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ABSTRACT. State MV-algebras were introduced by Flaminio and Montagna as
MV-algebras with internal states. Di Nola and Dvurečenskij presented the notion

of state-morphism MV-algebra which is a stronger variation of a state MV-al-
gebra. Rach̊unek and Šalounová introduced state GMV-algebras (pseudo-MV
algebras) and state-morphism GMV-algebras, while the state BL-algebras and
state-morphism BL-algebras were defined by Ciungu, Dvurečenskij and Hyčko.
Recently, Dvurečenskij, Rach̊unek and Šalounová presented state R�-monoids
and state-morphism R�-monoids. In this paper we study these concepts for more

general fuzzy structures, namely pseudo-hoops and we present state pseudo-hoops
and state-morphism pseudo-hoops.
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1. Introduction

There is a strong motivation to revise the classical probability theory and to
introduce more general probability models based on non-classical logics. In anal-
ogy to probability measure, the states on multiple-valued logic algebras proved to
be the most suitable models for averaging the truth-value in their corresponding
logics. The notion of a state is a basic notion in quantum structures (for a sur-
vey on quantum structures, mathematical foundations of quantum mechanics,
see e.g. [25]). The state on MV-algebras was introduced by Mundici ([45]) and
the state on BL-algebras was introduced by Riečan ([47]) as functions defined
on these algebras with values in [0, 1]. Bosbach and Riečan states, introduced in
[34], have as domain a pseudo-BL-algebra A and as codomain the real interval
[0, 1] and the notions were generalized in [26], [27] for bounded non-commutative
R�-monoids. For the case of residuated lattices the states were investigated in
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[5], for semi-divisible residuated lattices in [48], [49], for pseudo-hoops in [8]
and for pseudo-BCK algebras in [9], [6]. Nowadays, states on other algebraic
structures are also intensively studied ([3], [29]–[32], [39]).

Recently, for the case of residuated lattices the notion of a state was general-
ized as a function with values in a residuated lattice ([12], [13]) and this concept
was extended to the case of pseudo-BCK algebras and pseudo-hoops ([14]).

Flaminio and Montagna ([33]) endowed the MV-algebras with a unary opera-
tion called an internal state or a state operator satisfying some basic properties
of states and the new structures are called state MV-algebras. In fact, they
developed a unified approach of the states and probabilistic many-valued logic
in a logic and algebraic setting. A more powerful type of logic can be given
by algebraic structures with internal states, and they are also very interesting
varieties of universal algebras. Di Nola and Dvurečenskij introduced the notion
of state-morphism MV-algebra which is a stronger variation of state MV-algebra
([15], [16]). Subdirectly irreducible state-morphism MV-algebras were charac-
terized in [18] and some classes of state-morphism MV-algebras were given in
[17]. The notion of a state operator was extended by Rach̊unek and Šalounová
in [46] for the case of GMV-algebras (pseudo-MV algebras). State operators and
state-morphism operators on BL-algebras were introduced and investigated in
[10] and subdirectly irreducible state-morphism BL-algebras were studied in [22].
Recently, Dvurečenskij, Rach̊unek and Šalounová introduced state R�-monoids
and state-morphism R�-monoids([28]).

In this paper we study these concepts for the more general fuzzy structures,
namely pseudo-hoops and we discuss the state pseudo-hoops and state-morphism
pseudo-hoops. We define the notions of state operator, strong state operator,
state-morphism operator, weak state-morphism operator and we study their
properties. We prove that every strong state pseudo-hoop is a state pseudo-hoop
and any state operator on an idempotent pseudo-hoop is a weak state-morphism
operator. Glivenko and (mN) properties are defined and it is proved that for an
idempotent pseudo-hoop A having these properties a state operator on Reg(A)
can be extended to a state operator on A. One of the main results of the paper
consists of proving that every perfect pseudo-hoop admits a nontrivial state
operator. Other results refer to the connection between the state operators and
the states and generalized states on a pseudo-hoop. Some conditions are given
for a state operator to be a generalized state and for a generalized state to be a
state operator.

