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ABSTRACT. We introduce the notion of gi-algebra as a generalization of dual
BCK-algebra, and define the notions of strong, commutative and transitive gi-
algebra, and then we show that an interval ↑l = {a ∈ P | l ≤ a} in a strong and
commutative gi-algebra P is a lattice. Also, we define a congruence relation ∼D

on a transitive gi-algebra P and show that the quotient set P/∼D is a gi-algebra
and a dual BCK-algebra.
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1. Introduction

A DBCK-algebra is an algebraic system (X, ·, 1) where X is a set, 1 is an
element of X, and · is a binary operation on X satisfying the following axioms.

(D1) (ab)((bc)(ac)) = 1,

(D2) a((ab)b) = 1,

(D3) aa = 1,

(D4) ab = 1 and ba = 1 imply a = b,

(D5) a1 = 1.

The notion of DBCK-algebra was studied in [4, 12] as the dual concept of
BCK-algebra ([8, 11, 15]), and it is a poset with the greatest element 1 sat-
isfying the following properties.
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(DS) a ≤ b if and only if ab = 1,

(T) ab ≤ (bc)(ac),

(DE) a(bc) = b(ac).

There are many algebras having the similar structure such as dual BCK-alge-
bra, Hilbert algebra ([7–10]), implicative model ([13,14]) and implication algebra
([1–4,15]). Both Hilbert algebra and implicative model are equivalent. Also it is
well known that a commutative Hilbert algebra is exactly an implication algebra
([10]) and the implication algebras are equivalent to the implicative DBCK-al-
gebras ([4,15]).

If a binary operation “→” on a Boolean algebra B is defined by a → b = ¬a∨b,
(B,→) become one among above algebras. As a generalization of such operation,
we consider a binary operation “◦” on B defined by a ◦ b = ¬a ∨ b ∨ u0 for a
fixed element u0 of B. This operation has some basic properties of implication,
especially, such as b ≤ a ◦ b and c ≤ a ◦ b =⇒ a ≤ c ◦ b, but it satisfies neither
1 ◦ a = a nor a ◦ b = b ◦ a = 1 =⇒ a = b. So we propose an algebraic structure
equipped with such binary operation ◦ as an generalization of algebras that has
the implication such as →.

In this paper, we introduce the notion of gi-algebra which is a generalization
of DBCK-algebra. In Section 2, we define the gi-algebra and the deductive
system of it, and give some basic properties of them. In Section 3 and 4, we
introduce the notions of strong, commutative and transitive gi-algebra, and we
show that an interval ↑l in a strong commutative gi-algebra P is a lattice. Also,
we define a congruence relation ∼D on a transitive gi-algebra P and show that
the quotient set P/∼D is a gi-algebra and a DBCK-algebra.

2. gi-algebras

���������� 2.1� An algebra with a generalized implication, briefly gi-algebra,
is a poset (P,≤) with a binary operation “·” such that

(I1) b ≤ ab,

(I2) a ≤ bc =⇒ b ≤ ac.

The gi-algebra defined in Definition 2.1 has the different notion with an im-
plicative algebra of Rasiowa ([16]) that is an algebra (P, ·, 1) where P is a poset
with a greatest element 1 and · is a binary operation on P such that x ≤ y if
and only if x · y = 1. The Example 1(1) is a gi-algebra which is not implicative
algebra, i.e., 1d = 1 but 1 �≤ d. In Section 3, we deal a strong gi-algebra and it
is an implicative algebra.

The following are examples of the gi-algebra.
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Example 1.

(1) Let P = {a, b, c, d, 1} be a poset with the Hasse diagram in Figure 1.

�

1

�a �b � d

�

c

�
�

�
�
�
�

�
�
�

Figure 1. Hasse diagram of the poset P

We define a binary operation “·” by the following Cayley table.

· 1 a b c d

1 1 a b c 1
a 1 1 b b 1
b 1 a 1 a 1
c 1 1 1 1 1
d 1 a b c 1

Then (P, ·) is a gi-algebra.

