

DOI: 10.2478/s12175-013-0146-x Math. Slovaca **63** (2013), No. 5, 947–958

ON ALGEBRAS WITH A GENERALIZED IMPLICATION

Yong Ho Yon* — Kyung Ho Kim**

(Communicated by Jiří Rachůnek)

ABSTRACT. We introduce the notion of gi-algebra as a generalization of dual BCK-algebra, and define the notions of strong, commutative and transitive gi-algebra, and then we show that an interval $\uparrow l = \{a \in P \mid l \leq a\}$ in a strong and commutative gi-algebra P is a lattice. Also, we define a congruence relation \sim_D on a transitive gi-algebra P and show that the quotient set P/\sim_D is a gi-algebra and a dual BCK-algebra.

©2013 Mathematical Institute Slovak Academy of Sciences

1. Introduction

A DBCK-algebra is an algebraic system $(X, \cdot, 1)$ where X is a set, 1 is an element of X, and \cdot is a binary operation on X satisfying the following axioms.

- (D1) (ab)((bc)(ac)) = 1,
- (D2) a((ab)b) = 1,
- (D3) aa = 1,
- (D4) ab = 1 and ba = 1 imply a = b,
- (D5) a1 = 1.

The notion of DBCK-algebra was studied in [4, 12] as the dual concept of BCK-algebra ([8, 11, 15]), and it is a poset with the greatest element 1 satisfying the following properties.

²⁰¹⁰ Mathematics Subject Classification: Primary 03G25; Secondary 06F35. Keywords: dual BCK-algebras, gi-algebras, strong gi-algebras, commutative gi-algebras, transitive gi-algebras.

The research was supported by a grant from the Academic Research Program of Korea National University of Transportation in 2013.

- (DS) $a \leq b$ if and only if ab = 1,
 - (T) $ab \leq (bc)(ac)$,
- (DE) a(bc) = b(ac).

There are many algebras having the similar structure such as dual BCK-algebra, Hilbert algebra ([7–10]), implicative model ([13,14]) and implication algebra ([1–4,15]). Both Hilbert algebra and implicative model are equivalent. Also it is well known that a commutative Hilbert algebra is exactly an implication algebra ([10]) and the implication algebras are equivalent to the implicative DBCK-algebras ([4,15]).

If a binary operation " \rightarrow " on a Boolean algebra B is defined by $a \rightarrow b = \neg a \lor b$, (B, \rightarrow) become one among above algebras. As a generalization of such operation, we consider a binary operation " \circ " on B defined by $a \circ b = \neg a \lor b \lor u_0$ for a fixed element u_0 of B. This operation has some basic properties of implication, especially, such as $b \le a \circ b$ and $c \le a \circ b \implies a \le c \circ b$, but it satisfies neither $1 \circ a = a$ nor $a \circ b = b \circ a = 1 \implies a = b$. So we propose an algebraic structure equipped with such binary operation \circ as an generalization of algebras that has the implication such as \rightarrow .

In this paper, we introduce the notion of gi-algebra which is a generalization of DBCK-algebra. In Section 2, we define the gi-algebra and the deductive system of it, and give some basic properties of them. In Section 3 and 4, we introduce the notions of strong, commutative and transitive gi-algebra, and we show that an interval $\uparrow l$ in a strong commutative gi-algebra P is a lattice. Also, we define a congruence relation \sim_D on a transitive gi-algebra P and show that the quotient set P/\sim_D is a gi-algebra and a DBCK-algebra.

2. gi-algebras

DEFINITION 2.1. An algebra with a generalized implication, briefly gi-algebra, is a poset (P, \leq) with a binary operation "·" such that

- (I1) $b \leq ab$,
- (I2) $a \le bc \implies b \le ac$.

The gi-algebra defined in Definition 2.1 has the different notion with an implicative algebra of Rasiowa ([16]) that is an algebra $(P,\cdot,1)$ where P is a poset with a greatest element 1 and \cdot is a binary operation on P such that $x \leq y$ if and only if $x \cdot y = 1$. The Example 1(1) is a gi-algebra which is not implicative algebra, i.e., 1d = 1 but $1 \nleq d$. In Section 3, we deal a strong gi-algebra and it is an implicative algebra.

