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ABSTRACT. We introduce the notion of gi-algebra as a generalization of dual
BC K-algebra, and define the notions of strong, commutative and transitive gi-
algebra, and then we show that an interval 11 = {a € P |l < a} in a strong and
commutative gi-algebra P is a lattice. Also, we define a congruence relation ~p
on a transitive gi-algebra P and show that the quotient set P/~p is a gi-algebra

and a dual BCK-algebra.
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1. Introduction

A DBCK-algebra is an algebraic system (X, -, 1) where X is a set, 1 is an
element of X, and - is a binary operation on X satisfying the following axioms.

(D1) (ab)((be)(ac)) =1,

(D2) a((ab)b) =1,

(D3) aa =1,

(D4) ab =1 and ba = 1 imply a = b,
(D5) al =1.

The notion of DBCK-algebra was studied in [4,[12] as the dual concept of
BCK-algebra ([8,[11,15]), and it is a poset with the greatest element 1 sat-

isfying the following properties.
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(DS) a <bif and only if ab =1,
(T) ab < (be)(ac),
(DE) a(bc) = b(ac).

There are many algebras having the similar structure such as dual BC'K-alge-
bra, Hilbert algebra ([7THL0]), implicative model ([13I4]) and implication algebra
([IH415]). Both Hilbert algebra and implicative model are equivalent. Also it is
well known that a commutative Hilbert algebra is exactly an implication algebra
([10]) and the implication algebras are equivalent to the implicative DBCK-al-
gebras ([4L15]).

If a binary operation “—” on a Boolean algebra B is defined by a — b = —a Vb,
(B, —) become one among above algebras. As a generalization of such operation,
we consider a binary operation “o” on B defined by aob = —a V bV ug for a
fixed element ug of B. This operation has some basic properties of implication,
especially, such as b < aoband c < aob = a < cob, but it satisfies neither
loa=anoraob=boa=1 = a=0>5. So we propose an algebraic structure
equipped with such binary operation o as an generalization of algebras that has
the implication such as —.

In this paper, we introduce the notion of gi-algebra which is a generalization
of DBCK-algebra. In Section 2, we define the gi-algebra and the deductive
system of it, and give some basic properties of them. In Section 3 and 4, we
introduce the notions of strong, commutative and transitive gi-algebra, and we
show that an interval 1 in a strong commutative gi-algebra P is a lattice. Also,
we define a congruence relation ~p on a transitive gi-algebra P and show that
the quotient set P/~p is a gi-algebra and a DBC K-algebra.

2. gi-algebras

DEFINITION 2.1. An algebra with a generalized implication, briefly gi-algebra,
is a poset (P, <) with a binary operation “” such that

(11) b < ab,
(I12) a <bc = b <ac.

The gi-algebra defined in Definition 2.1 has the different notion with an im-
plicative algebra of Rasiowa ([16]) that is an algebra (P, -, 1) where P is a poset
with a greatest element 1 and - is a binary operation on P such that z < y if
and only if z -y = 1. The Example 1(1) is a gi-algebra which is not implicative
algebra, i.e., 1d = 1 but 1 £ d. In Section 3, we deal a strong gi-algebra and it
is an implicative algebra.

The following are examples of the gi-algebra.
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Ezample 1.

(1) Let P ={a,b,c,d, 1} be a poset with the Hasse diagram in Figure 1.

We define a binary operation “” by the following Cayley table.

Then (P,-) is a gi-algebra.

ON ALGEBRAS WITH A GENERALIZED IMPLICATION

FicUurE 1. Hasse diagram of the poset P
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(2) Let U be a non-empty set and P(U) the poset of all subsets of U and

X € P(U). We define a binary operation “ox” by
Aox B=A°UBUX

for every A, B € P(U). Then (P(U),ox) is a gi-algebra.

The axioms (I1) and (I2) in the definition of gi-algebra are independent, as

the following example shows.

Ezample 2. Let Q = {0, a, 1} be a poset with the Hasse diagram in Figure 2.

