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ABSTRACT. Let P0 and P1 be projections in a Hilbert space H. We shall con-
struct a class of optimal measurements for the problem of discrimination between
quantum states ρi = 1

dimPi
Pi, i = 0, 1, with prior probabilities π0 and π1. The

probabilities of failure for such measurements will also be derived.
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Introduction

We shall briefly outline the problem of quantum discrimination in its simplest
form which we need for our purposes. For a more detailed survey of this topic
see [1,3–5].

Throughout the paper we consider only finite-dimensional Hilbert spaces.
Let ρ0 and ρ1 be two different quantum states in a Hilbert space H, that is
nonnegative operators on H such that tr ρ0 = tr ρ1 = 1. One of these states
is the actual state of a quantum system, however we do not know which one.
The probability that ρi is the actual state equals πi, i = 0, 1. We assume that
πi ∈ (0, 1). We call πi, i = 0, 1, prior probabilities. The problem of distinguishing
between these two states will be called the discrimination problem. In order to
solve it we perform a measurement on the quantum system. In our setting,
measurement is identified with a pair of nonnegative operators (M0,M1) on H
such that M0 +M1 = 1H. The result of the measurement is 0 or 1. If the result
of the measurement equals i we decide that ρi is the state of the considered
quantum system, i = 0, 1. If ρj is the state of the system, then the probability
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that measurement (M0,M1) gives result i equals tr(ρjMi) for i, j ∈ {0, 1}. In
this situation the probability of a wrong decision is

Pe = π0 tr(ρ0M1) + π1 tr(ρ1M0) = 1− [π0 tr(ρ0M0) + π1 tr(ρ1M1)] (1)

We call Pe the failure probability. Our aim is to find a measurement that
minimizes the failure probability. We shall call it an optimal measurement. It
has been shown (see [5]) that such a measurement always exists. The following
theorem gives necessary and sufficient conditions for (M0,M1) to be an optimal
measurement for the discrimination problem.

������� 1� Consider the discrimination problem given by the states ρ0 and
ρ1 with prior probabilities π0, π1. Measurement (M0,M1) is optimal if and only
if it satisfies the following conditions

M0(π0ρ0 − π1ρ1)M1 = 0, (2)

(π0ρ0 − π1ρ1)M0 � 0, (3)

(π1ρ1 − π0ρ0)M1 � 0. (4)

P r o o f. See [6]. �

It has been proved by Helstrom and Holevo (see [5,6]) that optimal measure-
ment is given by the support of the nonnegative part of (π0ρ0 − π1ρ1) and its
orthogonal complement.

The aim of this paper is to provide a method of construction of an optimal
measurement for the discrimination between two states of the form ρ0 = 1

dimP0
P0

and ρ1 = 1
dimP1

P1, where P0 and P1 are nontrivial projections in H with given

canonical representation (here and throughout by a projection we mean an or-
thogonal projection, i.e., a selfadjoint operator P on H such that P = P 2). In
that situation we can give an explict formula for the optimal measurement which
is similar to the one for the two-dimensional case. Section 3 contains the main
results of the paper. The remaining sections provide some auxiliary facts and
examples.

1. The two-dimensional case

Let H be a two-dimensional Hilbert space, and let ψ0 and ψ1 be unit vectors
from H. Consider the pure quantum states on H given by ρi = |ψi〉〈ψi|, i = 0, 1,
with prior probabilities π0, π1 ∈ (0, 1). Assume that ρ0 �= ρ1. One can choose
an orthonormal basis {ϕ0, ϕ1} in H such that

ψ0 = cϕ0 + sϕ1,

eitψ1 = cϕ0 − sϕ1,
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for some positive real numbers c and s such that c2 + s2 = 1, and for some
t ∈ R. Let us observe that states ρ0 and ρ1 can be represented in this basis by
the following matrices

ρ0 =

[
c2 cs
cs s2

]
, ρ1 =

[
c2 −cs
−cs s2

]
.