The following are examples of the *gi*-algebra.

Example 1.

(1) Let $P = \{a, b, c, d, 1\}$ be a poset with the Hasse diagram in Figure 1.

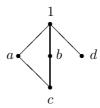


Figure 1. Hasse diagram of the poset P

We define a binary operation "." by the following Cayley table.

		a			
1	1	a 1 a 1	b	c	1
a	1	1	b	b	1
b	1	a	1	a	1
c	1	1	1	1	1
d	1	a	b	c	1

Then (P, \cdot) is a *gi*-algebra.

(2) Let U be a non-empty set and $\mathcal{P}(U)$ the poset of all subsets of U and $X \in \mathcal{P}(U)$. We define a binary operation " \circ_X " by

$$A\circ_X B=A^C\cup B\cup X$$

for every $A, B \in \mathcal{P}(U)$. Then $(\mathcal{P}(U), \circ_X)$ is a gi-algebra.

The axioms (I1) and (I2) in the definition of gi-algebra are independent, as the following example shows.

Example 2. Let $Q = \{0, a, 1\}$ be a poset with the Hasse diagram in Figure 2.

Figure 2. Hasse diagram of the poset Q

We define two binary operations " \circ_1 " and " \circ_2 " on (Q, \leq) , respectively, by the following:

\circ_1				_	\circ_2			
1	1	1 1 1	a	•	1	1	0	0
a	1	1	a		a	1	a	0
0	1	1	1		$a \\ 0$	1	1	1

Then \circ_1 satisfies the axioms (I1), but not (I2) because $a \leq 1 \circ_1 0$, but $1 \nleq a = a \circ_1 0$. Also, \circ_2 satisfies the axioms (I2), but not (I1) because $a \nleq 0 = 1 \circ_2 a$.

The following theorem can be easily verified from the properties (DS) and (DE) and the definition of DBCK-algebra.

Theorem 2.1. Every DBCK-algebra is a gi-algebra.

The converse of Theorem 2.1 is not true. In fact, the gi-algebra (P, \cdot) of Example 1(1) is not a DBCK-algebra, because 1d = 1 and d1 = 1, but $1 \neq d$.

PROPOSITION 2.2. A poset P is a gi-algebra if and only if P has the greatest element 1 and satisfies the following properties.

- $(1) \ aa = 1,$
- (2) $a < bc \implies b < ac$.

Proof. Suppose that P be a gi-algebra. Then it has the property (2) from the definition of gi-algebra. To show the property (1), let $a \in P$. Then for every $b \in P$, $a \le ba$ and $b \le aa$ by (I1) and (I2). That is, aa is the greatest element in P. Hence P has the greatest element 1 and 1 = aa for every $a \in P$.

Conversely, suppose that P has the greatest element 1 satisfying the properties (1) and (2). Then we need only to show the property (I1). Let $a, b \in P$. Then $a \le 1 = bb$ by (1), and this implies $b \le ab$ by (2). Hence P is a gi-algebra. \square

PROPOSITION 2.3. A gi-algebra P has the following properties: for any $a, b, c \in P$,

- $(1) \ a \le b \implies ab = 1,$
- (2) a1 = 1,
- (3) a(ba) = 1,
- $(4) \ a \leq (ab)b,$
- (5) $a \le b \implies bc \le ac$,
- (6) ((ab)b)b = ab.

Proof.

- (1) Let $a, b \in P$ with $a \le b$. Since $b \le 1b$ by (I1), $a \le 1b$. This implies $1 \le ab$ by (I2). Hence ab = 1.
 - (2) and (3) are clear from (I1) and (1) of this proposition.
 - (4) Let $a, b \in P$. Then $ab \leq ab$, and this implies $a \leq (ab)b$ by (I2).
- (5) Let $a, b, c \in P$ with $a \leq b$. Since $b \leq (bc)c$ by (4) of this proposition, $a \leq (bc)c$. Hence $bc \leq ac$ by (I2).
- (6) Let $a, b \in P$. Then it is clear that $ab \leq ((ab)b)b$ by (4) of this proposition. Also, since $a \leq (ab)b$, $((ab)b)b \leq ab$ by (5) of this proposition. Hence ((ab)b)b = ab.