2. Basic definitions and results

Pseudo-hoops were introduced in [38] as a generalization of hoops which were
originally defined and studied by Bosbach in [1] and [2] under the name of
complementary semigroups.
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It was proved that a pseudo-hoop has the pseudo-divisibility condition and it
is a meet-semilattice, so a bounded R�-monoid can be viewed as a bounded
pseudo-hoop together with the join-semilattice property. In other words, a
pseudo-hoop is a meet-semilattice ordered residuated, integral and divisible
monoid.

In what follows we recall some basic notions and results regarding the pseudo-
hoops.

���������� 2.1� ([38]) A pseudo-hoop is an algebra (A,�,→,�, 1) of the type
(2, 2, 2, 0) such that, for all x, y, z ∈ A:

(A1) x� 1 = 1� x = x;

(A2) x → x = x� x = 1;

(A3) (x� y) → z = x → (y → z);

(A4) (x� y)� z = y � (x� z);

(A5) (x → y)� x = (y → x)� y = x� (x� y) = y � (y � x).

In the sequel, we will agree that � has higher priority than the operations
→, �.

If the operation � is commutative, or equivalently → = �, then the
pseudo-hoop is said to be hoop. Properties of hoops were studied in [1] and [2].

On the pseudo-hoop A we define x ≤ y iff x → y = 1 (equivalent to x� y = 1)
and ≤ is a partial order on A. A pseudo-hoop A is bounded if there is an element
0 ∈ A such that 0 ≤ x for all x ∈ A.

In the sequel we will also refer to the pseudo-hoop (A,�,→,�, 1) by its
universe A.

Let (A,�,→,�, 0, 1) be a bounded pseudo-hoop. We define two negations
− and ∼: for all x ∈ A, x− = x → 0, x∼ = x� 0.

A bounded pseudo-hoop A is called good if x−∼
= x∼− for all x ∈ A.

If x−∼
= x∼− = x for all x ∈ A, then the bounded pseudo-hoop A is said to

have the pseudo-double negation property, (pDN) for short.

The elements x ∈ A with the property x−∼
= x∼− = x are sometimes called

also regular elements.

We recall that every pseudo-MV algebra is good ([35], [36]), every linearly
ordered pseudo-BL algebra is good ([20]) and every linearly ordered pseudo-
hoop is good ([21]).

Recently, it was proved that there exist pseudo-BL algebras that are not good
([24]) solving an open problem from [19].

A pseudo-BCK algebra (more precisely, reversed left-pseudo-BCK algebra) is
a structure A = (A,≤,→,�, 1) where ≤ is a binary relation on A, → and� are
binary operations on A and 1 is an element of A satisfying, for all x, y, z ∈ A,
the axioms:
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(bck1) x → y ≤ (y → z)� (x → z), x� y ≤ (y � z) → (x� z);

(bck2) x ≤ (x → y)� y, x ≤ (x� y) → y;

(bck3) x ≤ x;

(bck4) x ≤ 1;

(bck5) if x ≤ y and y ≤ x, then x = y;

(bck6) x ≤ y iff x → y = 1 iff x� y = 1.

A pseudo-BCK algebra with (pP) condition (i.e. with pseudo-product condi-
tion) or a pseudo-BCK(pP) algebra for short, is a pseudo-BCK algebra
A = (A,≤,→,�, 1) satisfying (pP) condition:

(pP) there exists, for all x, y ∈ A, x� y = min{z | x ≤ y → z}
= min{z | y ≤ x� z}

.

For more details about the properties of a pseudo-BCK algebra we refer te
reader to [36] and [42].

One can easily prove that any pseudo-hoop is a pseudo-BCK algebra with
pseudo-product ([11]). It follows that all the properties of a pseudo-BCK algebra
with pseudo-product proved in [40] and [41] are also valid in a pseudo-hoop.

