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ABSTRACT. A ring with identity is said to be clean if every element can be
written as a sum of a unit and an idempotent. The study of clean rings has been at
the forefront of ring theory over the past decade. The theory of partially-ordered
groups has a nice and long history and since there are several ways of relating a
ring to a (unital) partially-ordered group it became apparent that there ought to
be a notion of a clean partially-ordered group. In this article we define a clean
unital lattice-ordered group; we state and prove a theorem which characterizes
clean unital /-groups. We mention the relationship of clean unital ¢-groups to
algebraic K-theory. In the last section of the article we generalize the notion of
clean to the non-unital context and investigate this concept within the framework
of W-objects, that is, archimedean ¢-groups with distinguished weak order unit.
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1. Preliminaries

This paper contains the foundations of a general theory of unital ¢-groups
whose spaces of maximal convex ¢-subgroups are boolean spaces (that is, com-
pact zero-dimensional and Hausdorff). The notion of a clean unital ¢-group will
be of extreme importance. Examples of such spaces abound throughout the lit-
erature. Of the various equivalent conditions that we shall present one is most
suitable from an algebraic point of view; it is an adaptation of an important
property in the theory of rings. Recall that a ring is said to be clean if every
element can be written as a sum of a unit and an idempotent. The study of
clean rings has taken up much consideration as of late. For a history of clean
rings we urge the reader to consult [12].
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In this section we present the concepts that will be used throughout the
article. A lattice-ordered group (€-group) is a group (G,-,1) equipped with a
lattice order, say <, such that whenever ¢ < h, and z,y € G, then zgy < zhy.
We ought to point out that we use 1 for the identity element while we use the
letter e to denote an arbitrary element of G.

The set

Gt={geG: 1<g}
is the collection of positive elements of the group and is called the positive cone
of G. Every (-group has the property that it is generated (as a group) by its
positive cone. In particular, letting g* = gV 1 and g~ = g~! V 1 we have that
gT,97 € GTand g = gT(g7)"t. Welet |g| = gTg~ = g Vg~ denote the
absolute value of g.

An (-subgroup of G is a subgroup which is also a sublattice. If H < G is an
f-subgroup of G, we say H is convex if 1 < g < h € H implies that g € H.
The importance of convexity is that the set of cosets of such a f-subgroup can
be equipped with a partial order making it into a lattice; gH < kH precisely
if there is an h € H such that g < kh. Let €(G) denote the set of all convex
{-subgroups of G. Since an arbitrary intersection of convex ¢-subgroups is again
a convex f-subgroup it follows that €(G) is a complete lattice under inclusion.
Moreover, €(G) is an algebraic frame (more on this later). A nice fact is that the
join of two convex f-subgroups is precisely the subgroup generated by the two
subgroups. The convex f-subgroup generated by an element g € G is denoted
G(g) and it is known that

G(g9)={h€G: |n| <|g|" for some n € N}.

Moreover, G(g) = G(lg|), and for a,b € G*, G(a) N G(b) = G(a A b) and
G(a)V G(b) = G(aVb) = G(ab).
For a subset X C G the polar of X is the set

Xt ={geG: |g|n|z|=1 forall z€X}.

For any subset X C G, X+ € €(G). When X is a singleton set, say X = {z},
we write o1 instead of {x}+. The positive elements g,h € G are said to be
disjoint if g A h = 1. For a given 1 # g € GG, we recall that an element e € G is
a component of g if the elements e and ge~! are disjoint. In this case it follows,
since disjoint elements commute, that g commutes with any of its components.
The collection of components of a given positive element forms a boolean algebra
under A and V.

An element g € G for which g+ = {1} is called a weak order unit. If g € G
and G(g) = G, then g is called a strong order unit. We ought to point out that
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we do not assume that our strong order units are positive. It is straightforward
to check that a strong order unit is in fact a weak order unit, but not conversely.
When G possesses a positive strong order unit, say u € GT, we say G is a unital
(-group. We shall have several occasions to write (G, u) is a unital ¢-group.