������� 2� The optimal measurement for the above discrimination problem is
given by the following projections

Π0 = |ω0〉〈ω0|, Π1 = 1− |ω0〉〈ω0|,
where

ω0 =
1√
2

[√
1 + aϕ0 +

√
1− aϕ1

]
,

a = δ(c2 − s2)
(
1− (c2 − s2)2(1− δ2)

)− 1
2 ,

δ = π0 − π1.

Moreover the probability of failure for this measurement equals

Pe =
1

2
− 1

2

√
1− 4π0π1|〈ψ0|ψ1〉|2.

P r o o f. See [4,5]. �

Let us observe now that projections Πi, i = 0, 1, have the following matrix
representations in the basis {ϕ0, ϕ1}

Π0 =
1

2

[
1 + a

√
1− a2√

1− a2 1− a

]
, (5)

Π1 =
1

2

[
1− a −√

1− a2

−√
1− a2 1 + a

]
. (6)

By Theorem 1 we have

Π0(π0ρ0 − π1ρ1)Π1 = 0, (7)

(π0ρ0 − π1ρ1)Π0 � 0, (8)

(π1ρ1 − π0ρ0)Π1 � 0. (9)

Suppose now that basis vectors ϕ0, ϕ1 are fixed, whereas c and s are arbitrarily
chosen nonnegative real numbers such that c2+s2 = 1. All entries of the matrices
representing operators Π0(π0ρ0−π1ρ1)Π1, (π0ρ0−π1ρ1)Π0 and (π1ρ1−π0ρ0)Π1

in the basis {ϕ0, ϕ1} can be treated now as functions of c and s. (Actually, since

s =
√
1− c2 we can treat them as functions of c only.) Let fi,j(c), i, j = 1, 2,

denote the entries of the matrix of Π0(π0ρ0−π1ρ1)Π1. By g
(1)
1 (c) and g

(1)
2 (c) we

denote principal minors of the matrix of (π0ρ0 − π1ρ1)Π0, similarly, by g
(2)
1 (c)

and g
(2)
2 (c) we denote principal minors of the matrix of (π1ρ1 − π0ρ0)Π1. The
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domain of all defined functions is [0, 1]. Conditions (2), (3) and (4) can now be
expressed as follows

fi,j(c) = 0, for i, j ∈ {1, 2} and c ∈ [0, 1], (10)

g
(k)
l (c) � 0, for k, l ∈ {1, 2} and c ∈ [0, 1]. (11)

Remark 1� Let us observe that all defined functions are compositions of three
operations: multiplication, taking square root and taking inverse of the argu-
ment. This fact will be utilized later.

2. Canonical representation of two projections

Let P0 and P1 be projections in a Hilbert space H. The following theorem
describes the relative position of P0 and P1. This result turns out to be crucial
for our purposes.

������� 3� Let P0 and P1 be two projections in a Hilbert space H. Then there
exist Hilbert spaces H1,H2,H3,H4,K and commuting operators S and C defined
on K satisfying 0 � S � 1, S2 + C2 = 1, KerS = KerC = {0}, such that

H = H1 ⊕H2 ⊕H3 ⊕H4 ⊕K ⊕K (12)

and
P0 = 1H1

⊕ 1H2
⊕ 0H3

⊕ 0H4
⊕ P ′

0,

P1 = 1H1
⊕ 0H2

⊕ 1H3
⊕ 0H4

⊕ P ′
1,

where P ′
0 and P ′

1 are projections in K⊕K with the following matrix representa-
tions

P ′
0 =

[
C2 CS
CS S2

]
, P ′

1 =

[
C2 −CS

−CS S2

]
.