�	�
������� 2.2� ([38], [41]) In every pseudo-hoop (A,�,→,�, 1) the follow-
ing hold:

(1) (A,�, 1) is a monoid;

(2) (A,≤) is a meet-semillatice with x ∧ y = (x → y)� x = x� (x� y);

(3) x� y ≤ z iff x ≤ y → z iff y ≤ x� z;

(4) x� y ≤ x ∧ y, x ≤ y → x and x ≤ y � x;

(5) x → y ≤ (y → z)� (x → z) and x� y ≤ (y � z) → (x� z);

(6) x ≤ y implies z → x ≤ z → y and z � x ≤ z � y;

(7) x ≤ y implies y → z ≤ x → z and y � z ≤ x� z;

(8) x → y ∧ z = (x → y) ∧ (x → z) and x� y ∧ z = (x� y) ∧ (x� z);

(9) y ≤ x → y � x and y ≤ x� x� y.

If A is bounded, then:

(10) x ≤ x−∼
, x ≤ x∼−;

(11) x → y∼ = y � x− and x� y− = y → x∼;
(12) x−∼− = x−, x∼−∼ = x∼;
(13) x → y−∼ = y− � x− = x−∼ → y−∼ and

x� y∼− = y∼ → x∼ = x∼− � y∼−;
(14) x → y− = (x� y)− and x� y∼ = (y � x)∼.
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�	�
������� 2.3� ([8]) Let (A,�,→,�, 0, 1) be a good bounded pseudo-hoop.
We define a binary operation ⊕ on A by x ⊕ y := y∼ → x∼−. Then for all
x, y ∈ A the following hold:

(1) x⊕ y = x− � y∼−;
(2) x, y ≤ x⊕ y;

(3) x⊕ 0 = 0⊕ x = x∼−;
(4) x⊕ 1 = 1⊕ x = 1;

(5) (x⊕ y)−∼
= x⊕ y = x−∼ ⊕ y−∼

;

(6) x⊕ y = (y− � x−)∼ = (y∼ � x∼)−;
(7) ⊕ is associative.

For any n ∈ N, x ∈ A we put x0 = 1 and xn+1 = xn � x = x� xn.

If A is a bounded pseudo-hoop, then the order of x ∈ A, denoted ord(x) is
the smallest n ∈ N such that xn = 0. If there is no such n, then ord(x) = ∞.

We say that A is locally finite if for any x ∈ A, x �= 1 implies ord(x) < ∞.

Let (A,�,→,�, 1) be a pseudo-hoop. A non-empty subset F of A is a filter
of A if for all x, y ∈ A the following conditions are satisfied:

(F1) x, y ∈ F implies x� y ∈ F ;

(F2) x ∈ F and x ≤ y implies y ∈ F .

A filter F of A is proper if F �= A.

If X ⊆ A, we denote by 〈X〉 the filter generated by X in A, that is the
intersection of all filters F of A such that X ⊆ F . If X = {x}, then the filter
generated by X will be denoted 〈x〉 instead of 〈{x}〉 and it is called the principal
filter generated by the element x ∈ A.

A filter H of A is called normal if for every x, y ∈ A, x → y ∈ A iff x� y ∈ A.

A maximal filter or ultrafilter is a proper filter F of A that is not included in
any other proper filter of A.

A pseudo-hoop A is called simple if {1} is the unique proper normal filter of A.

A pseudo-hoop A is called strongly simple if {1} is the unique proper filter ofA.
Obviously, any strongly simple pseudo-hoop is simple.

When A is a hoop, since filters and normal filters coincide, the notions of
simple and strongly simple hoop coincide.

�	�
������� 2.4� ([38]) For any pseudo-hoop A the following are equivalent:

(a) A is strongly simple;

(b) for all x ∈ A, if x �= 1 then 〈x〉 = A.

A pseudo-hoop (A,�,→,�, 1) is said to be cancellative if the monoid (A,�, 1)
is cancellative, that is x � a = y � a implies x = y and a � x = a � y implies
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x = y for all x, y, a ∈ A. A pseudo-hoop A is cancellative iff y → x� y = x and
y � y � x = x for all x, y ∈ A.