DEFINITION 2.2. Let (P, \cdot) be a *gi*-algebra. A non-empty subset D of P is called a *deductive system* of P if

- $(1) 1 \in D$,
- (2) $a \in D$ and $ab \in D$ imply $b \in D$.

A non-empty subset Q of P is called a gi-subalgebra of P if $ab \in Q$ for every $a, b \in Q$.

For any subset A of a poset P, we write $\uparrow A = \{x \in P \mid a \leq x \text{ for some } a \in A\}$ and $\uparrow a = \uparrow \{a\} = \{x \in P \mid a \leq x\}.$

PROPOSITION 2.4. If D is a deductive system of a gi-algebra P, then $\uparrow D = D$. In particular, $\uparrow a \subseteq D$ for every $a \in D$.

Proof. Let D be a deductive system of P. Then it is clear $D \subseteq \uparrow D$. If $x \in \uparrow D$, then $a \leq x$ for some $a \in D$, and by Proposition 2.3(1), ax = 1 for some $a \in D$. Since $1 \in D$ and $a \in D$, $x \in D$ by definition of deductive system. It follows $\uparrow D \subseteq D$. Hence $\uparrow D = D$. It is clear that $\uparrow a \subseteq \uparrow D = D$ for every $a \in D$.

Proposition 2.5. If D is a deductive system of a gi-algebra P, then

- (1) $a \in D$ implies $ba \in D$ for every $b \in P$,
- (2) D is a gi-subalgebra.

Proof.

- (1) Let $a \in D$ and $b \in P$. Then $a \leq ba$ by (I1), and This implies $ba \in \uparrow a \subseteq D$ by Proposition 2.4.
- (2) If $a,b\in D$, then $ab\in D$ by (1) of this proposition. Hence D is a gi-subalgebra. \Box

3. Strong and commutative gi-algebras

In a gi-algebra, the converse of Proposition 2.3(1) is not true. In fact, P of Example 1(1) is a gi-algebra and 1d = 1, but $1 \le d$.

DEFINITION 3.1. A gi-algebra P is said to be strong if

(S)
$$ab = 1 \implies a \le b$$

for any $a, b \in P$.

The strong gi-algebras are equivalent to the dual weak BCK-algebras introduced by J. Cīrulis ([5]).

YONG HO YON - KYUNG HO KIM

PROPOSITION 3.1. Let P be a gi-algebra. If P is strong, then 1a = a for every $a \in P$.

Proof. Let $a \in P$. Then it is clear that $a \leq 1a$ by (I1). Also, $1 \leq (1a)a$ by Proposition 2.3(4). This implies (1a)a = 1, and $1a \leq a$ by (S). Hence 1a = a. \square

Definition 3.2. A gi-algebra P is said to be commutative if

(C)
$$(ab)b = (ba)a$$

for every $a, b \in P$.

THEOREM 3.2. Let P be a gi-algebra. If P is strong and commutative, then $a \lor b = (ab)b$ for every $a, b \in P$, i.e., P is a join semi-lattice.

Proof. Let $a, b \in P$. Then (ab)b is an upper bound of a and b by (I1) and Proposition 2.3(4). Suppose that u is an upper bound of a and b. Then $a \le u$ and $b \le u$. This implies bu = 1 by Proposition 2.3(1), and $ub \le ab$ and $(ab)b \le (ub)b$ by Proposition 2.3(5). Since (ub)b = (bu)u = 1u = u by (C) and Proposition 3.1, $(ab)b \le u$. Hence (ab)b is the least upper bound of a and b.

The following example is a strong gi-algebra which is not join semi-lattice.

Example 3. Let $P = \{a, b, c, d, 1\}$ be a poset with the Hasse diagram in Figure 3.

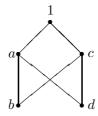


Figure 3. Hasse diagram of the poset P

We define a binary operation "." on (P, \leq) by the following:

	1	a	b	c	d
1	1	a 1 1 a 1	b	c	d
a	1	1	b	c	d
b	1	1	1	1	d
c	1	a	b	1	d
d	1	1	b	1	1

Then P is a strong gi-algebra which is not commutative, because $(ab)b = bb = 1 \neq a = 1a = (ba)a$. Also P has no $b \vee d$.