If P € €(G) is proper and g A h € P implies that either g € P or h € P, then
we call P a prime subgroup. It is a fact that a proper convex ¢-subgroup P is
a prime subgroup if and only if whenever g and h are disjoint, then either g or h
belongs to P. We denote the collection of prime subgroups of G by Spec(G). A
typical Zorn’s Lemma argument guarantees that for any 1 < g there is a convex
{-subgroup maximal with respect to not containing g. Such a convex ¢-subgroup
is called a walue of g, and the collection of values of g is denoted by Yos(g) and is
called the Yosida space of g. Every value of ¢ is in fact a prime subgroup. Thus
prime subgroups exist. Moreover, it is known that (| Spec(G) = {1}. Again by
Zorn’s Lemma minimal prime subgroups exist.

For a unital ¢-group (G,u) it is prudent that we point out that the values
of u are precisely the maximal proper convex f-subgroups of G, and so as is
customary we write Max(G) instead of Yos(u). Max(G) can be equipped with
the hull-kernel topology. Recall that the collection of all sets of the form

Ula) ={V e Max(G) : a ¢ V}

forms a base for the open sets of the hull-kernel topology. It is well-known that,
with regards to the hull-kernel topology, Max(G) is a compact Hausdorff space.
Observe that the operator U satisfies the following properties:

LEMMA 1.1. For all g € G and a,b € GT the following hold.

i) U(g) =U(lg]);
il) U(a) NUD) =U(a A D);
iil) U(a) UU(D) =U(aV b) =U(ab) = U(ba).

We denote Max(G) \ U(a) by V(a).

Our basic references for the theory of lattice-ordered groups are [6] and [7].
Recall that G is said to be archimedean if for every g, h € GT, whenever g" < h
for all n € N, then g = 1. See [6: Chapter 10] for properties of archimedean
{-groups. For instance, Theorem 53.3 is the result that all archimedean ¢-groups
are abelian.
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2. The inverse topology on Max(G)

Throughout this section we assume that (G, ) is a unital /-group and u € GT.
We begin by pointing out that the operator V satisfies some interesting prop-
erties. For convenience sake we let 7(G) = ([{M € Max(G)} and call this the
radical of G.

LEMMA 2.1. For all g € G and a,b € GT the following hold.
i) V(g) =V(lgl);
V(b) =V(aVb) =V(ab) = V(ba);
( ) =V(aAb);
0 if and only if g is a strong order unit,
= Max(G) if and only if g € r(G).

By condition ii) it follows that the collection {V(a) : a € Gt} forms a
base for a topology on Max(G). We call this topology the inverse topology on
Max(G) and denote it by Max(G)~!. (For information on the inverse topology
of the maximal ideal space of a commutative ring with identity the reader should
consult [10], and information on the inverse topology on the space of minimal
prime subgroups of a lattice-ordered group please consult [9].) If P, @Q € Max(Q)
are distinct points then there are elements p € PT~\Q and ¢ € Q. P. It follows
that P € V(p) \V(¢) and Q € V(¢) ~ V(p) and so Max(G)~! is a T}-space. Our
aim is to show that Max(G) ™! is a zero-dimensional Hausdorff space. We begin
by recalling the Riesz Decomposition Theorem for ¢-groups.

THEOREM 2.2 (The Riesz Decomposition Theorem). Let G be an (-group.
Suppose 1 < x,g1,...,9n and x < gy - - gn, then there exist xq,...,x, € G for
which x; < g; foreachi=1,....n and x =1 xp.

PROPOSITION 2.3. Suppose (G,u) is a unital {-group. The inverse topology
on Max(G) is a zero-dimensional Hausdorff topology. Moreover, the inverse
topology on Max(G) is finer than the hull-kernel topology on Max(G).

Proof. Let g € GT and define
Ry={zeGt: V(@)nV(g9) =0}

If P € V(g), then for any = € R,, P € U(x). Conversely, suppose that P € U(x)
for every x € Ry. If g ¢ P, then the convex {-subgroup generated by P and
G(g), say S, must be all of G. Therefore, u € S. By an application of the Riesz
Decomposition and the Triangle Inequality, it follows that w = x1 - - - x, for ap-
propriate z; € P U G(g). Then 0 = V(u) = V(z1---zx) = V(z1) N--- N V(zk).
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Partition the set T = {z1,..., 2z} into two sets T; and Ts, where z; € T}
if and only if z; € P, and set 7o = T ~\T1. Set Th1 = {y1,...,yr}. For
each z € T, € G(g) and so V(g) C V(x). It follows that V(yi---y,)
NV(g) = 0. Therefore, y; -- -y, € Ry and so by hypothesis y; - - -y, ¢ P. This
contradicts that each y; € P and therefore so is the product. Consequently,

V(g) = () U(z). Therefore, every basic open set is an intersection of closed
TER,

sets, and hence clopen; Max(G) ™' is zero-dimensional. We already pointed out
that Max(G) ™! satisfies the Tj-separation axiom therefore it is Hausdorff.