�	�
������� 2.5� ([38]) Let A be a cancellative pseudo-hoop. Then for all
x, y, z ∈ A the following hold:

(cc1) x → y = x� z → y � z and x� y = z � x� z � y;

(cc2) x� z ≤ y � z iff x ≤ y and z � x ≤ z � y iff x ≤ y.

In the next sections we will also use the notations:

x ∨1 y = (x → y)� y and x ∨2 y = (x� y) → y.

We mention that the above notations differ from the ones introduced in [38], but
we use them to be in line with other works ([37], [9], [8]). Note that in [8], x∨1 y
and x∨2 y defined in [38] were replaced for the same reason with the notations:

x ∪1 y = ((x → y)� y) ∧ ((y → x)� x) = (x ∨1 y) ∧ (y ∨1 x),

x ∪2 y = ((x� y) → y) ∧ ((y � x) → x) = (x ∨2 y) ∧ (y ∨2 x).

�	�
������� 2.6� ([9]) In any pseudo-hoopA the following hold for all x, y ∈ A:

(1) 1 ∨1 x = x ∨1 1 = 1 = 1 ∨2 x = x ∨2 1.

(2) x ≤ y implies x ∨1 y = y and x ∨2 y = y.

(3) x ∨1 x = x ∨2 x = x.

(4) If x1 ≤ x2 and y1 ≤ y2, then x1 ∨1 y1 ≤ x2 ∨1 y2 and x1 ∨2 y1 ≤ x2 ∨2 y2.

�	�
������� 2.7� ([8]) Let A be a pseudo-hoop. Then for all x, y ∈ A the
following hold:

(1) x ∨1 y → y = x → y and x ∨2 y � y = x� y;

(2) x ∨1 y → x = y → x and x ∨2 y � x = y � x.

A pseudo-hoop (A,�,→,�, 1) is said to be Wajsberg if it satisfies the follow-
ing conditions:

(W1) (x → y)� y = (y → x)� x;

(W2) (x� y) → y = (y � x) → x.

A pseudo-hoop (A,�,→,�, 1) is said to be basic if it satisfies the following
conditions:

(BH1) (x → y) → z ≤ ((y → x) → z) → z;

(BH2) (x� y)� z ≤ ((y � x)� z)� z.

Taking y = 0 in (W1) and (W2), it follows that a bounded Wajsberg pseudo-
hoop is with (pDN). As a consequence, every bounded Wajsberg pseudo-hoop
is good.
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We also recall that every strongly simple basic pseudo-hoop is a linear Wajs-
berg pseudo-hoop ([38: Cor. 4.15]).

A bounded R�-monoid is an algebra (A,�,∨,∧,→,�, 0, 1) of the type (2, 2, 2,
2, 2, 0, 0) satisfying the following conditions:

(R�1) (A,�, 1) is a monoid;

(R�2) (A,∨,∧, 0, 1) is a bounded lattice with bounds 0 and 1 (bottom and top);

(R�3) x� y ≤ z iff x ≤ y → z iff y ≤ x� z for all x, y, z ∈ A;

(R�4) (x → y)� x = y � (y � x) = x ∧ y for all x, y ∈ A.

For more details about the properties of a bounded R�-monoid we refer the
reader to [26] and [27].

�	�
������� 2.8� ([8]) Every bounded Wajsberg pseudo-hoop is a bounded
R�-monoid.

Example 2.9. ([38]) Let G = (G,+,−, 0,∨,∧) be an arbitrary �-group and N(G)
the negative cone of G, that is N(G) = {x ∈ G | x ≤ 0}. On N(G) we define
the following operations:

x� y = x+ y,

x → y = (y − x) ∧ 0,

x� y = (−x+ y) ∧ 0.

Then N(G) = (N(G),�,→,�, 0) is a cancellative pseudo-hoop.

���������� 2.10� ([7]) Let A be a good pseudo-hoop and x, y ∈ A. We say
that x is orthogonal to y and write x⊥y, if x−∼ ≤ y∼.