THEOREM 3.3. Let P be a strong and commutative gi-algebra and $l \in P$. If we define a map $': P \to P$ by a' = al for every $a \in P$, then it has the following properties: for every $a, b \in \uparrow l$.

- (1) 1' = l and l' = 1,
- (2) $a \le b \text{ implies } b' \le a'$,
- (3) a'' = a,
- (4) $a \wedge b = (a' \vee b')'$,
- (5) $(a \lor b)' = a' \land b'$ and $(a \land b)' = a' \lor b'$.
- (6) $\uparrow l$ is a lattice.

Proof.

- (1) For the greatest element 1, 1' = 1l = l by Proposition 3.1. For the element $l \in P$, l' = ll = 1 by Proposition 2.3(1).
 - (2) Let $a, b \in \uparrow l$. If a < b, then b' = bl < al = a' by Proposition 2.3(5).
 - (3) Let $a \in \uparrow l$. Then $a'' = (al)l = a \lor l = a$ by Theorem 3.2.
- (4) Let $a, b \in \uparrow l$. Then $a' \leq a' \vee b'$ and $b' \leq a' \vee b'$. This implies $(a' \vee b')' \leq a'' = a$ and $(a' \vee b')' \leq b'' = b$ by (2) and (3) of this theorem. Since $l \leq (a' \vee b')l = (a' \vee b')'$, $(a' \vee b')' \in \uparrow l$. That is, $(a' \vee b')'$ is a lower bound of a and b in $\uparrow l$.

Suppose that c is a lower bound of a and b in $\uparrow l$. Then $c \leq a$ and $c \leq b$. This implies $a' \leq c'$ and $b' \leq c'$, hence $a' \vee b' \leq c'$ implies $c = c'' \leq (a' \vee b')'$ by (3) and (2) of this theorem. It follows that $(a' \vee b')'$ is the greatest lower bound of a and b in $\uparrow l$.

- (5) Let $a, b \in \uparrow l$. Then $a', b' \in \uparrow l$, and $a' \wedge b' = (a'' \vee b'')' = (a \vee b)'$ and $(a \wedge b)' = (a' \vee b')'' = a' \vee b'$ by (4) and (3) of this theorem.
 - (6) It is clear from Theorem 3.2 and (4) of this theorem. \Box

The map $a \mapsto a'$ of Theorem 3.3 is, according to items (2) and (3), an antitone involution in $\uparrow l$. Upper semilattices with sectionally antitone involutions have been studied in [6]. An alternative proof of (4), (5) and (6) of Theorem 3.3 is mentioned in [5]. According to [5: Lemma 2.5], a terminal segment $\uparrow l$ satisfying the properties (1)–(3) of Theorem 3.3 has also the properties (4)–(5).

4. Transitive gi-algebra

PROPOSITION 4.1. Let P be a gi-algebra. Then the following are equivalent: for any $a, b, c \in P$,

- (T1) $ab \leq (ca)(cb)$,
- (T2) $ab \leq (bc)(ac)$.

Proof. Suppose that P satisfies the property (T1). Then $bc \leq (ab)(ac)$ for any $a, b, c \in P$. Hence, by (I2), we have $ab \leq (bc)(ac)$ for any $a, b, c \in P$. In the similar way, we can show that (T2) implies (T1).

DEFINITION 4.1. A gi-algebra P is said to be transitive if it satisfies the equivalent axioms of Proposition 4.1.

The axioms (S) and (T2) are independent as the following examples show. Example 4.

(1) Let $P = \{0, a, b, 1\}$ be a poset with the Hasse diagram in Figure 4.

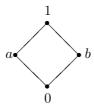


Figure 4. Hasse diagram of the poset P

We define a binary operation "." on (P, \leq) by the following:

	1	a	b	0
1	1	a	b	0
a	1	1	b	a
b	1	a	1	b
0	1	1	1	1

Then it is a strong gi-algebra which is not transitive because $ba = a \nleq b = ab = (a0)(b0)$.