-1

As for the last statement a basic open set of the hull-kernel topology is of the
form U(a) for some a € GT. Since these sets are clopen in the inverse topology
it follows that every open set relative to the hull-kernel topology is open relative
to the inverse topology. O

COROLLARY 2.4. Suppose (G,u) is a unital {-group. For any pair of distinct
mazimal convex £-subgroups, say P and @Q, the set PQ contains a strong order
unit.

Proof. Since Max(G)~! is Hausdorff and P, Q € Max(G) are distinct there are
disjoint basic open sets, say V(a), V(b), such that P € V(a) and @ € V(b). Since
V(ab) = V(a) N V(b) = 0 then ab € PQ is a strong order unit. O

THEOREM 2.5. For a unital {-group G the following statements are equivalent.
(1) The inverse topology on Max(G) is compact.

(2) For every g € G there is an h € Gt such that gh is a strong order unit
while g A h € r(G)*.
(3) Max(G) = Max(G) ™.

Proof. The proof that (3) implies (1) is patent. Conversely, suppose that
Max(G)~! is compact. Since U(g) is clopen in the inverse topology it is compact
and so U(g) = V(g1)U---UV(gn) = V(g1 - - - gn) for appropriate g1,...,g, € GT.
Thus, for each g € GT there is an h € G such that V(g) = U(h). Consequently,
every basic open set of the inverse topology is open relative to the hull-kernel
topology and so the two topologies are the same. Observe also that by what
we have just demonstrated together with (iv) and (v) of Lemma 2.1} (3) im-
plies (2). That (2) implies (3) also follows from (2) together with (iv) and (v)
of Lemma 211 O

When the conditions of Theorem are satisfied then the hull-kernel topol-
ogy on Max(G) is compact, zero-dimensional, and Hausdorff, i.e. Max(G) is a
boolean space. The next section characterizes when this happens in general.
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3. Clean unital /-groups

The notion of a clean object first arose in the theory of rings (see [13]); a ring
is called clean if every element is the sum of a unit and an idempotent. Below
is the first application of this notion to the theory of ordered groups. It is our
aim to characterize a clean unital ¢-group. For rings the idempotents play an
integral part, while for unital ¢-groups the components of a strong order unit
play the central role. In general, we say a positive element e € G is a component
of G if there is another positive element, say f € GT, such that e A f = 1 and
ef is a strong order unit. Notice that since disjoint elements commute it follows
that in this case ef = fe = eV f. We let B(G) denote the collection of all
components of G.

For a fixed positive strong order unit v, if e € Gt satisfies e Ave™! = 1, then
we say e is a v-component of G. We denote the set of v-components of G by
B(G,v). Observe that

B(G) = U{B(G,U) : v is a strong order unit of G}.

DEFINITION 3.1. The unital ¢-group (G, u) is said to be a u-clean ¢-group if for
every g € G there exists a strong order unit v € G and a u-component of G, say
e, such that g = ve.

It would appear that we are defining left u-clean /-groups as it is not clear that
the definition is left-right symmetric. But one of the byproducts of Theorem B3]
is that the notion is, in fact, left-right symmetric. First some examples.

Here are some examples of u-clean ¢-groups.

1) Suppose (G, u) is a totally-ordered unital ¢-group. Then G is a clean unital
l-group. To see this let g € G and, without loss of generality, we suppose g is
not a strong order unit. Consider gu~!. If ¢ < 1, then gu~! < u~! and hence
it is a strong order unit of G. If 1 < g, then since ¢ is not a strong order unit
g% < u and hence g < g~ tug~!. Next,

1 1

u<ug <ug lug” h?