�	�
������� 2.11� ([7]) If A is a good pseudo-hoop, then the following are
equivalent:

(a) x⊥y; (b) y−∼ ≤ x−; (c) y−∼ � x−∼ = 0.

�	�
������� 2.12� ([7]) Let A be a good pseudo-hoop. For all x, y ∈ A we have:

(1) x⊥0 and 0⊥x;

(2) if x ≤ y, then x⊥y− and y∼⊥x;

(3) x⊥x− and x∼⊥x;

(4) if x⊥y, then xn⊥ym for all n,m ∈ N;

(5) if x⊥y, then y � x = 0;

(6) if x⊥y, then x−∼⊥y−∼;
(7) x−⊥y− iff x∼⊥y∼.
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���������� 2.13� Let A be a good pseudo-hoop.

(1) We say that the elements x and y are N-orthogonal, denoted x⊥noy, if
x− ≤ y−∼.

(2) A has the strong orthogonality property (SO for short), if x⊥y implies
x⊥noy for all x, y ∈ A such that x �= 0 and y �= 0.

Remark 2.14� If A is a good pseudo-hoop, then:

(1) x⊥noy iff y∼ ≤ x−∼.
(2) x⊥noy iff x−⊥y−.

According to Proposition 2.12(7) we also have x⊥noy iff x∼⊥y∼.

(3) x⊥no1 and 1⊥nox for all x ∈ A.

(4) x⊥no0 iff x− = x∼ = 0.

(5) 0⊥nox iff x− = x∼ = 0.

Remark 2.15� If A is a good pseudo-hoop. Then A has (SO) property iff
x− = y−∼ iff y∼ = x−∼ for all x �= 0 and y �= 0.

In a Wajsberg pseudo-hoop we can define two distance functions:

d1(x, y) = (x → y) ∧ (y → x) = (x ∨ y) → (x ∧ y)

and

d2(x, y) = (x� y) ∧ (y � x) = (x ∨ y)� (x ∧ y).

3. State pseudo-hoops

Flaminio and Montagna ([33]) have endowed the MV-algebras with a unary
operation called an internal state or a state operator satisfying some basic prop-
erties of states and the new structures are called state MV-algebras. In fact, they
developed a unified treatment of states and probabilistic many-valued logic in a
logic and algebraic setting. The notion of a state operator has been extended
for the case of GMV-algebras (pseudo-MV algebras), [46], BL-algebras, [10], and
R�-monoids, [28]. With algebraic structures with internal states more powerful
logic can be interpreted, but they are also very interesting varieties of universal
algebras.

In this paper we study these concepts for the more general fuzzy structures,
namely pseudo-hoops and we present state pseudo-hoops and state-morphism
pseudo-hoops. We define the notions of state operator, strong state operator,
state-morphism operator, weak state-morphism operator and we study their
properties. We prove that every strong state pseudo-hoop is a state pseudo-hoop
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and any state operator on an idempotent pseudo-hoop is a weak state-morphism
operator. Glivenko and (mN) properties are defined and it is proved that for an
idempotent pseudo-hoop A having these properties a state operator on Reg(A)
can be extended to a state operator on A. One of the main results of the paper
consists of proving that every perfect pseudo-hoop admits a nontrivial state
operator. Other results refer to the connection between the state operators and
the states and generalized states on a pseudo-hoop. Some conditions are given
for a state operator to be a generalized state and for a generalized state to be a
state operator.

In what follows A will be a bounded pseudo-hoop.

���������� 3.1� A state pseudo-hoop is a pair (A, σ) where A is a bounded
pseudo-hoop and σ : A → A is a mapping, called state operator, such that for
any x, y ∈ A the following conditions are satisfied:

(S1) σ(0) = 0;

(S2) σ(x → y) = σ(x) → σ(x ∧ y) and σ(x� y) = σ(x)� σ(x ∧ y);

(S3) σ(x� y) = σ(x)� σ(x� x� y) = σ(y → x� y)� σ(y);

(S4) σ(σ(x)� σ(y)) = σ(x)� σ(y);

(S5) σ(σ(x) → σ(y)) = σ(x) → σ(y) and σ(σ(x)� σ(y)) = σ(x)� σ(y).