(2) Let U be a non-empty set and P(U ) the poset of all subsets of U and
X ∈ P(U ). We define a binary operation “◦X” by

A ◦X B = AC ∪ B ∪X

for every A,B ∈ P(U ). Then (P(U ), ◦X) is a gi-algebra.

The axioms (I1) and (I2) in the definition of gi-algebra are independent, as
the following example shows.

Example 2. Let Q = {0, a, 1} be a poset with the Hasse diagram in Figure 2.

�1

�a

�0

Figure 2. Hasse diagram of the poset Q

We define two binary operations “◦1” and “◦2” on (Q,≤), respectively, by the
following:

◦1 1 a 0

1 1 1 a
a 1 1 a
0 1 1 1

◦2 1 a 0

1 1 0 0
a 1 a 0
0 1 1 1
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Then ◦1 satisfies the axioms (I1), but not (I2) because a ≤ 1 ◦1 0, but 1 �≤ a =
a ◦1 0. Also, ◦2 satisfies the axioms (I2), but not (I1) because a �≤ 0 = 1 ◦2 a.

The following theorem can be easily verified from the properties (DS) and
(DE) and the definition of DBCK-algebra.

�	��
�� 2.1� Every DBCK-algebra is a gi-algebra.

The converse of Theorem 2.1 is not true. In fact, the gi-algebra (P, ·) of
Example 1(1) is not a DBCK-algebra, because 1d = 1 and d1 = 1, but 1 �= d.

�
�
������� 2.2� A poset P is a gi-algebra if and only if P has the greatest
element 1 and satisfies the following properties.

(1) aa = 1,

(2) a ≤ bc =⇒ b ≤ ac.

P r o o f. Suppose that P be a gi-algebra. Then it has the property (2) from the
definition of gi-algebra. To show the property (1), let a ∈ P . Then for every
b ∈ P , a ≤ ba and b ≤ aa by (I1) and (I2). That is, aa is the greatest element
in P . Hence P has the greatest element 1 and 1 = aa for every a ∈ P .

Conversely, suppose that P has the greatest element 1 satisfying the properties
(1) and (2). Then we need only to show the property (I1). Let a, b ∈ P . Then
a ≤ 1 = bb by (1), and this implies b ≤ ab by (2). Hence P is a gi-algebra. �
�
�
������� 2.3� A gi-algebra P has the following properties:
for any a, b, c ∈ P ,

(1) a ≤ b =⇒ ab = 1,

(2) a1 = 1,

(3) a(ba) = 1,

(4) a ≤ (ab)b,

(5) a ≤ b =⇒ bc ≤ ac,

(6) ((ab)b)b = ab.

P r o o f.

(1) Let a, b ∈ P with a ≤ b. Since b ≤ 1b by (I1), a ≤ 1b. This implies 1 ≤ ab
by (I2). Hence ab = 1.

(2) and (3) are clear from (I1) and (1) of this proposition.

(4) Let a, b ∈ P . Then ab ≤ ab, and this implies a ≤ (ab)b by (I2).

(5) Let a, b, c ∈ P with a ≤ b. Since b ≤ (bc)c by (4) of this proposition,
a ≤ (bc)c. Hence bc ≤ ac by (I2).

(6) Let a, b ∈ P . Then it is clear that ab ≤ ((ab)b)b by (4) of this propo-
sition. Also, since a ≤ (ab)b, ((ab)b)b ≤ ab by (5) of this proposition. Hence
((ab)b)b = ab. �
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���������� 2.2� Let (P, ·) be a gi-algebra. A non-empty subset D of P is called
a deductive system of P if

(1) 1 ∈ D,

(2) a ∈ D and ab ∈ D imply b ∈ D.

A non-empty subset Q of P is called a gi-subalgebra of P if ab ∈ Q for every
a, b ∈ Q.

For any subset A of a poset P , we write ↑A = {x ∈ P | a ≤ x for some a ∈ A}
and ↑a = ↑{a} = {x ∈ P | a ≤ x}.
�
�
������� 2.4� If D is a deductive system of a gi-algebra P , then ↑D = D.
In particular, ↑a ⊆ D for every a ∈ D.