(2) The gi-algebra P in Example 1(1) is transitive, which is not strong because 1d = 1, but $1 \le d$.

PROPOSITION 4.2. Let P be a gi-algebra. If P is transitive, then P satisfies the following property: for every $a, b, c \in P$,

(E)
$$a(bc) = b(ac)$$
.

Proof. Suppose that P is transitive and $a,b,c \in P$. Then $b \leq (bc)c$ by Proposition 2.3(4) and $((bc)c)(ac) \leq b(ac)$ by Proposition 2.3(5). Since $a(bc) \leq ((bc)c)(ac)$ by (T2), $a(bc) \leq b(ac)$. Interchanging the role of a and b, we have $b(ac) \leq a(bc)$. Hence a(bc) = b(ac).

The converse of Proposition 4.2 is not true as the following example show.

Example 5. Let $P = \{1, a, b, 0\}$ be a poset with the Hasse diagram in Figure 5.

$$\begin{bmatrix} 1 \\ a \\ b \\ 0 \end{bmatrix}$$

Figure 5. Hasse diagram of the poset P

We define a binary operation "." on (P, \leq) by the following:

	1	a	b	0
1	1	a	b	\overline{a}
a	1	1	a	1
$a \\ b$	1	1	1	1
0	1	1	1	1

Then it is a gi-algebra satisfying the property (E), but not transitive because $0b = 1 \le a = 1a = (a0)(ab)$.

Theorem 4.3. Let P be a gi-algebra. then P is strong and transitive if and only if P is a DBCK-algebra.

Proof. Suppose that P is strong and transitive. For any $a, b \in P$, a1 = 1 and a((ab)b) = 1 by (2) and (4) of Proposition 2.3, and aa = 1 by Proposition 2.2(1). Hence it satisfies (D5), (D2) and (D3). If ab = 1 and ba = 1, then $a \le b$ and $b \le a$ since P is strong. Hence a = b. For any $a, b, c \in P$, $ab \le (bc)(ac)$ by (T2), and (ab)((bc)(ac)) = 1 by Proposition 2.3(1). Hence P is a DBCK-algebra.

Conversely, suppose that P is a DBCK-algebra. Then P is a gi-algebra by Theorem 2.1, and strong and transitive by (DS) and (D1).

Let P be a gi-algebra and D a deductive system of P. We define a binary relation \sim_D on P by

$$a\sim_D b\iff [\,ab\in D\ \&\ ba\in D\,]$$

for any $a, b \in P$. Then \sim_D is not equivalence relation in general. In Example 5, $D = \{1\}$ is a deductive system, but \sim_D is not equivalence relation, because $a \sim_D 0$ and $0 \sim_D b$, but $a \not\sim_D b$.

THEOREM 4.4. Let P be a transitive gi-algebra and D a deductive system of P. Then \sim_D is a congruence relation on P.

Proof. It is clear that \sim_D is reflexive and symmetric. Suppose that $a \sim_D b$ and $b \sim_D c$ with $a, b, c \in P$. Then $bc \leq (ab)(ac)$ by (T1). Since $bc \in D$, $(ab)(ac) \in \uparrow D = D$ by Proposition 2.4. Since D is a deductive system and

YONG HO YON — KYUNG HO KIM

 $ab \in D$, $ac \in D$. Also, $ba \leq (cb)(ca)$ implies $ca \in D$ by the same way. It follows $a \sim_D c$. Hence \sim_D is an equivalence relation on P.

To show that \sim_D is a congruence relation, let $a \sim_D b$ and $c \in P$. Then $ab \leq (ca)(cb)$ by (T1). Since $ab \in D$, $(ca)(cb) \in \uparrow D = D$ by Proposition 2.4. Similarly, we have $(cb)(ca) \in D$. That is, $ca \sim_D cb$. Also, we have $ba \leq (ac)(bc)$ by (T2). Since $ba \in D$, $(ac)(bc) \in \uparrow D = D$. Similarly, we have $(bc)(ac) \in D$. It follows $ac \sim_D bc$. Hence \sim_D is a congruence relation on P.

