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APPROXIMATION BY COMPLEX
SUMMATION-INTEGRAL TYPE OPERATOR
IN COMPACT DISKS

ViAy GurPTA — RANI YADAV

(Communicated by Jan Borsik)

ABSTRACT. In the present paper we estimate a Voronovskaja type quantitative
estimate for a certain type of complex Durrmeyer polynomials, which is different
from those studied previously in the literature. Such estimation is in terms of
analytic functions in the compact disks. In this way, we present the evidence
of overconvergence phenomenon for this type of Durrmeyer polynomials, namely
the extensions of approximation properties (with quantitative estimates) from
real intervals to compact disks in the complex plane. In the end, we mention
certain applications.
©2013

Mathematical Institute
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1. Inroduction

If f: G — C is an analytic function in the open set G C C, with D; C G
(where D1 = {z € C : |z] < 1}), then S. N. Bernstein proved that the complex
Bernstein polynomials converges uniformly to f in D; (see e.g., Lorentz [8
p. 88]). Sorin G Gal has done commendable work in this direction and he
estimated upper quantitative estimates for the uniform convergence for the first
time. (see e.g. [3 p. 264]). Also exact quantitative estimates for different
operators were established in his recent papers see e.g. [2], [4], [6] and [5] etc.

In the recent years and for the real variable case, Abel-Gupta-Mohapatra [1]
studied the rate of convergence and established asymptotic expansion of certain
Bernstein-Durrmeyer type operators, which are discretely defined at f(0). The
aim of the present article is to extend the studies on such operators. Let R > 1

2010 Mathematics Subject Classification: Primary 30E10; Secondary 41A25.
Keywords: complex Durrmeyer-type operators, uniform convergence, analytic function,
Voronovskaja-type result.
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and suppose that f: Dp — C is analytic in Dp = {z € C : |z| < R} that is
oo
we can write f(z) = Y cp2¥, for all z € Dg, the complex Bernstein-Durrmeyer

k=0
type operator defined as

My(fiz) = (n+1)) pan(2) / F@)pnk—1(t) dt + £(0)pno(2) (1)
k=1 0

where z € C, n=1,2,... and

Pnk(2) = <Z> 2Rl — 2k,

Our results will put in evidence the overconvergence phenomenon for the op-
erators (). The results established here are the extensions of approximation
properties with exact quantitative estimates from the real interval [0, 1], to com-
pact disks in the complex plane. Also, the methods used here are different from
other complex Bernstein-type operators.

2. Basic results

In the sequel, we shall need the following basic results.

LEMMA 1. For alle, =t?, p € NU{0} and z € C we have
o z2(1—2)
Cn+p+2

nz+p

Mn(€p+172) n4p+2

M, (ep, 2) + M (ep, 2).

Proof. Forp = 0 the relationship is evident from M, (eg, z) =1 and M, (e1, z) =

nz

iy (see e.g., [1]).
Therefore, let p € N. Using the equality
2(1 = 2)ph x(2) = (k — nz)pn.k(2),
we have

2(1—2)M] (ep, 2)

=m+1)) 2(1—2)pyi(2) [ posr—1()tF dt

- IM-

=m+1) ) (k—n2)pai(2) [ Por—1(t)tFdt

S O —__

ol
Il
-
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1
n+1) ank: / )—nt} +nt 4+ (1 — nz)pn r—1(t)tF dt
k=1 0
1

(n+1) ank /t (1=t)py, k1 ()P dt+(1—=nz) My (ep, 2) +nMp(epi, 2).

Integrating by parts the last integral, we get
(1= )M 2) = — 0+ D)Malep,2) + (0 +2)Ma(epin, 2)
+ (1 —nz)M,(ep, 2) + nMp(ept1,2).
This completes the proof of Lemma [l O

LEMMA 2.

(i) For alln € N and p € NU{0}, we have My(ep,1) < 1.
(ii) For allm,p € N and z € C, we have

min{rn,p}
n+1)! n
Mo = DS () atr 0

(n+p+1)! —
p—1
where F,(v) = [[ (v+j) for allv >0,
j=0
k
AFF,(0) =) (-1 ( ) k=)

7=0
and AYF,(0) >0 for all k and p.
Proof.
(i) For p = 0 we have M, (e,, 1) = 1. So let p > 1. By definition, we get

n

n

— (n—i—l);(n)zk(l—z)”_k(k ) <Z! b1y Bl +2)

_ (k+p—1)!(n— k:+1)'.

where B is the Euler’s Beta function given by B(k+p, n—k+2)= (mtpt1)!
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Thus
B n(n+1)
Mulen )= (4 p)ntpt1) <

(ii) We have

1 1
/pn po1 ()P dt = / < >tk+P—1(1 — )R gt
0 0

n!
N (k: Di(n—k+1)!
n! n!