P r o o f. From the considerations of [7: Chapter V.1] we conclude that there exist
Hilbert spaces H1,H2,H3,H4,L and commuting operators X and Y defined on
L satisfying 0 � X � 1, 0 � Y � 1, X2 + Y 2 = 1, KerX = KerY = {0}, such
that

H = H1 ⊕H2 ⊕H3 ⊕ H4 ⊕L⊕ L
and

P0 = 1H1
⊕ 1H2

⊕ 0H3
⊕ 0H4

⊕ P ′
0,

P1 = 1H1
⊕ 0H2

⊕ 1H3
⊕ 0H4

⊕ P ′
1,

where P ′
0 and P ′

1 are projections in L⊕L with the following matrix representa-
tions

P ′
0 =

[
X2 XY
XY Y 2

]
, P ′

1 =

[
1 0
0 0

]
.
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Let dim(L ⊕ L) = 2n and {ϕ1, . . . , ϕn, ψ1, . . . , ψn} be an orthonormal basis of
L ⊕ L. We can assume that {ϕ1, . . . , ϕn} is an orthonormal basis of L and
that the subspace spanned by vectors ψ1, . . . , ψn is an isomorphic copy of L.
Let X̂ and Ŷ be the matrix representations of X and Y in the orthonormal
bases {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn}, respectively. Then operators P ′

0 and P ′
1

are represented in the basis {ϕ1, . . . , ϕn, ψ1, . . . , ψn} by the following matrices

P̂ ′
0 =

[
X̂2 X̂Ŷ

X̂Ŷ Ŷ 2

]
, P̂ ′

1 =

[
1̂ 0
0 0

]
,

1̂ being obviously the identity matrix. Let us consider the following unitary
operator on L ⊕ L

U =
1√
2

[√
1 +X −√

1−X√
1−X

√
1 +X

]
.

Let {ϕ̃1, . . . , ϕ̃n, ψ̃1, . . . , ψ̃n} be an orthonormal basis of L ⊕ L given by

ϕ̃i = Uϕi, ψ̃i = Uψi, for i = 1, . . . , n.

Projections P ′
0 and P ′

1 have the following matrix representations in this new
basis

Û∗P̂ ′
0Û =

1

2

[ √
1̂ + X̂

√
1̂− X̂

−
√
1̂− X̂

√
1̂ + X̂

][
X̂2 X̂Ŷ

X̂Ŷ Ŷ 2

]

×
[√

1̂ + X̂ −
√
1̂− X̂√

1̂− X̂
√
1̂ + X̂

]
=

1

2

[
1̂ + X̂ Ŷ

Ŷ 1̂− X̂

]
,

(13)

Û∗P̂ ′
1Û =

1

2

[ √
1̂ + X̂

√
1̂− X̂

−
√
1̂− X̂

√
1̂ + X̂

][
1̂ 0
0 0

]

×
[√

1̂ + X̂ −
√
1̂− X̂√

1̂− X̂
√
1̂ + X̂

]
=

1

2

[
1̂ + X̂ −Ŷ
−Ŷ 1̂− X̂

]
.

(14)

Let us take now operators C and S on the subspaces Lin[ϕ̃1, . . . , ϕ̃n] and

Lin[ψ̃1, . . . , ψ̃n] with the following matrix representations in the bases

{ϕ̃1, . . . , ϕ̃n} and {ψ̃1, . . . , ψ̃n}

Ĉ =

√
1̂ + X̂

2
, Ŝ =

√
1̂ − X̂

2
.
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Assumptions on X and Y imply that 0 � C � 1, 0 � S � 1, S2 + C2 = 1
and KerC = KerS = {0}. Since we can identify L ⊕ L with Lin[ϕ̃1, . . . , ϕ̃n] ⊕
Lin[ψ̃1, . . . , ψ̃n], from (13), (14) we conclude that

P ′
0 =

[
C2 CS
CS S2

]
, P ′

1 =

[
C2 −CS

−CS S2

]
.

To finish the proof we only have to put K = Lin[ϕ̃1, . . . , ϕ̃n]. �
Remark 2� Projections P ′

0 and P ′
1 have the same dimension.

Indeed, take V =
[
1 0
0 −1

]
. Then P ′

0 = V P ′
1V , and since V is unitary this

implies that dimP ′
0 = dimP ′

1.

