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ON D-POSETS OF FUZZY SETS
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ABSTRACT. D-posets of fuzzy sets constitute a natural simple mathematical
structure in which relevant notions of generalized probability theory can be for-
malized. We present a classification of D-posets leading to a hierarchy of dis-
tinguished subcategories of D-posets related to probability and study their re-
lationships. This contributes to a better understanding of the transition from
classical probability theory to fuzzy probability theory. In particular, we describe
the transition from the Boolean cogenerator {0, 1} to the fuzzy cogenerator [0, 1]
and prove that the generated Lukasiewicz tribes form an epireflective subcategory
of the bold algebras.
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1. Introduction

D-posets have been introduced in [19] in order to model events in quantum
probability. They generalize Boolean algebras, M V-algebras and other prob-
ability domains, and provide a category in which observables (notions dual to
random variables) and states (generalized probability measures) become mor-
phisms ([6], [I1]). Recall that a D-poset is a partially ordered set S with the
greatest element 1g, the least element Og, and a partial binary operation called
difference, such that a © b is defined iff b < a, and the following axioms are
assumed:
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(D1) a©0s =a for each a € S,
(D2) Ifc<b<a,thenaob<accand (aSc)S(a0b) =bSec.

If T'C S and 0g,15 € T, then T carrying the inherited order and closed with
respect to the inherited difference is said to be a sub-D-poset of S.

A canonical example is the interval [0, 1] = I (the usual linear order, a ©b =
a—b whenever b < a). Recall that each D-poset can be reorganized into an effect
algebra and the two structures are equivalent (cf. [7], [6], [24]). An exposition
of quantum structures (the transition to effect algebras and D-posets) can be
found in [I6]. Fundamental to applications ([2], [3], [23], [13], [14], [15]) are
D-posets of fuzzy sets, i.e. systems X C IX carrying the coordinatewise partial
order, coordinatewise convergence of sequences, containing the top and bottom
elements of IX, and closed with respect to the partial operation difference defined
coordinatewise (if u,v € X and v(z) < u(z) for all x € X, then (v v)(z) =
u(z)—wv(x)). We always assume that X is reduced, i.e., for x,y € X, x # y, there
exists u € X such that u(z) # u(y). Denote ID the category having (reduced)
D-posets of fuzzy sets (functions into [0,1]) as objects and having sequentially
continuous (with respect to the coordinatewise convergence) D-homomorphisms
(maps preserving constants, order, and the difference) as morphisms. Objects
of ID are subobjects of the powers I* ([22]).

Concerning the undefined notions, the reader is referred to 7] and [1].

2. Motivation

In this section we provide motivation for our study of particular properties of
D-posets.

Let (X, A,p) be a classical probability space, i.e., A is a o-field of subsets
of X and p is a o-additive normed measure on A. Denote M(A) the system
of all measurable functions into [0,1] = I. We identify a set A and its indi-
cator function x4 (xa: X — {0,1}, xaw) = 1if z € A and xa(z) = 0
otherwise). Then A (as indicator functions) and M(A) are D-posets of fuzzy
sets, p and the probability integral p(f) = [ fdp are sequentially continuous
D-homomorphisms (with respect to the coordinatewise, also pointwise, conver-
gence, remember the Lebesgue Dominated Convergence Theorem). What is
more important and surprising, the following assertions hold (cf. [I1]).

THEOREM 2.1.

(i) Let p be a sequentially continuous D-homomorphism of A into I. Then p
1 a probability measure.

(ii) Let h be a sequentially continuous D-homomorphisms of M(A) into I.
Then h is a probability integral, i.e., there exists a probability measure p on A

such that h(f) = [ fdp, f € M(A).
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(iii) Let (Y,B) be a measurable space. Then each sequentially continuous
D-homomorphism of B into M(A) can be uniquely extended to a sequentially
continuous D-homomorphism of M(B) into M(A).