- (n+p+1)![k(k+1)~-~(k+p_1)]:

-B(k+p,n—k+2)

Ey(k),

(n+p+1) p(k)
p—1

where F,(v) = [] (v+j). It is obvious that Fj,(v) and its derivatives of any
j=0

order are > 0 for all v > 0, which implies that A¥F,(0) > 0 for all k and p.

Therefore

(n+1)! -
Mo ) = [ s - pual2)E0)
k=0
(n+1)! zn: <”> k k
= ATF,(0)z
(n+p+1)! = \k
min{n,p}
(n+1)! LADN? k
= AT F;
(n+p+1)! kZ:O i) A (0
which proves the lemma. O

COROLLARY 3. Forallp,n € NU{0} and |z| < r, r > 1 we have | M, (ep, z)| < rP.

Proof. By Lemma 2] it follows that

min{n,p}
(n+1)! n\
E AT F <
(n+p+1)! k)1t p(0) =1

k=0

which implies that
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3. Main results

The first main result one refers to upper estimates.

THEOREM 1. Let f(z) = E ckz® forall |zl < R, R > 1 and take 1 <r < R.

For all |z| <7 andn € N, we hcwe
My (f,2) = f(2)] < ,

where Cp.(f) =2 " |eplp(p + 1)rP < oo.
p=2

Proof. First we prove that M,(f,z) = > cxMp(ex,2). Indeed denoting

k=0
Im(z) = 3 ¢j27, |z| <r with m € N, by the linearity of M,, we have
7=0
Mn(fma Z) = Z ck’Mn<eka Z),
k=0

and it is sufficient to show that for any fixed n € N and |z| < r with r > 1, we
have lim M, (fm,2)=M,(f, z). But this is immediate from lim || f,,—f|-=0,
m—o0 m—roo

the norm being defined as || f||- = max{|f(2)| : |z] < r} and from the inequality
Mo (Fms 2) = Ma(f. )] ) 1

< [fm(0) = FO)]- (1 = 2)"| + (n+1 Z\pnk |/pnk 1) fm(t) — ()] dt
< Crnllfm = fllrs - 0

valid for all |z| < r, where

n 1
Crm=14r)" Z<>1+Tnkk/pnkl
0

k=1

Therefore we get

| M (f,2) z)| < Z |cp| - [Mn(ep, 2) — €p(2)| = Z |cp| - [Mn(ep, 2) — €p(2)],

as My, (eo,z) = ep(z) = 1.
We have two cases:
(i) 1<p<n,
(i) p > n.
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Case (i): By Lemma 2] we have

Mo(ey,2) — ey(z) = 2 [ (n+1)! _ (”) APF(0) 1}

(n+p+1)!\p
(n(i_g:)‘ly ::; <Z> A F,(0)2"
and | My (e, 2) — ep(2)] < 1P {1 _ (n(z-]‘;i)'l)' <Z> pr(O)}
[ 0 D () amo)
— P [1 _ (n(i;j—)!l)! <Z> Aﬁ’Fp(())] .
Hence, we can write
S G)sme = 0 C= T

By using the formula

k k
1-J]z <> (1—2)),0<2; <1, j=1,2,...k
j=1 j=1

with z; = EZE;’Q and k = p, we obtain
P . .
(n+j—p) (n+j—p) 1 p(p+1)
1-— ] < 1-— ] =(p+1 ) < .
H(n+y+1) ]Z_:l( m+j+1)) =@ );n+y+1 n
Therefore it follows that
2p(p + 1)rP
Malep.2) — ep(z)] < PO

Case (ii): By (i) and for p > n > 1, we obtain

p(p+1)rP
[Mn(ep, 2) = ep(2)] < [Mnlep, 2)| + lep(2)] < 27 <270 0

By the cases (i) and (ii), we conclude that for all p,n € N one has

2 1)r?
Maeg, ) —eple)] < PP

Hence, we get -
2
Ma(f.2) = < S leplolp+ 1)1,

which proves the theorem. p=1
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We have the following Voronovskaja-type quantitative estimate.