Denote Ker(σ) = {x ∈ A | σ(x) = 1} called the kernel of σ.

A state operator is called faithful if Ker(σ) = 1.

�	�
������� 3.2� If (A, σ) is a state-pseudo-hoop, then for all x, y ∈ A the
following hold:

(1) σ(1) = 1;

(2) σ(x−) = σ(x)− and σ(x∼) = σ(x)∼;
(3) x ≤ y implies σ(x) ≤ σ(y);

(4) σ(x� y) ≥ σ(x)� σ(y);

If x� y = 0, then σ(x� y) = σ(x)� σ(y);
If A is good and y ⊥ x, then σ(x� y) = σ(x)� σ(y);

(5) σ(x� y∼) ≥ σ(x)� σ(y)∼ and σ(y− � x) ≥ σ(y)− � σ(x);

If x ≤ y, then σ(x� y∼) = σ(x)� σ(y)∼ and σ(y− � x) = σ(y)− � σ(x);

(6) σ(x ∧ y) = σ(x)� σ(x� y) = σ(y → x)� σ(y);

(7) σ(x → y) ≤ σ(x) → σ(y) and σ(x� y) ≤ σ(x)� σ(y).

If x and y are comparable, then σ(x → y) = σ(x) → σ(y) and σ(x � y) =
σ(x)� σ(y);

(8) σ(x → y) � σ(y → x) ≤ d1(σ(x), σ(y)) and σ(x � y) � σ(y � x) ≤
d2(σ(x), σ(y));

911



LAVINIA CORINA CIUNGU

(9) σ2(x) = σ(x);

(10) If A is good, then:
σ(x⊕ y) ≤ σ(x)⊕ σ(y);
σ(σ(x)⊕ σ(y)) = σ(x)⊕ σ(y);
If x ⊥no y, then σ(x⊕ y) = σ(x)⊕ σ(y);
σ(x⊕ x−) = σ(x∼ ⊕ x) = 1;

(11) σ(A) = {x ∈ A | σ(x) = x};
(12) σ(x → y) = σ(x) → σ(y) iff σ(y → x) = σ(y) → σ(x) iff

σ(x� y) = σ(x)� σ(y) iff σ(y � x) = σ(y)� σ(x);

(13) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y);

(14) σ(σ(x) ∨1 σ(y)) = σ(x) ∨1 σ(y) and σ(σ(x) ∨2 σ(y)) = σ(x) ∨2 σ(y);
σ(x ∨1 y) ≤ σ(x) ∨1 σ(y) and σ(x ∨2 y) ≤ σ(x) ∨2 σ(y);

If x and y are comparable, then σ(x ∨1 y) = σ(x) ∨1 σ(y) and σ(x ∨2 y) =
σ(x) ∨2 σ(y);

(15) If σ is faithful, then x < y implies σ(x) < σ(y);

(16) If σ is faithful, then either σ(x) = x or σ(x) and x are not comparable;

(17) If A is linearly ordered and σ is faithful, then σ(x) = x for all x ∈ A.

P r o o f. (1) σ(1) = σ(0 → 0) = σ(0) → σ(0 ∧ 0) = 1.

(2) σ(x−)=σ(x → 0)=σ(x) → σ(x ∧ 0)=σ(x) → σ(0)=σ(x) → 0=σ(x)−.
Similarly for σ(x∼) = σ(x)∼.

(3) By Proposition 2.2(2) we get x = y � (y � x), so:
σ(x) = σ(y � (y � x)) = σ(y)� σ(y � y � (y � x)) ≤ σ(y).

(4) From x � y ≤ x � y we get y ≤ x � x � y, so by (3) we have
σ(y) ≤ σ(x� x� y).