We define two binary operations “oy’

following;:

F1GURE 2. Hasse diagram of the poset Q
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Then o; satisfies the axioms (I1), but not (I12) because a < 107 0, but 1 £ a =
a o1 0. Also, oy satisfies the axioms (12), but not (I1) because a £ 0 = 1 o a.

The following theorem can be easily verified from the properties (DS) and
(DE) and the definition of DBC K-algebra.

THEOREM 2.1. Every DBCK -algebra is a gi-algebra.

The converse of Theorem [Z1] is not true. In fact, the gi-algebra (P,-) of
Example [I(1) is not a DBCK-algebra, because 1d = 1 and d1 =1, but 1 # d.

PROPOSITION 2.2. A poset P is a gi-algebra if and only if P has the greatest
element 1 and satisfies the following properties.

(1) aa =1,
(2) a <bc = b<ac.

Proof. Suppose that P be a gi-algebra. Then it has the property (2) from the
definition of gi-algebra. To show the property (1), let a € P. Then for every
be P,a<baand b < aa by (I1) and (I2). That is, aa is the greatest element
in P. Hence P has the greatest element 1 and 1 = aa for every a € P.
Conversely, suppose that P has the greatest element 1 satisfying the properties
(1) and (2). Then we need only to show the property (I1). Let a,b € P. Then
a <1="0bbby (1), and this implies b < ab by (2). Hence P is a gi-algebra. [

PROPOSITION 2.3. A gi-algebra P has the following properties:
for any a,b,c € P,
(1) a<b = ab=1,

Proof.

(1) Let a,b € P with a < b. Since b < 1b by (I1), a < 1b. This implies 1 < ab
by (I2). Hence ab = 1.

(2) and (3) are clear from (I1) and (1) of this proposition.

(4) Let a,b € P. Then ab < ab, and this implies a < (ab)b by (12).

(5) Let a,b,c € P with a < b. Since b < (bc)c by (4) of this proposition,
a < (bc)e. Hence be < ac by (12).

(6) Let a,b € P. Then it is clear that ab < ((ab)b)b by (4) of this propo-
sition. Also, since a < (ab)b, ((ab)b)b < ab by (5) of this proposition. Hence
((ab)b)b = ab. O
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DEFINITION 2.2. Let (P,-) be a gi-algebra. A non-empty subset D of P is called
a deductive system of P if

(1) 1€ D,

(2) a€ D and ab € D imply b € D.
A non-empty subset ) of P is called a gi-subalgebra of P if ab € Q for every
a,beqQ.

For any subset A of a poset P, we write A = {x € P | a < x for some a € A}
and ta = T{a} ={z € P|a <z}.

PRrROPOSITION 2.4. If D is a deductive system of a gi-algebra P, then 1D = D.
In particular, Ta C D for every a € D.

Proof. Let D be a deductive system of P. Then it is clear D C 1tD. If x € 1D,
then a < z for some a € D, and by Proposition 2:3[(1), ax = 1 for some a € D.
Since 1 € D and a € D, x € D by definition of deductive system. It follows
1D C D. Hence 1D = D. It is clear that Ta C 1tD = D for every a € D. O
ProOPOSITION 2.5. If D is a deductive system of a gi-algebra P, then

(1) a € D implies ba € D for every b € P,
(2) D is a gi-subalgebra.

Proof.

(1) Let a € D and b € P. Then a < ba by (I1), and This implies ba € ta C D
by Proposition 2.4

(2) If a,b € D, then ab € D by (1) of this proposition. Hence D is a gi-
subalgebra. O

3. Strong and commutative gi-algebras
In a gi-algebra, the converse of Proposition 2:3[(1) is not true. In fact, P of
Example[I[(1) is a gi-algebra and 1d = 1, but 1 £ d.
DEFINITION 3.1. A gi-algebra P is said to be strong if

(S) ab=1 = a<b

for any a,b € P.

The strong gi-algebras are equivalent to the dual weak BC K-algebras intro-
duced by J. Cirulis ([5]).
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PrROPOSITION 3.1. Let P be a gi-algebra. If P is strong, then la = a for every
a € P.