THEOREM 2. Let R > 1 and suppose that f: Drp — C is analytic in D =

{z € C: |2| < R} that is we can write f(z) = > cyz*, for all z € Dg. For
k=0
any fized r € [1, R] and for allm € N, |z| < r, we have

]\4—71(‘](-7 Z) _ f(Z) o Z(l - Z)f”(Z) - 2Zf/(2) < MT(Qf)a

n n

where M,.(f) = 3 |ck|kBy 7% < 0o and
k=1

By = r?(2k> +2k) +7(8k* + k* + 13k +4) + (6k> + k* + 17k +6) +4(k—1)3(1+7).

Proof. We denote e;(z) = z¥,k = 0,1,2,... and 7y, (2) = M, (ex,z). By the

proof of Theorem [, we can write M, (f,z) = > ¢,k n(2). Also
k=0
1—2)f"(2) = 2zf' 1—2) & 27
Z( Z)f (Z) Zf (Z) — Z( Z>ZCkk<k—1>Zk_2_ ZZCkak_l
n [ "=
}: — k(k 4+ 1)2)2F 1
[yt
Thus

2(1=2)f"(2) = 22f'(2)

(k(k — 1) — k(k +1)2)2+!

‘Mnm ) - fz) -
<D el
k=1

for all z € Dr, n € N.

By Lemmalll, forallm € N,z € C and kK =0,1,2,..., we have

z1—-2) (2)+ nz+k
nt k42 o T g

Ten(2) —ex(2) —

Y

Torn(2) = T (2).

If we denote

—1)= z)zk1
Epn(2) = mrn(2) — ex(z) — (k(k —1) kT(Lk +1)2)

then it is obvious that Ej ,(z) is a polynomial of degree less than or equal to k
and by simple computation and the use of above recurrence relation, we are led
to

z(1=2) _, nz+k—1

Ben()= 3 i1
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where

Zk—2

2(2k3 + 2k —4k3 +9k% — 9k + 4
<n+k+1)[z( +2k) + 2( + +4)

Xk’n(z) =
n
+(2k% — 9k* + 13k — 6)],

forall k> 1, neNand |z| >r.
Using the estimate in the proof of Theorem [Il we have
k
min(2) — ex(z)] < 2 FIT
n
for all k,n e N, |z| <r, with 1 <.
For all k,n € NJk > 1 and |z| < r, it follows

r(1+4r) nr+k—1
Bl < "D L@ T B X G
Since :L(Jrl,jﬁ < T(lir) and Tjkk;f < r, it follows
r(l+r
B2 < "L LG B ()] X ()

Now we shall find the estimation of [Ej_, , (2)| for k > 1. Taking into account
the fact that Ex_1 ,(z) is a polynomial of degree < k — 1, we have

k—1
[Biin(G)l < 1Bl

(k—1eg—2[(k —2) — keq]

n

k—1
< . |10 — €r—1llr +

|

k-1 {2(1@ — 1)krk—1 N r*=2(k — 1)k(1 + 7“)}

r n n

_1)2 N2 k-1
< (k—1)%k [%k_l N 1+TT,€_1} < 4(k —1)%kr .
n r n
Thus
r(l+7r), 4(k —1)%k(1 +r)rk
FE <
n | k—l,n(z)‘ — n2
and
4k — 1)2k(1 + r)rk
Bl < T BT e @)+ 1K),
where
rh—2

[7%(2K° + 2Kk) + r(4k® + 9k* + 9k + 4)

k
(2K 4+ 9K+ 13k +6)] < | A,
n
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for all |z2| <7, k>1,n €N, where
Apr =12 (2k% + 2k) + r(4K® + 9k* + 9k + 4) + (2k> + 9k + 13k + 6).

Thus for all |z| <7, k>1,neN

k
,
()] < lB-1a(2) + | B

where By, , is a polynomial of degree 3 in k defined as
By = A +4(k — 1)%k(1 + 7).

But Ep,(z) = 0, for any z € C and therefore by writing last inequality for
k =1,2,... we easily obtain step by step the following

kK k

r kr
Bra() < )3 Bin <", B
j=1

We conclude that

Mo (f,2) — f(z) — 2L = A(E) = 22F12)

n
o0 1 (o]
< ; ekl Brnl < ; ek kBro 1

As fW(2) = 3 cxk(k—1)(k—2)(k—3)2""* and the series is absolutely conver-

k=4
gent in |z| < r, it easily follows that > |c|k(k—1)(k—2)(k—3)r*=* < oo, which
k=4
implies that > |c|kBy, 7% < co. This completes the proof of theorem. O
k=1

Finally, we will obtain the exact order in approximation by this type of com-
plex Bernstein-Durrmeyer polynomials and by their derivatives. In this sense,
we present the following result.