Observe that if {a} is a singleton and A = {0, {a}} is the corresponding
trivial field of all subsets of {a}, then I and M(A) coincide. So, probability
measures on A and sequentially continuous D-homomorphisms of A into I can
be identified. Since there is a one-to-one correspondence between o-fields of sets
and measurable [0, 1]-valued functions (indeed, A is the set of all {0, 1}-valued
elements of M(A)) and a one-to-one correspondence between probability mea-
sures on A and probability integrals on M(A), we can consider (X, M(A),p)
as a fuzzified model of (X, A,p) ([25]). The elements of A are called random
events and the elements of M(A) are called fuzzy random events.

Now, let us turn to sequentially continuous D-homomorphisms of M(B) into
M(A); such maps are called fuzzy observables. According to (iii) in Theorem
2.1, there is a one-to-one correspondence between sequentially continuous D-
homomorphisms of B into A and fuzzy observables on M(B) into M(A) for
which all elements of B are mapped into A; such fuzzy observables are called
conservative. 1t is known (cf. [3], [I7], [13]) that a fuzzy observable on M (B)
into M(A) can map some B € B into M(A) \ A; such fuzzy observables are
called genuine.

Generalizations of random events are modeled by various algebraic structures
(cf. [28], [7], [19], [26], [27]). In the next section we present a system of properties
of D-posets related to such generalizations. In turn, this leads to a classification
scheme of D-posets and a better understanding of the transition from the clas-
sical probability theory, CPT for short, to the fuzzy probability theory, FPT for
short.

3. Properties

D-poset is a simple mathematical structure in which basic probabilistic no-
tions can be modeled. Let (S, <,1g,0s,8) be a D-poset; it will be condensed
to S. The elements of S model (generalized) random events, 1g models the
sure event, Og model the impossible event, 1 © a models the negation of a.
If a < ¢, then @ and b = ¢ & a are “disjoint events covering ¢’ and if s a
D-homomorphism of S into I, then “additivity” of s amounts to the “subtrac-
tivity”: s(c©a) = s(c) — s(a) = s(b).

To model additional properties of random events, we have to assume addi-
tional properties of D-posets. Denote D the category having D-posets as objects
and having D-homomorphisms (maps preserving constants, order, and differ-
ence) as morphisms. First of all, we will restrict ourselves to the objects of 1D,
i.e. (reduced) D-posets of fuzzy sets, I D-posets, for short.
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Let X C IX be an ID-poset. Then each projection pr,: X — I, pr,(u) =
u(x), z € X, is a sequentially continuous D-homomorphism of X" into I and X
carries the weak (also initial) D-poset structure with respect to the projections:
u # v iff there exists € X such that pr,(u) # pr,(v), v < wiff pr (v) < pr,(u)
for all x € X and then (v © v)(x) = pr,(u) — pr,(v). Moreover, a sequence
{un}2, converges in X' to u iff nh_}n;O pr,(u,) = pry(u) for all x € X. Denote

Proj(&X’) the set of all projections pr,,: X — I, z € X and denote H(X) the set
of all sequentially continuous D-homomorphisms of X into I. Clearly, X carries
the weak D-poset structure with respect to H(X).

In general, we start with a distinguished D-poset C' (possibly having some
additional properties, e.g., C' is a lattice) and consider the class of D-posets
“living in powers CX”, i.e., carrying the weak D-poset structure with respect
to the projections. We call C' the cogenerator of the corresponding class of
D-posets. D-posets of the class are called domains of probability and model
generalized random events. Sequentially continuous D-homomorphisms into C
model generalized probability measures ([14]).

The two traditional cogenerators are {0,1} and I = [0,1]. Indeed, {0,1}
cogenerates random events (fields of sets) in CPT, while I cogenerates random
events (measurable I-valued functions) in FPT.

Both in CPT and in FPT, sequentially continuous D-homomorphisms into [
model probability measures on random events. The weak structure means that
“everything is determined by probability measures”. This is in accordance with
“a requirement that positive measures determine the partial order is the sine
qua non of algebraic measure theory” (cf. []]).