= (ug™
whence both ug™" and its inverse gu™" are strong order units. Thus in both cases
g = (gu™)u is a u-clean decomposition of g. Consequently, a totally-ordered

unital ¢-group is u-clean for any positive unit u of G.

1 1

2) Any finite direct product of unital ¢-groups is a unital f-group. We leave
the proof of this to the interested reader.

PROPOSITION 3.2. Every (unital) homomorphic image of a clean unital (-group
is clean.
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Proof. Suppose (G,u) and (H,v) are unital ¢-groups and ¢: G — H is a
surjective f-group homomorphism with ¢(u) = v. Suppose further that (G, u)
is a clean (-group. Let h € H. Then there is some g € G for which ¢(g) = h.
Write ¢ = we where e is a component of v and w is a strong order unit. Then
there is some n € N such that u < |w|™; v < |p(w)|™ and so ¢(w) is a strong
order unit. We claim that a component of v maps to a component of ¢(u) = v.
To see this observe that

1) d(e) Nvd(e)™! = d(e) A p(u)p(e) ! = p(e Aue™!) = ¢(lg) = 1p, and
2) d(e) Vv p(ue™") = d(u) = v.

Therefore, h = ¢(g) = ¢(w)p(e) is a clean decomposition of h. Consequently,

(H,v) is a clean unital ¢-group. O

LEMMA 3.3. Suppose (G,u) is a unital £-group. Any clopen subset of Max(G)
is of the form U(e) for some component e € B(G,u). In particular, if v € GT
is a strong order unit and f is a component of v, then U(f) = U(e) for some
component e of u.

Proof. Let K be a clopen subset of Max(G). Since Max(G) is a compact
Hausdorff space it follows that K is compact and since it is open it is of the
form U(g’) for some ¢’ € GT. Similarly, Max(G) ~ K = U(h') for some h/ € G™.
Notice that by Lemma [T 'R’ is an order unit of G. Also, ¢’ Ak’ € r(G)™. Con-
sider U(g'(¢’ ANR')™Y). If N € U(g'), then N € U(g'(¢’ A h')~1); and conversely.
Therefore, U(g') = U(g'(¢’ AR)~1). Similarly, U(h') = UK (¢’ A W)~1). Now,
letting g = ¢’(¢’ AW)~ and h = W/ (¢’ A h')~! we find that gh is an order unit
while g A h = 1. Moreover, U(g) = K.

Next, choose n such that u < (gh)™. Since g A h = 1 it follows that g and
h commute. Therefore, u < ¢g"h™. By the Riesz Decomposition Property there
are uj,us € G such that u = ujus and u; € G(g),uz € G(h). Observe that
since g A h = 1 it follows that u; Aug = 1. Furthermore, U (u;) =U(g) = K. O

DEFINITION 3.4. Recall that a frame is complete lattice, say L, for which the
following strengthened distributive law holds: for alla € L and S C L

a/\\/S:\/{a/\s: s € S}
For an ¢-group G, its lattice €(G) is an example of an algebraic frame. Recall that
¢ € L is said to be compact if whenever ¢ <\/ S for some S C L, then there is a
finite number of elements in S, say s, S2,...,8, € S such that c < 51V ---Vs,.
The collection of compact elements of L is denoted by £(L). A frame L is called
algebraic if every element is the supremum of compact elements. An algebraic
frame is said to be coherent whenever the finite meet of compact elements is
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compact. For a unital f-group G, its frame of convex f-groups is a coherent
frame.

Suppose L is a frame. Banaschewski [2] considered the following condition on
a coherent frame, which he termed weakly zero-dimensional: if whenever a,b € L
and 1 = a V b then there exits ¢,d € K(L) such that ¢ < a,d < b, cAd =0 and
¢V d = 1. Banaschewski used this condition to characterize clean rings via their
frames of radical ideals.

We now come to the main theorem of this article, a characterization of clean
unital ¢-groups. For commutative rings with identity there are several charac-
terizations of clean rings involving different concepts; see [12t Theorem 1.7].

THEOREM 3.5. Let (G, u) be a unital £-group. The following statements are
equivalent.

(1) (G,v) is a clean unital (-group for every order unit v € GT.

(2) The collection {U(e) : e € B(G)} forms a base for the hull-kernel topology
on Max(G).