Remark 3� Let R0 and R1 be the ranges of projections P0 and P1, respectively.
Then we have

H1 = R0 ∩R1, H2 = R0 ∩ R⊥
1 , H3 = R⊥

0 ∩R1, H4 = R⊥
0 ∩R⊥

1 ,

K ⊕K = (H1 ⊕H2 ⊕H3 ⊕H4)
⊥

(cf. [7: Chapter V.1]).

3. Main results

Let P0 and P1 be nontrivial projections in H and πi ∈ (0, 1), i = 1, 2.
Let us consider the representations of P0 and P1 given by Theorem 3. Put
mi = dimPi, i = 0, 1, and k = dimP ′

0 = dimP ′
1. Set π̃i = θ k

mi
πi, i = 0, 1,

where θ = 1
k

m0
π0+

k
m1

π1
. The following theorem shows that the problem of dis-

crimination between states ρ0 = 1
dimP0

P0 and ρ1 = 1
dimP1

P1 can be reduced to
the discrimination problem in K ⊕K.

������� 4� Suppose that K ⊕ K is nontrivial. Let (M̃0, M̃1) be an optimal
measurement in K ⊕ K for the discrimination problem given by (ρ̃0, ρ̃1) and
(π̃0, π̃1), where ρ̃0 = 1

dimP ′
0
P ′
0, ρ̃1 = 1

dimP ′
1
P ′
1. Let α ∈ [0, 1] be arbitrary.

Measurement (M0,M1) in H given by

M0 = 1H1
⊕ 1H2

⊕ 0H3
⊕ (α1H4

)⊕ M̃0,

M1 = 0H1
⊕ 0H2

⊕ 1H3
⊕ ((1− α)1H4

)⊕ M̃1, when
π0
m0

� π1
m1

,
(15)

or

M0 = 0H1
⊕ 1H2

⊕ 0H3
⊕ (α1H4

)⊕ M̃0,

M1 = 1H1
⊕ 0H2

⊕ 1H3
⊕ ((1− α)1H4

)⊕ M̃1, when
π0
m0

<
π1
m1

(16)

is an optimal measurement for the discrimination problem given by (ρ0, ρ1) and
(π0, π1), where ρ0 = 1

dimP0
P0 and ρ1 = 1

dimP1
P1. In case when K ⊕ K is trivial

we omit the last summand in formulas (15), (16).
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P r o o f. Suppose that K ⊕ K is nontrivial and π0

m0
� π1

m1
. It is straightforward

to check that (M0,M1) is a measurement in H. By virtue of Theorem 1 we have

M̃0(π̃0ρ̃0 − π̃1ρ̃1)M̃1 = 0, (17)

(π̃0ρ̃0 − π̃1ρ̃1)M̃0 � 0, (18)

(π̃1ρ̃1 − π̃0ρ̃0)M̃1 � 0. (19)

We have to check that the same is true for the measurement (M0,M1) and states
(ρ0, ρ1) with prior probabilities (π0, π1). By (17)–(19) we have

M0(π0ρ0 − π1ρ1)M1

=
1

θ

[
0H1

⊕ 0H2
⊕ 0H3

⊕ 0H4
⊕ M̃0(π̃0ρ̃0 − π̃1ρ̃1)M̃1

]
= 0,

(π0ρ0 − π1ρ1)M0

=

[(
π0
m0

− π1
m1

)
1H1

⊕ π0
m0

1H2
⊕ 0H3

⊕ 0H4
⊕ 1

θ
(π̃0ρ̃0 − π̃1ρ̃1)M̃1

]
� 0,

(π1ρ1 − π0ρ0)M1

=

[
0H1

⊕ 0H2
⊕ π1
m1

1H3
⊕ 0H4

⊕ 1

θ
(π̃0ρ̃0 − π̃1ρ̃1) M̃0

]
� 0.