P r o o f. Let D be a deductive system of P . Then it is clear D ⊆ ↑D. If x ∈ ↑D,
then a ≤ x for some a ∈ D, and by Proposition 2.3(1), ax = 1 for some a ∈ D.
Since 1 ∈ D and a ∈ D, x ∈ D by definition of deductive system. It follows
↑D ⊆ D. Hence ↑D = D. It is clear that ↑a ⊆ ↑D = D for every a ∈ D. �

�
�
������� 2.5� If D is a deductive system of a gi-algebra P , then

(1) a ∈ D implies ba ∈ D for every b ∈ P ,

(2) D is a gi-subalgebra.

P r o o f.

(1) Let a ∈ D and b ∈ P . Then a ≤ ba by (I1), and This implies ba ∈ ↑a ⊆ D
by Proposition 2.4.

(2) If a, b ∈ D, then ab ∈ D by (1) of this proposition. Hence D is a gi-
subalgebra. �

3. Strong and commutative gi-algebras

In a gi-algebra, the converse of Proposition 2.3(1) is not true. In fact, P of
Example 1(1) is a gi-algebra and 1d = 1, but 1 �≤ d.

���������� 3.1� A gi-algebra P is said to be strong if

(S) ab = 1 =⇒ a ≤ b

for any a, b ∈ P .

The strong gi-algebras are equivalent to the dual weak BCK-algebras intro-
duced by J. C̄ırulis ([5]).
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�
�
������� 3.1� Let P be a gi-algebra. If P is strong, then 1a = a for every
a ∈ P .

P r o o f. Let a ∈ P . Then it is clear that a ≤ 1a by (I1). Also, 1 ≤ (1a)a by
Proposition 2.3(4). This implies (1a)a = 1, and 1a ≤ a by (S). Hence 1a = a. �

���������� 3.2� A gi-algebra P is said to be commutative if

(C) (ab)b = (ba)a

for every a, b ∈ P .

�	��
�� 3.2� Let P be a gi-algebra. If P is strong and commutative, then
a ∨ b = (ab)b for every a, b ∈ P , i.e., P is a join semi-lattice.

P r o o f. Let a, b ∈ P . Then (ab)b is an upper bound of a and b by (I1) and
Proposition 2.3(4). Suppose that u is an upper bound of a and b. Then a ≤ u and
b ≤ u. This implies bu = 1 by Proposition 2.3(1), and ub ≤ ab and (ab)b ≤ (ub)b
by Proposition 2.3(5). Since (ub)b = (bu)u = 1u = u by (C) and Proposition 3.1,
(ab)b ≤ u. Hence (ab)b is the least upper bound of a and b. �

The following example is a strong gi-algebra which is not join semi-lattice.

Example 3. Let P = {a, b, c, d, 1} be a poset with the Hasse diagram in Figure 3.

�

1

�a

�b

�c

�d

�
�

�

�
�
�
�
�
�

�
��
�
�

�
�

�
�

�

Figure 3. Hasse diagram of the poset P

We define a binary operation “·” on (P,≤) by the following:

· 1 a b c d

1 1 a b c d
a 1 1 b c d
b 1 1 1 1 d
c 1 a b 1 d
d 1 1 b 1 1

Then P is a strong gi-algebra which is not commutative, because (ab)b = bb =
1 �= a = 1a = (ba)a. Also P has no b ∨ d.
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�	��
�� 3.3� Let P be a strong and commutative gi-algebra and l ∈ P . If we
define a map ′ : P → P by a′ = al for every a ∈ P , then it has the following
properties: for every a, b ∈ ↑l.
(1) 1′ = l and l′ = 1,

(2) a ≤ b implies b′ ≤ a′,
(3) a′′ = a,

(4) a ∧ b = (a′ ∨ b′)′,
(5) (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′.
(6) ↑l is a lattice.

P r o o f.

(1) For the greatest element 1, 1′ = 1l = l by Proposition 3.1. For the element
l ∈ P , l′ = ll = 1 by Proposition 2.3(1).