(3) The collection {U(e) : e € B(G,u)} forms a base for the hull-kernel
topology on Max(G).

(4) Max(G) is a boolean space.

(5) For each g € G there is an e € B(G,u) such that V(g) C U(g) while
V(ug=t)NniU(e) = 0.

(6) €(G) is a weakly zero-dimensional frame.

(7) For every pair of distinct mazimal convex £-subgroups, say M and N, there
is a component of u in exactly one of them.

(8) (G, u) is a clean unital £-group.

Proof.

(1) = (2). Suppose (G,v) is a clean unital ¢-group for all order units
v € GT. Suppose M € Max(G) and M € U(g). Notice that, without loss of
generality, we may assume that g € G*. By an argument similar to the proof of
Proposition 23] there is some m € M ™ such that mg is an order unit. Choose
an order unit v € G and a component e of mg such that g = ve. We claim that
M € V(e) € U(g). Suppose e ¢ M, then mge~! € M (by primality). Thus,
v = ge~! € M, a contradiction. Therefore, e € M. For any N € V(e), then
g ¢ N since otherwise w € N. Thus, M € V(e) C U(g), whence the collection
{U(e) : e € B(G)} is a base for the hull-kernel topology on Max(G).

(2) <= (3). This follows from Lemma [3.3]
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(2) = (4). This is patent as for each e € B(G), U(e) is a clopen subset of
the compact Hausdorff space Max(G).

(4) = (5). Let g € G. Since the sets V(g) N V(ug~!) are disjoint closed
subsets of the compact Hausdorff space Max(G), (4) ensures that there is a
basic clopen set K for which V(g) C K and V(ug~—!) N K = (. By Lemma 3.3
K =U(e) for some e € B(G,u).

(5) = (1). Let g € G and fix v € GT an order unit. By (5), there is
some component e € B(G,u) such that V(g) C U(e) while U(e) N V(ug™t) = 0.
By Lemma 3.3 we may assume that e is a component of v. Consider ge™!. If
N € Max(G) and ge~! € N. In the case that e € N, then ¢ € N and so
N € V(e) N V(g), a contradiction. Thus, ve~! € N and so vN = eN = gN.
Consequently, vg~—! € N, thus N € V(vg~!) NU(e), a contradiction. It follows
that ge=! is an order unit. Since g = (ge~!)e is a clean expression of g we
conclude that G is v-clean.

(3) = (6). Suppose G(g) vV G(h) = G for g,h € G*. Since G(g V h) =
G(g) V G(h) = G there is some natural n € N such that u < (¢ V h)™ and so by
the Riesz Decomposition Theorem v = uy - - - uy, for 1 <wu; < gV h.

It follows that V(g) N V(h) = () are disjoint closed subsets of Max(G) and
therefore there is a clopen set of the form V(e) with e a component of u separating
V(g) and V(h), say V(g) € V(e) and V(h) C V(ue™!). Set ¢ = g Ae and
h' = h A (ue™!). Notice that ¢’ A b’ = 1. Furthermore, G(¢') V G(h') = G.
Consequently, €(G) is a weakly zero-dimensional frame.

(6) = (4). Suppose M € Max(G) and M € U(h) for h € GT. Then
G(h) VM = G and so there are principal convex ¢-subgroups G(e) < G(h)
and G(f) < M such that G(e) V G(f) = G while G(e) A G(f) = 1. Without
loss of generality, e, f € GT. We leave it to the interested reader to check that
M e V(f) CU(h). It follows that Max(G) is a boolean space.

(3) = (7). If M,N € Max(G) are distinct points then there is some
e € B(G,u) such that M € U(e) while N ¢ U(e). It follows that e € N ~\ M.

(7) = (4). Suppose V C Max(G) and M € Max(G) \ V. For each N € V
there is some ey € B(G,u) for which ey is in exactly one of M or N. By
primality, either ey € N \ M or uej\,l € N ~ M. Without loss of generality we
may assume that ey € B(G,u) and ey € N~ M. It follows that {V(en)}nev
is an open cover of V. Therefore, by compactness there is a finite subcover
of V, say V.C V(en,)U---UV(en,) = V(en, V--- Ven,). It follows that
M € U(en, V- Ven,) while U(en, V -+ Ven,) NV = 0. Consequently, the
collection of clopen subsets of Max(G) forms a base for the hull-kernel topology
on Max(G).
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(1) = (8). Obvious.