Using again Theorem 1 we conclude that measurement (M0,M1) is optimal for
the discrimination problem given by (ρ0, ρ1) and (π0, π1). The same proof works
for the case when π0

m0
< π1

m1
and when K ⊕K is trivial. �

Remark 4� Later we shall show that we can always find an optimal measure-

ment (M̃0, M̃1) which is simple, i.e., such that M̃0 and M̃1 are projections (see
Theorem 6 and Remark 5 below). By taking α = 0 or α = 1 in (15), (16) we
then obtain an optimal simple measurement.

Under the assumptions of the above theorem we have

������� 5� The probability of failure for the optimal measurement given by
Theorem 4 equals

Pe = 1− 1

θ
+

1

θ
P̃e − π0

m0
(dimH1 + dimH2)− π1

m1
dimH3,

when
π0
m0

� π1
m1

,
(20)

Pe = 1− 1

θ
+

1

θ
P̃e − π0

m0
dimH2 − π1

m1
(dimH1 + dimH3) ,

when
π0
m0

<
π1
m1

,
(21)
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where P̃e denotes the failure probability for the discrimination problem given by

(ρ̃0, ρ̃1) and (π̃0, π̃1). In case when K ⊕K is trivial we take P̃e = 1.

P r o o f. Suppose that π0

m0
� π1

m1
and K⊕K is nontrivial. Using formula (15) we

obtain

π0 tr(ρ0M0) =
π0
m0

tr(1H1
⊕ 1H2

⊕ 0H3
⊕ 0⊕ M̃0P

′
0)

=
π0
m0

(dimH1 + dimH2) +
π0
m0

tr(M̃0P
′
0)

=
π0
m0

(dimH1 + dimH2) +
1

θ
π̃0 tr(M̃0ρ̃0),

π1 tr(ρ1M1) =
π1
m1

tr(0H1
⊕ 0H2

⊕ 1H3
⊕ 0⊕ M̃1P

′
1)

=
π1
m1

dimH3 +
π1
m1

tr(M̃1P
′
1)

=
π1
m1

dimH3 +
1

θ
π̃1 tr(M̃1ρ̃1).

From this and (1) we have

1− Pe = π0 tr(ρ0M0) + π1 tr(ρ1M1)

=
π0
m0

(dimH1 + dimH2) +
π1
m1

dimH3 +
1

θ
π̃0 tr(M̃0ρ̃0) +

1

θ
π̃1 tr(M̃1ρ̃1)

=
π0
m0

(dimH1 + dimH2) +
π1
m1

dimH3 +
1

θ
(1− P̃e),

which gives us (20).

In case when K ⊕K is trivial we have

π0 tr(ρ0M0) =
π0
m0

(dimH1 + dimH2),

π1 tr(ρ1M1) =
π1
m1

dimH3,

which yields

Pe = 1− π0
m0

(dimH1 + dimH2)− π1
m1

dimH3. (22)

It is easily seen that putting P̃e = 1 in (20) we obtain (22). The proof for the
case when π0

m0
< π1

m1
is similar. �

Let K be a Hilbert space and let P ′
0, P

′
1 be projections in K⊕K of the following

form

P ′
0 =

[
C2 CS
CS S2

]
, P ′

1 =

[
C2 −CS

−CS S2

]
,
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where S and C are nonnegative commuting operators onK satisfying S2+C2 = 1
and KerS = KerC = {0}. Let us consider the quantum discrimination problem
given by the states ρ̃i =

1
dimP ′

i
P ′
i , i = 0, 1, with prior probabilities π̃i ∈ (0, 1),

i = 0, 1.

������� 6� Measurement (M̃0, M̃1) in K ⊕K given by

M̃0 =
1

2

[
1+A

√
1−A2√

1−A2 1− A

]
, (23)

M̃1 =
1

2

[
1−A −√

1−A2

−√
1−A2 1+A

]
, (24)

where

A = δ(C2 − S2)
(
1− (1− δ2)(C2 − S2)2

)− 1
2 ,

δ = π̃0 − π̃1
(25)

is optimal for the discrimination problem given by (ρ̃0, ρ̃1) and (π̃0, π̃1).