(2) Let a, b ∈ ↑l. If a ≤ b, then b′ = bl ≤ al = a′ by Proposition 2.3(5).

(3) Let a ∈ ↑l. Then a′′ = (al)l = a ∨ l = a by Theorem 3.2.

(4) Let a, b ∈ ↑l. Then a′ ≤ a′ ∨ b′ and b′ ≤ a′ ∨ b′. This implies (a′ ∨ b′)′

≤ a′′ = a and (a′ ∨ b′)′ ≤ b′′ = b by (2) and (3) of this theorem. Since l ≤
(a′ ∨ b′)l = (a′ ∨ b′)′, (a′ ∨ b′)′ ∈ ↑l. That is, (a′ ∨ b′)′ is a lower bound of a and
b in ↑l.

Suppose that c is a lower bound of a and b in ↑l. Then c ≤ a and c ≤ b. This
implies a′ ≤ c′ and b′ ≤ c′, hence a′ ∨ b′ ≤ c′ implies c = c′′ ≤ (a′ ∨ b′)′ by (3)
and (2) of this theorem. It follows that (a′ ∨ b′)′ is the greatest lower bound of
a and b in ↑l.

(5) Let a, b ∈ ↑l. Then a′, b′ ∈ ↑l, and a′ ∧ b′ = (a′′ ∨ b′′)′ = (a ∨ b)′ and
(a ∧ b)′ = (a′ ∨ b′)′′ = a′ ∨ b′ by (4) and (3) of this theorem.

(6) It is clear from Theorem 3.2 and (4) of this theorem. �

The map a 
→ a′ of Theorem 3.3 is, according to items (2) and (3), an antitone
involution in ↑l. Upper semilattices with sectionally antitone involutions have
been studied in [6]. An alternative proof of (4), (5) and (6) of Theorem 3.3 is
mentioned in [5]. According to [5: Lemma 2.5], a terminal segment ↑l satisfying
the properties (1)–(3) of Theorem 3.3 has also the properties (4)–(5).

4. Transitive gi-algebra

�
�
������� 4.1� Let P be a gi-algebra. Then the following are equivalent: for
any a, b, c ∈ P ,

(T1) ab ≤ (ca)(cb),

(T2) ab ≤ (bc)(ac).
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P r o o f. Suppose that P satisfies the property (T1). Then bc ≤ (ab)(ac) for any
a, b, c ∈ P . Hence, by (I2), we have ab ≤ (bc)(ac) for any a, b, c ∈ P . In the
similar way, we can show that (T2) implies (T1). �

���������� 4.1� A gi-algebra P is said to be transitive if it satisfies the equiv-
alent axioms of Proposition 4.1.

The axioms (S) and (T2) are independent as the following examples show.

Example 4.

(1) Let P = {0, a, b, 1} be a poset with the Hasse diagram in Figure 4.

�

1

�a �b

�

0

�
�

�
�
�
��

�
�
�

�
�

Figure 4. Hasse diagram of the poset P

We define a binary operation “·” on (P,≤) by the following:

· 1 a b 0

1 1 a b 0
a 1 1 b a
b 1 a 1 b
0 1 1 1 1

Then it is a strong gi-algebra which is not transitive because ba = a �≤ b = ab
= (a0)(b0).

(2) The gi-algebra P in Example 1(1) is transitive, which is not strong because
1d = 1, but 1 �≤ d.

�
�
������� 4.2� Let P be a gi-algebra. If P is transitive, then P satisfies the
following property: for every a, b, c ∈ P ,

(E) a(bc) = b(ac).

P r o o f. Suppose that P is transitive and a, b, c ∈ P . Then b ≤ (bc)c by
Proposition 2.3(4) and ((bc)c)(ac) ≤ b(ac) by Proposition 2.3(5). Since a(bc) ≤
((bc)c)(ac) by (T2), a(bc) ≤ b(ac). Interchanging the role of a and b, we have
b(ac) ≤ a(bc). Hence a(bc) = b(ac). �

The converse of Proposition 4.2 is not true as the following example show.
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Example 5. Let P = {1, a, b, 0} be a poset with the Hasse diagram in Figure 5.