Let P be a transitive gi-algebra and D a deductive system of P. We can define a binary relation " \leq " on the quotient set P/\sim_D by

$$[a] \leq [b] \iff [(\forall x \in [a])(\exists y \in [b])(x \leq y)],$$

where [a] and [b] are equivalence classes with respect to \sim_D .

THEOREM 4.5. Let P be a transitive gi-algebra and D a deductive system of P. Then $(P/\sim_D, \preceq)$ is a poset.

Proof. It is clear that $[a] \leq [a]$ for every $[a] \in P/\sim_D$. Let $[a] \leq [b]$ and $[b] \leq [a]$. Then $a \leq y$ for some $y \in [b]$. Since $y \sim_D b$, $1 = ay \sim_D ab$ by Proposition 2.3(1) and Theorem 4.4. This implies $1(ab) \in D$, and $ab \in D$ since D is a deductive system and $1 \in D$. Similarly, we have $ba \in D$ from $[b] \leq [a]$. Hence $a \sim_D b$ and [a] = [b].

To show that \preceq is transitive, let $[a] \preceq [b]$ and $[b] \preceq [c]$. Then for each $x \in [a]$, $x \leq y$ for some $y \in [b]$, and $y \leq z$ for some $z \in [c]$. That is, for each $x \in [a]$, there exists $z \in [c]$ such that $x \leq z$. Hence $[a] \preceq [c]$. Therefore \preceq is a partial order on P/\sim_D .

Let P be a transitive gi-algebra and D a deductive system of P. We define a binary operation " \circ " on the quotient set P/\sim_D by

$$[a] \circ [b] = [ab]$$

for every $[a], [b] \in P/\sim_D$.

PROPOSITION 4.6. Let P be a transitive gi-algebra and D a deductive system of P. Then the poset $(P/\sim_D, \preceq)$ with the above binary operation \circ satisfies the following properties.

- (1) [1] is the greatest element in $(P/\sim_D, \preceq)$,
- (2) $[1] \circ [a] = [a],$
- $(3) [a] \preceq [b] \iff [a] \circ [b] = [1],$
- $(4) \ a \leq b \ in \ P \implies [a] \preceq [b],$
- (5) $[a] \circ ([b] \circ [c]) = [b] \circ ([a] \circ [c]).$

Proof.

- (1) Let $[a] \in P/\sim_D$. Then $x \leq 1$ for each $x \in [a]$, and $1 \in [1]$. Hence $[a] \leq [1]$.
- (2) Let $a \in P$. Since $a \le 1a$ by (I1), $a(1a) = 1 \in D$ by Proposition 2.3(1). Also, since $1 \le (1a)a$, $(1a)a = 1 \in D$. Hence $1a \sim_D a$, and $[1] \circ [a] = [1a] = [a]$.
- (3) Suppose that $[a] \leq [b]$. Since $a \in [a]$, $a \leq x$ for some $x \in [b]$, i.e., $x \sim_D b$. This implies $1 = ax \sim_D ab$ by Proposition 2.3(1) and Theorem 4.4. Hence $[a] \circ [b] = [ab] = [1]$. Conversely, suppose that $[ab] = [a] \circ [b] = [1]$ and $x \in [a]$. Since $x \sim_D a$ and $ab \sim_D 1$, we have $(xb)b \sim_D (ab)b \sim_D 1b$ by Theorem 4.4 and $[1b] = [1] \circ [b] = [b]$ by (2) of this proposition. Thus $(xb)b \in [b]$, and $x \leq (xb)b$ by Proposition 2.3(4). Hence $[a] \leq [b]$.
- (4) Let $a \leq b$ in P. Then ab = 1 by Proposition 2.3(1), and this implies $[a] \circ [b] = [ab] = [1]$. Hence $[a] \leq [b]$ by (3) of this proposition.
- (5) Let $a, b, c \in P$. Since P is transitive, a(bc) = b(ac) by Proposition 4.2. Hence $[a] \circ ([b] \circ [c]) = [a(bc)] = [b(ac)] = [b] \circ ([a] \circ [c])$.

THEOREM 4.7. Let P be a transitive gi-algebra and D a deductive system of P. Then the poset $(P/\sim_D, \preceq)$ is a gi-algebra with the binary operation \circ .