Proof. Let a € P. Then it is clear that a < 1la by (I1). Also, 1 < (la)a by
Proposition[2.3(4). This implies (1a)a = 1, and 1a < a by (S). Hence la =a. O

DEFINITION 3.2. A gi-algebra P is said to be commutative if
(C) (ab)b = (ba)a
for every a,b € P.

THEOREM 3.2. Let P be a gi-algebra. If P is strong and commutative, then
a Vb= (ab)b for every a,b € P, i.e., P is a join semi-lattice.

Proof. Let a,b € P. Then (ab)b is an upper bound of a and b by (I1) and
Proposition[23/(4). Suppose that u is an upper bound of @ and b. Then a < u and
b < w. This implies bu = 1 by Proposition 2:3(1), and ub < ab and (ab)b < (ub)b
by Proposition 2.3(5). Since (ub)b = (bu)u = 1u = u by (C) and Proposition B.1]
(ab)b < u. Hence (ab)b is the least upper bound of a and b. O
The following example is a strong gi-algebra which is not join semi-lattice.

Ezample 3. Let P = {a,b,c,d, 1} be a poset with the Hasse diagram in Figure 3.
1

b d

FicURrE 3. Hasse diagram of the poset P

We define a binary operation “” on (P, <) by the following:

1 a b ¢ d
1 1 a b ¢ d
a 1 1 b ¢ d
b 1 1 1 1 d
c 1 a b 1 d
d 1 1 b 1 1

Then P is a strong gi-algebra which is not commutative, because (ab)b = bb =
1# a = la= (ba)a. Also P has no bV d.
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THEOREM 3.3. Let P be a strong and commutative gi-algebra andl € P. If we
define a map ': P — P by a’ = al for every a € P, then it has the following
properties: for every a,b € 1.

(1) '=landl' =1,

2

3

()a<bzmplzesb’<a

(3)

(4) a/\b—(a’\/b’)’,

(5) (aVvVbd)y =d AV and (a AND) =d' V.
(6)

6) 1 is a lattice.

Proof.

(1) For the greatest element 1, 1’ = 11 = [ by Proposition Bl For the element
le P, ' =1l =1 by Proposition 23(1).

(2) Let a,b e . If a <b, then ¥ = bl < al = a’ by Proposition 23(5).

(3) Let a € 1l. Then a” = (al)l = a V1 = a by Theorem B2

(4) Let a,b € 7. Then ¢’ < a' VU and &/ < o’ V. This implies (a’ V b')’
< a" =aand (a V) <b" =bby (2) and (3) of this theorem. Since | <
(@ V)= (V) (' V) €1l. That is, (a’ V') is a lower bound of a and
b in 41,

Suppose that ¢ is a lower bound of @ and b in 1. Then ¢ < a and ¢ < b. This
implies o’ < ¢ and b < ¢, hence o’ V' < ¢ implies ¢ = ¢’ < (a/ V') by (3)
and (2) of this theorem. It follows that (a’ vV ')’ is the greatest lower bound of
a and b in 1.

(5) Let a,b € TI. Then o',b" € I, and &’ AV = (a” V") = (a VD) and
(anb) =(a" V)" =da VU by (4) and (3) of this theorem.

(6) It is clear from Theorem [3:2] and (4) of this theorem. O

The map a — a’ of Theorem [3:3is, according to items (2) and (3), an antitone
involution in 1. Upper semilattices with sectionally antitone involutions have
been studied in [6]. An alternative proof of (4), (5) and (6) of Theorem is
mentioned in [5]. According to [b: Lemma 2.5], a terminal segment 11 satisfying
the properties (1)—(3) of Theorem 3.3 has also the properties (4)—(5).

4. Transitive gi-algebra

PROPOSITION 4.1. Let P be a gi-algebra. Then the following are equivalent: for
any a,b,c € P,

(T1) ab < (ca)(ch),
(T2) ab < (be)(ac).
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Proof. Suppose that P satisfies the property (T1). Then be < (ab)(ac) for any
a,b,c € P. Hence, by (I12), we have ab < (bc)(ac) for any a,b,c € P. In the
similar way, we can show that (T2) implies (T1). O

DEFINITION 4.1. A gi-algebra P is said to be transitive if it satisfies the equiv-
alent axioms of Proposition .1l

The axioms (S) and (T2) are independent as the following examples show.
Ezample 4.