(8) = (7). Let M, N € Max(G) be distinct maximal convex ¢-subgroups.
Choose g € M ~. N. By (8) choose e € B(G,u) and an order unit v € G such
that g = ve. It follows that e ¢ N. We aim to show that e € M. Otherwise,
e~ lu € M. Then vu = vee lu = ge~'u € M. However, u < vu and thus vu is
a strong order unit. Consequently, e € M. ([

Remark 3.6. At this point we are unable to construct a proof of the equivalence
of (8) and (6) from the previous theorem without using the existence of prime
ideals; a choice-free proof. For more information on this topic we urge the readers
to check [2].

Remark 3.7. It is true that for any compact topological space X, the ¢-group
of continuous Z-valued functions on X is a clean /-group. Interestingly, it is not
a clean ring. Moreover, if G is any hyper-archimedean ¢-group, then G is a clean
unital ¢-group. To those familiar with algebraic K-theory it follows that for any
commutative ring with identity, say R, the Grothendieck ¢-group Ko(R) (which
is isomorphic to C(Spec(R),Z), is a clean unital ¢-group. We posit the question
of when is Ky(R) a clean ¢-group for a, not necessarily commutative, ring R.

We conclude this section with a look at MV-algebras. We dispense with
the formal definitions of an MV-algebra; instead the reader is urged to peruse
the literature. We do point out that the category of MV-algebras is naturally
equivalent to the category of abelian unital ¢-groups. In particular, for each
abelian unital ¢-group, say (G, u), the set

I'G,u)={geG: 1<g<u}

is an MV-algebra. Conversely, given an MV-algebra, say A, there is an abelian
unital /-group (G, u) for which A and T'(G, u) are MV-isomorphic; I' is known as
the Mundici functor. [3: Proposition 30] characterizes those MV-algebras A for
which Max(A) is a boolean space. It follows that for an abelian unital ¢-group
(G,u), G is a clean (-group if and only if every pure ideal of I'(G, u) is generated
by idempotents.

4. Tidy (-groups

In this final section we work in the category W consisting of archimedean
(-groups with designated weak order unit (G,u) and ¢-group homomorphisms
which preserve the unit. We consider a weakening of the definition of clean
{-group that is appropriate when the group is not unital. We begin by recalling
the Yosida Representation. First, recall that for a fixed weak order unit u € G,
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Yos(u) denotes the set of all values of u equipped with the hull-kernel topology.
Yos(u) is a compact Hausdorfl space with respect to the hull-kernel topology.
When u is a fixed weak order unit we shall write Y'G instead of Yos(u). And
when (G, u) is a W-object it is customary to write coz(g) instead of U(g) and
call such a set a cozero set; the complement of a cozero set (in Yos(u)) is called
a zeroset. The collection of cozero sets of G is denoted by coz G.

Let R denote the two-point compactification of R, namely R = R U {£o00}.
For a Tychonoff space X, that is X is completely regular and Hausdorff, define

D(X)={f: X = R| f is continuous and f~'(R) is a dense subset of X}.

D(X) is a lattice under pointwise operations, however the pointwise sum of two
elements need not exist. For f,g € D(X), the sum f + g is defined on the dense
set f~RNg~ 'R, though it need not extend to a continuous function on X. D(X)
is a group under pointwise addition precisely when X is a quasi F-space, that is,
every dense cozero subset of X is C*-embedded. The following representation
theorem has many incarnations, among them [I4] and [8: Theorem 2.7].

THEOREM 4.1 (Yosida Representation Theorem). Let (G, u) be a W-object.
Then there is an £-isomorphism of G onto an (-group G C D(YG) such that G
separates the points of YG and u — 1.

Henceforth, we identify any W-object (G, u) with its image in D(Y G).

DEFINITION 4.2. Let (G,u) be a W-object. We call g € G u-tidy if it may be
written as the sum g = v+ e where v is a weak order unit and e is a component
of u. If every element of G is u-tidy, then we say G is u-tidy. When it is clear
which weak order unit we are referring to we shall drop any mention of it in the
name tidy, e.g. we shall say the the W-object (G, u) is tidy.

