} \cap \mathcal{S}_1$, then $A^{\infty} \in \mathcal{T}_{k,m} \cap \mathcal{S}_1$. \square

5. About inverse limits of \mathcal{T}

The class \mathcal{T} is not an inverse limit closed according to Cor.1. In the previous section we described countable many inverse limit closed classes which contain \mathcal{T} . The question is: How $\not\sqsubseteq \mathcal{T}$ looks like? It is not solved in this section, but we give some observations. Further, we will prove that $\not\sqsubseteq \not\sqsubseteq \mathcal{T} \neq \not\sqsubseteq \mathcal{T}$.

Lemma 18. Let $A \in \mathcal{U}$ contain a proper subalgebra B such that $B \in \mathcal{T}$ and for every prime $p \in \mathbb{N}$ there is $b \in B$ such that $f^p(b) = b$. Then $A \notin \mathcal{LT}$.

Proof. Let (I,A_i,φ_j^i) be an inverse family of algebras from \mathcal{T} . Let A^{∞} contain a subalgebra B such that $B\in\mathcal{T}$ and for every prime $p\in\mathbb{N}$ there is $b\in B$ such that $f^p(b)=b$. Consider $J=\left\{j\in I:\ |A_j|>1\right\}$. The set J is cofinal with I, since B is a subalgebra of A^{∞} . Therefore (J,A_j,φ_k^J) is the inverse system with the limit isomorphic to A^{∞} .

Suppose that $p \in \mathbb{N}$ is prime and $(b_i)_{i \in I} \in B$ is such that $f^p((b_i)_{i \in I}) = (b_i)_{i \in I}$. Then $f^p(b_i) = b_i$ for every $i \in I$. That means that every algebra A_j , $j \in J$ has a cycle of the length p. Conclude $A_j \cong B$ according to $A_j \in \mathcal{T}$ for every $j \in J$. We obtain $A^{\infty} \cong B$ according to Theorem. 1.

COROLLARY 3.

$$\mathbf{\underline{L}}\mathcal{T}\subset\mathcal{T}_{1,1}\cap\mathcal{S}_1$$

We will use the set R_A from preliminaries in the following lemma.

Lemma 19. Let $A \in \mathcal{U}$ be such that $1 \leq |R_A| \leq |\mathbb{N}|$. Then $A \notin \underline{L}\mathcal{T}$.

Proof. Let (I, A_i, φ_j^i) be an inverse family of algebras from \mathcal{T} . Then $A^{\infty} \neq \emptyset$ according to Lemma 7. Let B be a subalgebra of A^{∞} which is isomorphic to Z and $(b_i)_{i \in I} \in B$. Denote by B_i a component of A_i such that $b_i \in A_i$ for every $i \in I$. Then $(I, B_i, \varphi_j^i | B_i)$ is an inverse family of cycles and B is a subalgebra of its inverse limit B^{∞} . We have that B^{∞} consists of uncountable many components isomorphic to Z according to Lemma 6. The fact that $B^{\infty} \subseteq A^{\infty}$ completes the proof.

COROLLARY 4.

$$\underline{L}\,\underline{L}\,\mathcal{T}\neq\underline{L}\,\mathcal{T}$$

PROPOSITION 2.

$$\underline{\mathbf{L}}(\mathcal{T} \cup [N,Z]) = [N,Z] \cup \underline{\mathbf{L}}\mathcal{T}$$

Proof. Let (I, A_i, φ_j^i) be an inverse family of algebras from $\mathcal{T} \cup [N, Z]$.

Let exist $i \in I$ such that $A_i \cong N$. Then $A_j \cong N$ for every $j \geq i$, $j \in I$. Put $J = \{j \in I : j \geq i\}$. Then J is cofinal with I. We obtain that $A^{\infty} \cong N$ according to Theorem. 1.

Let our inverse system contain no algebra isomorphic to N and let there exist $i \in I$ such that $A_i \cong Z$. Then $A_j \cong Z$ for every $j \geq i$, $j \in I$. Put $J = \{j \in I : j \geq i\}$. Then J is cofinal with I. We obtain that $A^{\infty} \cong Z$ according to Theorem. 1.

Therefore $\underline{\mathbf{L}}(\mathcal{T} \cup [N, Z]) \subseteq [N, Z] \cup \underline{\mathbf{L}}\mathcal{T}$.

The opposite inclusion is trivial.

6. Problems

- 1. Let A be an unbounded monounary algebra. Does the algebra N, failing to be unbounded, belong to $\mathbb{L}\{A\}$?
- 2. Describe $\not\perp \mathcal{T}$.

REFERENCES

- [1] GRÄTZER, G.: *Universal Algebra*. The University Series in Higher Mathematics, D. Van Nostrand, Co., Princeton, N.Y., 1968.
- [2] HALUŠKOVÁ, E.: Direct limits of monounary algebras, Czechoslovak Math. J. 49 (1999), 645–656.
- [3] HALUŠKOVÁ, E.: Several inverse limit closed classes of algebras. In: Contributions to General Algebra 19, Verlag Johanes Heyn, Klagenfurt, 2010, pp. 103–112.
- [4] IHRINGER, T.: Allgemeine Algebra, B. G. Teubner, Stuttgart, 1988.

- [5] JAKUBÍK, J.—PRINGEROVÁ, G.: Direct limits of cyclically ordered groups, Czechoslovak Math. J. 44 (1994), 231–250.
- [6] JAKUBÍKOVÁ-STUDENOVSKÁ, D.—PÓCS, J.: Some properties of retract lattices of monounary algebras, Math. Slovaca 62 (2012), 169–186.
- [7] JAKUBÍKOVÁ-STUDENOVSKÁ, D.—PÓCS, J.: On finite retract lattices of monounary algebras, Math. Slovaca **62** (2012), 187–200.
- [8] JAKUBÍKOVÁ-STUDENOVSKÁ, D.—PÓCS, J.: Lattice of retracts of monounary algebras, Math. Slovaca 61 (2011), 107–125.
- [9] JAKUBÍKOVÁ-STUDENOVSKÁ, D.—PÓCS, J.: Monounary algebras, P. J. Šafárik University, Košice, 2009.
- [10] JAKUBÍKOVÁ-STUDENOVSKÁ, D.: Retracts of monounary algebras corresponding to grupoids, Math. Slovaca 56 (2006), 105–112.
- [11] MCKENZIE, R.—MCNULTY, G.—TAYLOR, W.: Algebras, Lattices, Varieties. Vol. 1, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1987.
- [12] MITCHELL, B.: Theory of Categories, Academic Press, New York, 1965.
- [13] NOVOTNÝ, M.: Über Abbildungen von Mengen, Pacific J. Math. 13 (1963), 1359–1369.

Received 4. 7. 2012 Accepted 18. 9. 2013 Mathematical Institute Slovak Academy of Sciences Grešákova 6 SK-040 01 Košice SLOVAKIA

 $E\text{-}mail\colon$ ehaluska@saske.sk