(1) Let P ={0,a,b,1} be a poset with the Hasse diagram in Figure 4.
1

0

FI1GURE 4. Hasse diagram of the poset P

We define a binary operation “” on (P, <) by the following:
1 a b 0
1 1 a b 0
a 1 1 b a
b1 a 1 b
0 1 1 1 1

Then it is a strong gi-algebra which is not transitive because ba = a £ b = ab

= (a0)(b0).

(2) The gi-algebra P in Example[I}(1) is transitive, which is not strong because
1d=1,but 1 £d.

PROPOSITION 4.2. Let P be a gi-algebra. If P is transitive, then P satisfies the
following property: for every a,b,c € P,

(E) a(be) = b(ac).
Proof. Suppose that P is transitive and a,b,c € P. Then b < (bc)c by
Proposition 2:3[(4) and ((bc)c)(ac) < b(ac) by Proposition 2:3[5). Since a(bc) <
((be)e)(ac) by (T2), a(be) < b(ac). Interchanging the role of a and b, we have
b(ac) < a(be). Hence a(be) = b(ac). O

The converse of Proposition is not true as the following example show.
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Ezample 5. Let P ={1,a,b,0} be a poset with the Hasse diagram in Figure 5.

ol
ea
ob
0

F1GUure 5. Hasse diagram of the poset P

We define a binary operation “” on (P, <) by the following:

1 a b O
1 1 a b a
a 1 1 a 1
b 1 1 1 1
01 1 1 1
Then it is a gi-algebra satisfying the property (E), but not transitive because

0b=1<« a=1a= (a0)(abd).

THEOREM 4.3. Let P be a gi-algebra. then P is strong and transitive if and
only if P is a DBCK -algebra.

Proof. Suppose that P is strong and transitive. For any a,b € P, al =1 and
a((ab)b) =1 by (2) and (4) of Proposition 2.3, and aa = 1 by Proposition 222](1).
Hence it satisfies (D5), (D2) and (D3). If ab = 1 and ba = 1, then a < b and
b < a since P is strong. Hence a = b. For any a,b,c € P, ab < (bc)(ac) by (T2),
and (ab)((be)(ac)) =1 by Proposition 2:3(1). Hence P is a DBC K-algebra.
Conversely, suppose that P is a DBCK-algebra. Then P is a gi-algebra by
Theorem 2.1} and strong and transitive by (DS) and (D1). O

Let P be a gi-algebra and D a deductive system of P. We define a binary
relation ~p on P by
a~pb < [abe D & bac D]

for any a,b € P. Then ~p is not equivalence relation in general. In Example (]
D = {1} is a deductive system, but ~p is not equivalence relation, because
a~p0and 0~pb, but a £p b.

THEOREM 4.4. Let P be a transitive gi-algebra and D a deductive system of P.
Then ~p s a congruence relation on P.

Proof. It is clear that ~p is reflexive and symmetric. Suppose that a ~p b
and b ~p ¢ with a,b,c € P. Then bc < (ab)(ac) by (T1). Since bc € D,
(ab)(ac) € 1D = D by Proposition 2.4l Since D is a deductive system and
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ab € D, ac € D. Also, ba < (¢b)(ca) implies ca € D by the same way. It follows
a ~p c. Hence ~p is an equivalence relation on P.

To show that ~p is a congruence relation, let a ~p b and ¢ € P. Then
ab < (ca)(cb) by (T1). Since ab € D, (ca)(cb) € 1D = D by Proposition 241
Similarly, we have (¢b)(ca) € D. That is, ca ~p cb. Also, we have ba < (ac)(bc)
by (T2). Since ba € D, (ac)(bc) € D = D. Similarly, we have (bc)(ac) € D. Tt
follows ac ~p be. Hence ~p is a congruence relation on P. |

Let P be a transitive gi-algebra and D a deductive system of P. We can
define a binary relation “<” on the quotient set P/~p by

[a] 2 [0] <= [(Vx € [a]) (Fy € [B]) (= < )],
where [a] and [b] are equivalence classes with respect to ~p.