Proof. The poset $(P/\sim_D, \preceq)$ has the greatest element [1] by Proposition 4.6(1) and satisfies $[a] \circ [a] = [1]$ by Proposition 4.6(3). Let $[a] \preceq [b] \circ [c]$. Then $[1] = [a] \circ ([b] \circ [c]) = [b] \circ ([a] \circ [c])$ by (3) and (5) of Proposition 4.6. Hence $[b] \preceq [a] \circ [b]$ by Proposition 4.6(3). Hence $(P/\sim_D, \preceq, \circ)$ is a gi-algebra by Proposition 2.2.

THEOREM 4.8. Let P be a transitive gi-algebra and D a deductive system of P. Then $(P/\sim_D, \circ)$ is a DBCK-algebra.

Proof. It is clear that $(P/\sim_D, \preceq, \circ)$ is a strong gi-algebra by Proposition 4.6(3) and Theorem 4.7. Let $a,b,c\in P$. Then $ab\leq (ca)(cb)$ since P is transitive. It follows $[a]\circ [b]=[ab]\preceq [(ca)(cb)]=([c]\circ [a])\circ ([c]\circ [b])$ by Proposition 4.6(4). That is, P/\sim_D is transitive. Hence $(P/\sim_D, \circ)$ is a DBCK-algebra by Theorem 4.3.

Acknowledgement. The authors are highly grateful to the referees for their valuable comments and suggestions for the paper.

REFERENCES

- [1] ABBOTT, J. C.: Sets, Lattices and boolean algebras, Allyn and Bacon, Boston, 1969.
- [2] ABBOTT, J. C.: Semi-boolean algebras, Matemat. Vesnik 4 (1967), 177–198.
- [3] ABBOTT, J. C.: Algebras of implication and semi-lattices, Sémin. Dubreil. Algèbre et Théor. Nombres 20 (1966-1967), No. 2, Exp. No. 20, 8 p.
- [4] BORZOOEI, R. A.—KHOSRAVI SHOAR, S.: Implication algebras are equivalent to the dual implicative BCK-algebras, Sci. Math. Jpn. 63 (2006), 429–431.

YONG HO YON — KYUNG HO KIM

- [5] CĪRULIS, J.: Subtraction-like operations in nearsemilattices, Demonstratio Math. 43 (2010), 725-738.
- [6] CHAJDA, I.: Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carolin. 44 (2003), 577-585.
- [7] DIEGO, A.: Sur les algèbres de Hilbert. Collect. Logique Math. Sèr. A. Vol. 21, Gauthier-Villars, Paris, 1966.
- [8] DUDEK, W. A.: On embedding Hilbert algebras in BCK-algebras, Math. Morav. 3 (1999), 25–28.
- [9] FIGALLO, A. V.—RAMÓN, G. Z.—SAAD, S.: A note on the Hilbert algebras with infimum, Mat. Contemp. 24 (2003), 23–37.
- [10] HALAŠ, R.: Remarks on commutative Hilbert algebras, Math. Bohem. 127 (2002), 525–529.
- [11] ISÉKI, K.—TANAKA, S.: An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1–26.
- [12] KIM, K. H.—YON, Y. H.: Dual BCK-algebra and MV-algebra, Sci. Math. Jpn. 66 (2007), 247–253.
- [13] MARSDEN, E. L.: Compatible elements in implicative models, J. Philos. Logic 1 (1972), 156–161.
- [14] MARSDEN, E. L.: A note on implicative models, Notre Dame J. Formal Logic XIV (1973), 139–144.
- [15] MENG, J.: Implication algebras are dual to implicative BCK-algebras, Soochow J. Math. 22 (1996), 567–571.
- [16] RASIOWA, H.: An algebraic approach to non-classical logics, PWN/North-Holland Publ. Co., Warszawa/Amsterdam-London, 1974.

Received 2. 3. 2011 Accepted 14. 7. 2011 * College of Liberal Education Mokwon University Daejeon 302-729 KOREA

E-mail: yhyon@mokwon.ac.kr

**Department of Mathematics Korea National University of Transportation Chungju 380-702 KOREA

E-mail: ghkim@ut.ac.kr