LEMMA 4.3. Let (G,u) be a W-object. Then cozG is a base for the topology
on YG. Furthermore, if Fy, F} are disjoint closed subsets of YG then there is a
g € G with value 0 on Fy and value 1 on Fy. We may choose 0 < g < u. In
particular, if K C YG is a clopen subset, then the characteristic function Xk
belongs to G.

LEMMA 4.4. Let (G,u) be a W-object and e € B(G,u). Then in the Yosida
representation e = g the characteristic function defined on a clopen subset

KCYG.
We can characterize tidy W-objects in a similar way to clean unital ¢-groups.
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THEOREM 4.5. The W-object (G, u) is tidy if and only if YG is zero-dimen-
stonal.

Proof.

Necessity: Suppose (G, u) is tidy. Let p € coz(a) for some p € YG and a € G.
Select h € G with 0 < h < w for which h(p) =1 and h(q) = 0 for all ¢ € Z(a).
Then the sets Zg = h=1[0, 1] and Z; = h™'[},1] are disjoint closed subsets of
Y G satisfying

p€E€int Zy C 7
and

Z(a) C int Zy.
Let g € G with 0 < g < w and value i on Z; (i = 1,2). By hypothesis g is tidy
and hence we may write ¢ = v 4+ ¢ where v is a weak order unit and e = yg
for some clopen subset K of YG. Let K/ = YG \ K so that K and K’ form a
clopen partition of YG.

First we claim that p € K’. Otherwise, p € K N int Z; and for any ¢ €
KnNint Z; we get that 1 = ¢(q) = u(q)+e(q) = u(q)+1 whence KNint Z; C Z(v).
Therefore Z(v) is not co-dense contradicting our choice of weak-order unit v.
Consequently, p € K.

Next, we demonstrate that K’ Nint Zy = (). Otherwise, since Zy C Z(g) we
have for any ¢ € K’ Nint Zy

0 =g(q) = v(q) + e(q) = v(q).
Once again this contradicts our choice of weak order unit v. We conclude that
p € K’ C coz(a), whence Y G is zero-dimensional.

Sufficiency: Suppose Y G is zero-dimensional and let ¢ € G. The disjoint
closed sets Z(g) and Z(g — u) can be separated by a clopen set; that is, there
exists a clopen set K C Y G such that Z(g —u) C K and K N Z(g) = (. Write
K'=YG\ K and let v = g— x k. By the corollary we have that v € G. Clearly,
g =v+ xk/- We need only show that v is a weak-order unit.

Consider the following string of set equalities:

Zw) = {qeYG: v(q) =0}
{¢eYG: g(q) = xx}
= (KNZ(g)U(K'NZ(g—u))
=0
It follows that v is a weak-order unit and, since g was arbitrarily chosen, G is
tidy. O
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Ezample 4.6. Here is an example of a W-object G with two weak order units,
say u,v € G, for which Yos(u) is zero-dimensional yet Yos(v) is not. Thus,
G is u-tidy but not v-tidy. Notice the difference between this example and
Theorem

Let X = N and let K be a compactification of X for which K ~\ X is homeo-
morphic to [0,1]. That such a space exists follows from [I1t Theorem 2.2]. Let
u € C(X) be the function defined by u(n) = !. Define G as follows:

G={feC(X): thereissome g € C(K) such that g|x = uf}.

Observe that G is an archimedean ¢-group. Also, the function f(n) = n belongs
to G. By [8 7.1], since the W-objects (G,u) and (C(K),1) are isomorphic,
then Yos(u) is homeomorphic to K, which is not zero-dimensional since it con-
tains a subspace which is not zero-dimensional. On the other hand Yos(u) is
homeomorphic to SN ~\ N which is zero-dimensional.

Remark 4.7. In the paper [5] the authors show that a hull class in W con-
tains the class of all objects of the form (C(X),1) with X compact extremally
disconnected if and only if the class of compact Hausdorff spaces X for which
(C(X),1) belongs to the hull class is a covering class in the category of compact
Hausdorff spaces. Therefore, if the class of tidy W-objects were a hull class
then the class of boolean spaces would be a hull class, but this not so, as is well
known.
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