THEOREM 4.5. Let P be a transitive gi-algebra and D a deductive system of P.
Then (P/~p,=) is a poset.

Proof. Tt is clear that [a] < [a] for every [a] € P/~p. Let [a] =< [b] and [b] < [a].
Then a < y for some y € [b]. Since y ~p b, 1 = ay ~p ab by Proposition 2:3(1)
and Theorem 4]l This implies 1(ab) € D, and ab € D since D is a deductive
system and 1 € D. Similarly, we have ba € D from [b] < [a]. Hence a ~p b and
[a] = [0].

To show that < is transitive, let [a] =< [b] and [b] < [¢]. Then for each x € [a],
x < y for some y € [b], and y < z for some z € [c]. That is, for each = € [a],
there exists z € [c] such that © < z. Hence [a] < [¢]. Therefore < is a partial
order on P/~p. d

Let P be a transitive gi-algebra and D a deductive system of P. We define a

(1P

binary operation “o” on the quotient set P/~p by
[a] o [b] = [ad]
for every [a], [b] € P/~p.

PROPOSITION 4.6. Let P be a transitive gi-algebra and D a deductive system
of P. Then the poset (P/~p, =) with the above binary operation o satisfies the
following properties.

(1) [1] 4s the greatest element in (P/~p, <),

(2) [1)e[a] = [a],

(3) [a] X [b] <= la]o[b] = [1],
(4) a<bin P = [a] <X [b)],
(5) [a] o ([l o [c]) = [ o ([a] o [c])
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Proof.

(1) Let [a] € P/~p. Then x < 1 for each x € [a], and 1 € [1]. Hence [a] < [1].

(2) Let a € P. Since a < la by (I1), a(la) = 1 € D by Proposition 23|(1).
Also, since 1 < (la)a, (la)a =1 € D. Hence la ~p a, and [1] o [a] = [la] = [a].

(3) Suppose that [a] < [b]. Since a € [a], a < x for some = € [b], i.e., x ~p b.
This implies 1 = axz ~p ab by Proposition 23(1) and Theorem [£4l Hence
[a] o [b] = [ab] = [1]. Conversely, suppose that [ab] = [a] o [b] = [1] and x € [a].
Since x ~p a and ab ~p 1, we have (zb)b ~p (ab)b ~p 1b by Theorem 4] and
[16] = [1] o [b] = [b] by (2) of this proposition. Thus (xb)b € [b], and = < (zb)b
by Proposition 23(4). Hence [a] < [b].

(4) Let a < b in P. Then ab = 1 by Proposition 2.3[(1), and this implies
[a] o [b] = [ab] = [1]. Hence [a] < [b] by (3) of this proposition.

(5) Let a,b,c € P. Since P is transitive, a(bc) = b(ac) by Proposition
Hence [a] o ([0] o [¢]) = [a(be)] = [b(ac)] = [b] o ([a] o [c]). O

THEOREM 4.7. Let P be a transitive gi-algebra and D a deductive system of P.
Then the poset (P/~p, =) is a gi-algebra with the binary operation o.

Proof. The poset (P/~p, =) has the greatest element [1] by Proposition [£.6(1)
and satisfies [a] o [a] = [1] by Proposition [£6k(3). Let [a] =< [b] o [¢]. Then
[1] = [a] o ([b] o [c]) = [b] o ([a] o [¢]) by (3) and (5) of Proposition Hence
[b] < [a] o [b] by Proposition E0(3). Hence (P/~p,=<,0) is a gi-algebra by
Proposition O

THEOREM 4.8. Let P be a transitive gi-algebra and D a deductive system od P.
Then (P/~p,o) is a DBCK -algebra.

Proof. It is clear that (P/~p, <, 0) is a strong gi-algebra by Proposition [4.03)
and Theorem 7l Let a,b,c € P. Then ab < (ca)(cb) since P is transitive. It
follows [a]o[b] = [ab] < [(ca)(cb)] = ([c]o[a])o([¢]o[b]) by Proposition[&6(4). That
is, P/~p is transitive. Hence (P/~p,o) is a DBCK-algebra by Theorem [£3]

(]
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