In the proof we shall use the following lemma.

����� 7� Let A = [ B C
D E ] be an operator on K ⊕ K. Assume that B, C and D

commute. Then A � 0 if and only if B � 0, E � 0, D = C∗ and BE−CC∗ � 0.

P r o o f. See [2]. �

P r o o f o f T h e o r e m 6. First notice that operator A is well defined. Indeed,
since |1 − δ2| � 1 the assumptions on S and C imply that all eigenvalues of

operator 1− (1− δ2)(C2 − S2)2 are positive. Thus
(
1− (1− δ2)(C2 − S2)2

)−1

exists. Let us observe that formulas (23)–(25) can be obtained from formulas (5),
(6) by substituting operators S and C in place of real numbers s and c. Moreover,

as before, we have S =
√
1− C2. These facts together with Remark 1 imply

that

M̃0(π0ρ̃0 − π1ρ̃1)M̃1 = [fi,j(C)]i,j=1,2 ,

where fi,j, i, j = 1, 2, are the functions defined in Section 1. Now from (7) we
have

M̃0(π0ρ̃0 − π1ρ̃1)M̃1 = 0.

Denote by g(k)(c) = [g
(k)
i,j ]i,j=1,2, k = 1, 2, the matrices in equations (8) and

(9), respectively. Since the matrices are positive for all c ∈ (0, 1), the principal

minors g
(k)
1,1(c)g

(k)
2,2(c) − |g(k)1,2(c)|2 and g

(k)
2,2(c), k = 1, 2, must be nonnegative.

Since the matrices given by (π0ρ̃0 − π1ρ̃1)M̃0 and (π1ρ̃1 − π0ρ̃0)M̃1 have the
form g(k)(C), k = 1, 2, the nonnegativity of minors together with Lemma 7 and
Theorem 1 imply the result. �
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Remark 5� It can be easily checked that the measurement (M̃0, M̃1) in the
above theorem is simple.

Summarizing, Theorems 4 and 6 enable us to construct an optimal measure-
ment for the quantum discrimination problem determined by arbitrary two finite
dimensional projections.

4. Examples

Let P be an m-dimensional projection on a Hilbert space H. Take ϕ ∈ H.
Put P0 = |ϕ〉〈ϕ|, P1 = P and consider the discrimination problem given by
ρ0 = P0, ρ1 = 1

mP1 and π0, π1 ∈ (0, 1).

Example 1. Suppose that ϕ ∈ P (H). Remark 3 yields

H1 = Lin[ϕ], H2 = {0}, H3 = P (H) ∩ Lin[ϕ]⊥, H4 = P (H)⊥, K ⊕K = {0}.
From this we have

dimH1 = 1, dimH3 = m− 1.

Theorem 4 now gives the following formulas for the optimal measurement

M0 = 1H1
⊕ 0H3

,

M1 = 0H1
⊕ 1H3

, when π0 � π1
m
,

M0 = 0H1
⊕ 0H3

= 0,

M1 = 1H1
⊕ 1H3

= 1, when π0 <
π1
m
.

The failure probabilities obtained by the use of Theorem 5 are given by

Pe = 1− π0 − π1
m

(m− 1) =
π1
m
, when π0 � π1

m
,

Pe = 1− π1
m
m = π0, when π0 <

π1
m
.

Let us mention that this case can also be easily handled by the use of Theorem 1
alone.

Example 2. Suppose now that ϕ /∈ P (H) and Pϕ �= 0. From Remark 3 we easily
conclude that

H1 = H2 = {0}, H3 = Lin[ϕ]⊥ ∩ P (H), H4 = Lin[ϕ]⊥ ∩ P (H)⊥.