Recall ([4], [7], [9]) that a bold algebra (also Tr-clan, see [21]) is a system
X C [0,1]* containing the constant functions Oy, 1x and closed with respect to
the usual (Lukasiewicz) operations: for u,v € X put (u®v)(z) = u(z) Pv(x) =
min{1, u(z) + v(x)}, v*(z) =1 —u(z), v € X. Bold algebras are MV -algebras
representable as [0, 1]-valued functions, MV-algebras generalize Boolean alge-
bras and bold algebras generalize in a natural way fields of sets (viewed as indi-
cator functions). More information concerning M V-algebras and probability on
MV-algebras can be found in [26]. If a bold algebra X C [0, 1]¥ is sequentially
closed in [0,1]% (with respect to the coordinatewise sequential convergence),
then X is a Lukasiewicz tribe (X is closed not only with respect to finite, but also
with respect to countable Lukasiewicz sums, cf. [9 Corollary 2.8]). It is known
(cf. [20], [7]) that if X C [0,1]¥ is a Lukasiewicz tribe, then there exists a unique
o-field Ay of subsets of X such that Ay C X C M(Ay) and X = M(Ay)
iff X contains all constant functions rx, 7 € [0,1]. Let X C [0,1]* be a bold
algebra. Then [0, 1]X is a Lukasiewicz tribe containing X' and the intersection of
all Lukasiewicz tribes ) C [0, 1]¥ such that X C ) is a Lukasiewicz tribe; it will
be called the induced Lukasiewicz tribe and denoted by o(X'). Each bold algebra
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X C [0,1]% is a lattice, where for u,v € X we have (u V v)(z) = u(z) V v(x),
(uAv)(z) = u(x)Av(z), 2 € X, and each ID-poset X C [0,1]% which is a lattice
(with respect to the coordinatewise order) can be reorganized into a bold algebra
(the Lukasiewicz operations can be redefined via the difference and order, cf.
[14], [25]). Finally, each bold algebra can be considered as an object of ID.
Recall that two elements u and v of a D-poset S are compatible if there exist
elements ¢,d € S suchthat d< u <¢,d<v <cand c6u=v6&d. In a bold
algebra X C [0,1]% each two elements are “compatible” and, in particular, if
u < v, then (vVu)—u=v—(vAu)=v—uis defined and u® (v — u) = v.
To understand the transition from CPT to FPT, we should identify charac-
teristic properties (in terms of D-posets) of random events in CPT (o-fields of
sets) and additional properties of random events in FPT (measurable functions
into [0,1]). Roughly, the transition is analogous to the transition from inte-
gers to real numbers: divisibility and completeness. First, we characterize the
transition from the Boolean cogenerator {0, 1} to the fuzzy cogenerator [0, 1].

DEFINITION 3.1. Let S be a D-poset and let n be a natural number, n > 1.
If for each x € S, x # Og there are z(n,k) € S, k = 1,2,...n — 1, such that
Os <z(n,l)<---<z(nk—1)<z,z0z(nk—-1)=z(nk—1)0x(nk—2) =
- = z(n,2) © x(n,1) = x(n,1), then S is said to be divisible by n. If S is
divisible by n for all natural numbers n > 1, then S is said to be divisible.

Ezxample 3.2. Consider the set S of all rational numbers of the form k/2", where
k,n are natural numbers and 0 < k < 2™, carrying the natural D-poset structure.
It is easy to see that the D-poset S is linearly ordered and fails to be divisible
by 3. On the other hand, S is totally non-atomic (does not contain any atom).

LEMMA 3.3. Let S be a linearly ordered o-complete D-poset. Then S is a bold
algebra.

Proof. It follows from the general theory of D-posets (cf. [6i Theorem 55,
Theorem 58]) that a linearly ordered D-poset is an M V-algebra. Further, it is
known that each o-complete M V-algebra is a bold algebra (cf. [7]). O

LEMMA 3.4. Let X C IX be a linearly ordered (reduced) bold algebra. Let
u,v € X.

(i) If v < u, then for each x € X we have v(z) < u(x).

(i) If v(z) = u(x) for any x € X, then v = u.

Proof.