�1

�a

�b

�0

Figure 5. Hasse diagram of the poset P

We define a binary operation “·” on (P,≤) by the following:

· 1 a b 0

1 1 a b a
a 1 1 a 1
b 1 1 1 1
0 1 1 1 1

Then it is a gi-algebra satisfying the property (E), but not transitive because
0b = 1 �≤ a = 1a = (a0)(ab).

�	��
�� 4.3� Let P be a gi-algebra. then P is strong and transitive if and
only if P is a DBCK-algebra.

P r o o f. Suppose that P is strong and transitive. For any a, b ∈ P , a1 = 1 and
a((ab)b) = 1 by (2) and (4) of Proposition 2.3, and aa = 1 by Proposition 2.2(1).
Hence it satisfies (D5), (D2) and (D3). If ab = 1 and ba = 1, then a ≤ b and
b ≤ a since P is strong. Hence a = b. For any a, b, c ∈ P , ab ≤ (bc)(ac) by (T2),
and (ab)((bc)(ac)) = 1 by Proposition 2.3(1). Hence P is a DBCK-algebra.

Conversely, suppose that P is a DBCK-algebra. Then P is a gi-algebra by
Theorem 2.1, and strong and transitive by (DS) and (D1). �

Let P be a gi-algebra and D a deductive system of P . We define a binary
relation ∼D on P by

a ∼D b ⇐⇒ [ ab ∈ D & ba ∈ D ]

for any a, b ∈ P . Then ∼D is not equivalence relation in general. In Example 5,
D = {1} is a deductive system, but ∼D is not equivalence relation, because
a ∼D 0 and 0 ∼D b, but a �∼D b.

�	��
�� 4.4� Let P be a transitive gi-algebra and D a deductive system of P .
Then ∼D is a congruence relation on P .

P r o o f. It is clear that ∼D is reflexive and symmetric. Suppose that a ∼D b
and b ∼D c with a, b, c ∈ P . Then bc ≤ (ab)(ac) by (T1). Since bc ∈ D,
(ab)(ac) ∈ ↑D = D by Proposition 2.4. Since D is a deductive system and
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ab ∈ D, ac ∈ D. Also, ba ≤ (cb)(ca) implies ca ∈ D by the same way. It follows
a ∼D c. Hence ∼D is an equivalence relation on P .

To show that ∼D is a congruence relation, let a ∼D b and c ∈ P . Then
ab ≤ (ca)(cb) by (T1). Since ab ∈ D, (ca)(cb) ∈ ↑D = D by Proposition 2.4.
Similarly, we have (cb)(ca) ∈ D. That is, ca ∼D cb. Also, we have ba ≤ (ac)(bc)
by (T2). Since ba ∈ D, (ac)(bc) ∈ ↑D = D. Similarly, we have (bc)(ac) ∈ D. It
follows ac ∼D bc. Hence ∼D is a congruence relation on P . �

Let P be a transitive gi-algebra and D a deductive system of P . We can
define a binary relation “�” on the quotient set P/∼D by

[a] � [b] ⇐⇒ [(∀x ∈ [a]
)(∃y ∈ [b]

)
(x ≤ y)

]
,

where [a] and [b] are equivalence classes with respect to ∼D.

�	��
�� 4.5� Let P be a transitive gi-algebra and D a deductive system of P .
Then (P/∼D,�) is a poset.

P r o o f. It is clear that [a] � [a] for every [a] ∈ P/∼D. Let [a] � [b] and [b] � [a].
Then a ≤ y for some y ∈ [b]. Since y ∼D b, 1 = ay ∼D ab by Proposition 2.3(1)
and Theorem 4.4. This implies 1(ab) ∈ D, and ab ∈ D since D is a deductive
system and 1 ∈ D. Similarly, we have ba ∈ D from [b] � [a]. Hence a ∼D b and
[a] = [b].