It can easily be checked that

H3 =
{
ξ ∈ P (H) : 〈ξ|Pϕ〉 = 0

}
= Lin[Pϕ]⊥ ∩ P (H). (26)
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Since Pϕ �= 0 the above equality implies dimH3 = dimP (H)− 1 = m− 1. Put
H5 = Lin [ϕ, Pϕ]. Obviously, H5 ⊥ H4. (26) implies that H5 ⊥ H3 as well.
Thus H5 ⊥ H1 ⊕ H2 ⊕H3 ⊕H4. We shall show now that H1 ⊕H2 ⊕H3 ⊕H4

is the orthogonal complement of H5 in H. Take ξ ∈ H such that ξ ⊥ H5. Then
ξ ⊥ ϕ and ξ ⊥ Pϕ; moreover, ξ = Pξ + (1 − P )ξ. Put ξ1 = Pξ ∈ P (H) and
ξ2 = (1− P )ξ. We have now

〈ξ1|ϕ〉 = 〈ξ|Pϕ〉 = 0.

Thus ξ1 ∈ Lin[ϕ]⊥ ∩ P (H). Let us observe now that ξ2 = ξ − ξ1 and ξ, ξ1 ∈
Lin[ϕ]⊥. Thus ξ2 ∈ Lin[ϕ]⊥. Since ξ2 = (1 − P )ξ ∈ P (H)⊥ we conclude
that ξ2 ∈ Lin[ϕ]⊥ ∩ P (H)⊥. We have shown that for any ξ ⊥ H5 there exist
ξ1 ∈ Lin[ϕ]⊥ ∩ P (H) and ξ2 ∈ Lin[ϕ]⊥ ∩ P (H)⊥ such that ξ = ξ1 + ξ2. This
means that ξ ∈ H1 ⊕ H2 ⊕ H3 ⊕ H4. Therefore H1 ⊕ H2 ⊕ H3 ⊕ H4 is the
orthogonal complement of H5 which proves that

H = H1 ⊕H2 ⊕H3 ⊕H4 ⊕H5 = H3 ⊕H4 ⊕H5.

We have dimH5 = 2. Taking any two orthogonal vectors β1, β2 ∈ H5 we put
K = Lin[β1]. Identifying K with Lin[β2] we get H5 = K ⊕ K. Put ψ0 = ϕ,

ψ1 = Pϕ
‖Pϕ‖ , and notice that

P = P (1− |ψ1〉〈ψ1|) + P (|ψ1〉〈ψ1|) = P (1− |ψ1〉〈ψ1|) + |ψ1〉〈ψ1|. (27)

Projection P (1− |ψ1〉〈ψ1|) is a composition of two commuting projections with
ranges P (H) and Lin[Pϕ]⊥, respectively. This implies that P (1−|ψ1〉〈ψ1|)(H) =
Lin[Pϕ]⊥ ∩ P (H) = H3. Thus from (27) it follows that, according to the iden-
tification of H with H3 ⊕H4 ⊕H5, we can write

P1 = P = 1H3
⊕ 0H4

⊕ |ψ1〉〈ψ1|,
and obviously

P0 = |ϕ〉〈ϕ| = 0H3
⊕ 0H4

⊕ |ψ0〉〈ψ0|.
By virtue of Theorem 4 the problem of discrimination between states ρ0 = P0

and ρ1 = 1
mP1 with prior probabilities π0, π1 ∈ (0, 1) reduces now to dis-

crimination between pure states |ψ0〉〈ψ0| and |ψ1〉〈ψ1| with prior probabilities
π̃0 = π0m

π1+π0m
and π̃1 = π1

π1+π0m
. The failure probability for the optimal mea-

surement equals in this case

P̃e =
1

2
− 1

2

√
1− 4π̃0π̃1|〈ψ0|ψ1〉|2

=
1

2
− 1

2

√
1− 4

π0π1m

(π1 + π0m)2
‖Pϕ‖2.

From Theorem 5 we conclude that

Pe = 1− 1

θ
+

1

θ
P̃e − π1

m
dimH3, where θ =

m

mπ0 + π1
.
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Easy computations give now

Pe =
1

2

(
π0 +

π1
m

)[
1−

√
1− 4π0π1m

(π1 + π0m)2
‖Pϕ‖2

]
.
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