(i). Otherwise, for w = v — v and some z € X we would have w(z) =
v(z) —u(z) = 0 and for some y € X we would have w(y) > 0. Consequently, for
some positive natural number k we would have kw(z) = 0, kw(y) > 1. Define
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2w = w® w and inductively (n+ 1)w = nw @ w. Since kw € X, the two distinct
elements kw and 1x — kw would be incomparable, a contradiction.
(ii). Clearly, (ii) follows from (i). O

LEMMA 3.5. Let X C IX be a linearly ordered, o-complete and totally non-
atomic (reduced) bold algebra.

(i) For each z € X, {u(z); ue X} =10,1].
(i) card(X) =1.

Proof. (i) follows from the previous lemma and the assumption that X is
o-complete and totally non-atomic and it implies that X contains all constant
functions ¢x, where ¢ is a rational number, 0 < ¢ < 1. Clearly, this is possible
only in case when card(X) = 1. O

COROLLARY 3.6. Let S be a linearly ordered o-complete D-poset. If S is totally
non-atomic, then S and I are isomorphic.

In [5] it is proved that if S is a linearly ordered, o-complete D-poset which
is totally non-atomic, then there is a state on S. Since S and I are isomorphic
and the isomorphism is a state, our previous lemma generalizes the main result
in [5].

THEOREM 3.7. Let S be a linearly ordered o-complete D-poset. Then the fol-
lowing are equivalent:

(i) S and I are isomorphic;

(i) S is totally non-atomic;

(iii) S is divisible;

(iv) If T is a linearly ordered, o-complete and divisible D-poset and S is a
sub-D-poset of T, then S =T.

Proof. Clearly, (i) implies (ii) and (iii).

(i) = (iv). Let T be a linearly ordered, o-complete and divisible D-poset
and let S be a sub-D-poset of T'. As proved above, T is a bold algebra, T C IX.
Since T is divisible, it contains all constant functions ¢x, where ¢ is a rational
number, 0 < g < 1. Necessarily, T =1 = 5.

(i) == (i). See Corollary 3.6.

(iii) = (i). According to Lemma 3.3, S is a (reduced) bold algebra. Since it
is divisible, it contains all constant functions ¢x, where ¢ is a rational number,
0 < g < 1. But S is linearly ordered and o-complete, hence S and I are
isomorphic.

(iv) = (i). Let T be a linearly ordered, o-complete and divisible D-poset
and let S be a sub-D-poset of T'. Since (iii) implies (i), the assertion follows.
This completes the proof. O
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COROLLARY 3.8. Let S be a linearly ordered, o-complete D-poset. Then S is
totally non-atomic iff it is divisible.

The next example shows an important difference between the two properties.

Ezample 3.9. Let By be the sigma-field of all Borel measurable subsets of [0, 1]
and let M(By) be the corresponding generated Lukasiewicz tribe. Denote X =
{u € M(By); u(0),u(1) € {0,1}} the corresponding bold algebra. Clearly,
X is a Lukasiewicz tribe (it is sequentially closed in I? ), hence o-complete,
B; C X C M(By), X is totally non-atomic and fails to be divisible. Notice that
M(By) is divisible.

To sum up, the Boolean cogenerator {0,1} is the minimal linearly ordered
o-complete (atomic) D-poset and the cogenerator [0, 1] of fuzzy random events
is the maximal linearly ordered, o-complete and divisible (totally non-atomic)
D-poset.

From the viewpoint of CPT and FPT, important classes of D-posets are
linearly ordered, o-complete, atomic and totally non-atomic at a basic level, bold
algebras (lattice ordered D-posets), divisible and sequentially closed bold algebras
(generated Lukasiewicz tribes) at a more advanced level.

Previous results lead to several distinguished categories. The category D of
D-posets and D-homomorphisms serves as the reference category and properties
related to generalized random events lead to the following hierarchy of subcate-
gories of D.

The category I D of D-posets of fuzzy sets and sequentially continuous D-ho-
momorphisms captures the idea of objects cogenerated by I = [0, 1] (the domain
of probability measures) carrying the initial (weak) structure.