To show that � is transitive, let [a] � [b] and [b] � [c]. Then for each x ∈ [a],
x ≤ y for some y ∈ [b], and y ≤ z for some z ∈ [c]. That is, for each x ∈ [a],
there exists z ∈ [c] such that x ≤ z. Hence [a] � [c]. Therefore � is a partial
order on P/∼D. �

Let P be a transitive gi-algebra and D a deductive system of P . We define a
binary operation “◦” on the quotient set P/∼D by

[a] ◦ [b] = [ab]

for every [a], [b] ∈ P/∼D.

�
�
������� 4.6� Let P be a transitive gi-algebra and D a deductive system
of P . Then the poset (P/∼D,�) with the above binary operation ◦ satisfies the
following properties.

(1) [1] is the greatest element in (P/∼D,�),

(2) [1] ◦ [a] = [a],

(3) [a] � [b] ⇐⇒ [a] ◦ [b] = [1],

(4) a ≤ b in P =⇒ [a] � [b],

(5) [a] ◦ ([b] ◦ [c]) = [b] ◦ ([a] ◦ [c]).
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P r o o f.

(1) Let [a] ∈ P/∼D. Then x ≤ 1 for each x ∈ [a], and 1 ∈ [1]. Hence [a] � [1].

(2) Let a ∈ P . Since a ≤ 1a by (I1), a(1a) = 1 ∈ D by Proposition 2.3(1).
Also, since 1 ≤ (1a)a, (1a)a = 1 ∈ D. Hence 1a ∼D a, and [1] ◦ [a] = [1a] = [a].

(3) Suppose that [a] � [b]. Since a ∈ [a], a ≤ x for some x ∈ [b], i.e., x ∼D b.
This implies 1 = ax ∼D ab by Proposition 2.3(1) and Theorem 4.4. Hence
[a] ◦ [b] = [ab] = [1]. Conversely, suppose that [ab] = [a] ◦ [b] = [1] and x ∈ [a].
Since x ∼D a and ab ∼D 1, we have (xb)b ∼D (ab)b ∼D 1b by Theorem 4.4 and
[1b] = [1] ◦ [b] = [b] by (2) of this proposition. Thus (xb)b ∈ [b], and x ≤ (xb)b
by Proposition 2.3(4). Hence [a] � [b].

(4) Let a ≤ b in P . Then ab = 1 by Proposition 2.3(1), and this implies
[a] ◦ [b] = [ab] = [1]. Hence [a] � [b] by (3) of this proposition.

(5) Let a, b, c ∈ P . Since P is transitive, a(bc) = b(ac) by Proposition 4.2.
Hence [a] ◦ ([b] ◦ [c]) = [a(bc)] = [b(ac)] = [b] ◦ ([a] ◦ [c]). �
�	��
�� 4.7� Let P be a transitive gi-algebra and D a deductive system of P .
Then the poset (P/∼D,�) is a gi-algebra with the binary operation ◦.
P r o o f. The poset (P/∼D,�) has the greatest element [1] by Proposition 4.6(1)
and satisfies [a] ◦ [a] = [1] by Proposition 4.6(3). Let [a] � [b] ◦ [c]. Then
[1] = [a] ◦ ([b] ◦ [c]) = [b] ◦ ([a] ◦ [c]) by (3) and (5) of Proposition 4.6. Hence
[b] � [a] ◦ [b] by Proposition 4.6(3). Hence (P/∼D,�, ◦) is a gi-algebra by
Proposition 2.2. �
�	��
�� 4.8� Let P be a transitive gi-algebra and D a deductive system od P .
Then (P/∼D, ◦) is a DBCK-algebra.

P r o o f. It is clear that (P/∼D,�, ◦) is a strong gi-algebra by Proposition 4.6(3)
and Theorem 4.7. Let a, b, c ∈ P . Then ab ≤ (ca)(cb) since P is transitive. It
follows [a]◦[b] = [ab] � [(ca)(cb)] = ([c]◦[a])◦([c]◦[b]) by Proposition 4.6(4). That
is, P/∼D is transitive. Hence (P/∼D, ◦) is a DBCK-algebra by Theorem 4.3.

�
Acknowledgement� The authors are highly grateful to the referees for their
valuable comments and suggestions for the paper.
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