THEOREM 3. Let R > 1 and suppose that f: D, — C is analytic in Dg, that
(o]

is we can write f(z) = Y. cx2”, for all z € Dg. If f is a polynomial of degree
k=0

> 0, then for any r € [1,}%), we have

IMa(f, ) = fll > C’;Ef), neN

where Cy.(f) depends only on f and r.
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Proof. Forall f e D, and n € N, we have

Ma(f2) — fz) = | {za ()~ 2:0'(2)

n

v {n2<Mn<f,z> O M(Z))H'

n

Also, we have

IE+Gllr = [I1Fllr = [1Gll| = [ Fllr = 1G]]

It follows

V(£ = £l 2 )l = e’ =20 f,
61(1 — el)f” — 2€1f/

ot i)
n n -
Taking into account that by hypothesis f is not a polynomial of degree 0 in Dpg,
we get |ler(1 —eq)f” —2erf'||- > 0.

Indeed, supposing the contrary it follows that z(1 —2) f”(z) — 2z f'(2) = 0 for
all [z] <r, that is (1 — z) f"(z) —2f'(2) = 0 for all |z| < r with z # 0. The last
equality is equivalent to [(1 — z)f'(2)] — f/(z) = 0, for all |z| < r with z # 0.
Therefore we get (1 —2z)f'(z) — f(z) = C, with C a constant, that is f(2) = %,
for all |z] <r with z # 0.

But since f is analytic in D, and r > 1, we necessarily have C' = 0 (contrari-
wise, we would get that f(z) is not differentiable at z = 1, which is impossible),
a contradiction with the hypothesis.

Mn(fv')_f_

Now by Theorem 2, we have

er(L—er)f” —2erf”
n

’I'L2 Mn(fv')_f_

< M,(f).

r

Therefore there exists an index ng depending only on f and r, such that for all
n > ng, we have
7‘}

1 1— n_9 !
ler(1 —er) f” —2e1 f'||, — n {n2 ei(l —en)f erf
1 " /
2 Hller —en)f” = 2e1 f,

n

Mn(fa')_f_

which immediately implies
1
IMa(f) = flle > o ler(L=en)f =26 f s forall n>np,

For n € {1,2,...,n9 — 1} we obviously have ||[M,(f,:) — fll» > MT’;(f) with
M, . (f) = n||M,(f,-) — fll» > 0. Indeed, since M,(f,z) is a polynomial of
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degree < n, from the equality M, (f,z) = f(z) for all |z| < r, it necessarily
follows that f(z) is a polynomial of degree < n. Let f(z) = > apz*. We get
k=0

Mn(fvz) = Zaan<ek’vz> = Zakzk-
k=0 k=0

But by Lemma [I] (or by Lemma 2 (ii) ), it is clear that the coefficient of e,
in M, (e, z) is equal to 1 only for &k = 0. This necessarily implies that f is a
constant function, contradicting the hypothesis i.e. f is a polynomial of degree
> 0. Therefore finally we obtain | M,(f,-) — f|l» > Créf) for all n, where

C’r‘(f) = min{Mr,l(f)a MT,Q(f)a s 7Mr,n071(f)a ;”61(1 - el)f" - 2€1f,||7‘}7

which completes the proof. O

As a consequence of Theorem [I] and Theorem Bl we have the following:

COROLLARY 4. Let R > 1 and suppose that f: Dr — C is analytic in Dg. If
f is not a polynomial of degree zero, then for any r € [1, R), we have

1
||Mn(f7)_f||r’\’n; ’I’LGN,

where the constants in the equivalence depend only on f and r.

4. Applications

As a first application of the approximation properties of these Durrmeyer-type
polynomials, we can mention some shape preserving properties. Thus, reasoning
exactly as in the case of complex Bernstein polynomials in [7], one can prove
that beginning with an index, the Durrmeyer-type polynomials in the present
paper approximate the analytic functions, preserving in addition,the classical
properties of univalence, star likeness, convexity and spiral likeness in geometric
function theory. Also, as a potential application, we can mention the possibil-
ity to represent some Cy-semigroups generated by a complex one-dimensional
second-order differential equation acting on the space of analytic functions in
an open disk, as a limit of iterates of these complex polynomials, exactly as it
was done in the classical well-known case of positive linear operators acting on
spaces of continuous functions of real variable.
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