Its full subcategory BID consists of the D-posets of fuzzy sets the order in
which is a lattice (with respect to the coordinatewise order) and hence exactly
bold algebras. Note that both o-fields of sets (classical random events) and
measurable functions into I (fuzzy random events) are lattices.

Its full subcategory C'BID consists of Lukasiewicz tribes, i.e., bold algebras
which are sequentially closed in IX. Each o-field of sets is a Lukasiewicz tribe.
Sequential closedness is a must both in CPT and FPT - stochastics is about
limits.

Let X C I be a Lukasiewicz tribe. Then (cf. [27: 8.1.4. Theorem]) {u € X;
u e {0,1}¥ } is the set of all indicator functions of a o-algebra A x of subsets of
X and each u € X is a measurable function, i.e. Ay C X C M(Ay). Further,
if X contains all constant functions ranging in I, then X = M(Ay) and X is
said to be a generated Lukasiewicz tribe.

Finally, denote CGBID the full subcategory consisting of the generated
Lukasiewicz tribes. Recall that the objects of CGBID are exactly divisible
Lukasiewicz tribes.
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4. CGBID is an epireflective in BID

It is known that the extension of a probability measure p from a field of
sets A over the generated o-field o(A) and further to the probability integral
p(f) = [ fdp, f € M(A) has a categorical background ([9], [10], [11]). In [18]
the following problem has been stated.

PRrROBLEM. Is CGBID an epireflective subcategory of BID?

Let us recall the notion of an epirefiection. Let B be a full subcategory of a
category A. Let X be an object of A. An object r(X) of B is called a reflection
of X in B, or a B-reflection, if there exists a morphism ex: X — r(X) such
that for each morphism f: X — Y, Y in B, there exists a unique morphism
r(f): r(X) — Y such that r(f)ocex = f. The functor assigning to each object
of A its reflection in B, is called a reflector. If each object of A has a B-reflection,
then B is said to be reflective in A. A reflective subcategory is called epirefiective
if the canonical morphism ex: X — r(X) is an epimorphism for every X; in
this case we speak of an epireflector and epireflection.

THEOREM 4.1. CGBID is an epireflective subcategory of BID.

Proof. Let X C I¥X be a bold algebra and let o(X) C I be the induced
Lukasiewicz tribe. Denote A,y the set {u € o(X); u e {0, 1}X} of all indica-
tor functions of o(X). Then X C o(X) and A,y C o(X) € M(Ay(x)). We
claim that M(A,(x)) is the desired epireflection of X'. First, let B C {0, 1}Y bea
o-field of subsets of Y and let h be a sequentially continuous D-homomorphism
of X into the generated Lukasiewicz tribe M(B). We have to prove that h
can be uniquely extended to a sequentially continuous D-homomorphism h of
M(A;(x)) into M(B). According to [I1: Corollary 2.11}, CBID is epireflective
in BID and hence h can be uniquely extended to a sequentially continuous D-ho-
momorphism h, of o(X) into M(B). Further, according to [I4: Corollary 4.4],
CGBID is epireflective in CBID, and hence h, can be uniquely extended over
M(A;(x)). The resulting extension h has the desired properties. Secondly, we
have to prove that the embedding ex of X' into M(A,(x)) is an epimorphism.
Suppose that two sequentially continuous D-homomorphisms f, g of M(A;(x))
into a bold algebra ) C IV agree on X. We have to prove that f = g. Since
Y is a sub-D-poset of the induced Lukasiewizc tribe o()) and o()) is the sub-
D-poset of the corresponding generated Lukasiewicz tribe M(Bg(y)), f and g
can be considered as sequentially continuous D-homomorphisms of M(A,(x))
into M(B,(y)). The restrictions f [ X, g [ & of f and g, respectively, agree on
X and can be considered as a sequentially continuous D-homomorphism h of X’
into M(B,(y)). In view of the first part of the proof, h has a unique extension
h over M(A,(x)), and hence f = h = g. This completes the proof. O
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