Applying (S3) we get: σ(x � y) = σ(x) � σ(x � x � y) ≥ σ(x) � σ(y). If
x�y = 0, then σ(x�y) = 0, so that σ(x�y) = σ(x)�σ(y) = 0. If A is good and
y ⊥ x, by Proposition 2.12 we have x�y = 0, hence σ(x�y) = σ(x)�σ(y) = 0.

(5) σ(x � y∼) ≥ σ(x) � σ(y)∼ and σ(y− � x) ≥ σ(y)− � σ(x) follow from
(4) and (2). If x ≤ y we have y∼ ≤ x∼, y− ≤ x−, so x� y∼ ≤ x� x∼ = 0 and
y− � x ≤ x− � x = 0.

It follows that σ(x�y∼) = σ(y−�x) = 0, hence σ(x�y∼) = σ(x)�σ(y)∼ = 0
and σ(y− � x) = σ(y)− � σ(x) = 0.

(6) σ(x ∧ y) = σ(x� (x� y)) = σ(x)� σ(x� (x� (x� y))) =
σ(x)� σ(x� x ∧ y)) = σ(x)� σ(x� y) and
σ(x ∧ y) = σ((y → x)� y) = σ(y → ((y → x)� y))� σ(y) =
σ(y → x ∧ y)� σ(y) = σ(y → x)� σ(y).

912



BOUNDED PSEUDO-HOOPS WITH INTERNAL STATES

(7) By (S2) and Proposition 2.2(6) we have:
σ(x → y) = σ(x) → σ(x ∧ y) ≤ σ(x) → σ(y) and
σ(x� y) = σ(x)� σ(x ∧ y) ≤ σ(x)� σ(y).

If x ≤ y, then σ(x) ≤ σ(y) and σ(x → y) = σ(x)→σ(x∧y)=σ(x)→σ(x)=1.
We also have σ(x) → σ(y) = 1, thus σ(x → y) = σ(x) → σ(y). Similarly,
σ(x� y) = σ(x)� σ(y).

If y ≤ x, then x ∧ y = y and the equalities follow from (S2).

(8) By (7) we have σ(x → y) ≤ σ(x) → σ(y) and σ(y → x) ≤ σ(y) → σ(x),
hence σ(x → y)�σ(y → x) ≤ d1(σ(x), σ(y)). Similarly, σ(x� y)�σ(y � x) ≤
d2(σ(x), σ(y)).

(9) Applying (1) and (S4) we have: σ2(x) = σ(σ(x)) = σ(σ(x) � σ(1)) =
σ(x)� σ(1) = σ(x).

(10) From σ(y− � x−) ≥ σ(y−) � σ(x−) we get (σ(y−) � σ(x−))∼ ≥
(σ(y−�x−))∼. Applying (2) it follows that (σ(y)−�σ(x)−)∼ ≥ σ((y−�x−)∼).
Thus σ(x⊕ y) ≤ σ(x)⊕ σ(y).

By (2) and (9) we get:

σ(σ(x)⊕ σ(y)) = σ((σ(y)− � σ(x)−)∼) = (σ(σ(y−)� σ(x−)))∼

= (σ(y−)� σ(x−))∼ = (σ(y)− � σ(x)−)∼ = σ(x)⊕ σ(y).

Obviously, σ(x⊕0) = σ(x)⊕σ(0) and σ(0⊕x) = σ(0)⊕σ(x). Since x ⊥no y, we
have x− ⊥ y−, so by (4) and (2) we have σ(y− � x−) = σ(y−) � σ(x−) =
σ(y)− � σ(x)−.

Hence σ(x ⊕ y) = σ((y− � x−)∼) = (σ(y− � x−))∼ = (σ(y)− � σ(x)−)∼ =
σ(x)⊕ σ(y). For the last assertion we have:

σ(x⊕ x−) = (σ(x−∼ � x∼)−) = (σ(x∼− � x∼))− = (σ(0))− = 1 and
σ(x∼ ⊕ x) = (σ(x− � x∼−)∼) = (σ(x− � x−∼))∼ = (σ(0))∼ = 1.

(11) Consider y ∈ σ(A), so there exists x ∈ A such that y = σ(x). Hence
σ(y) = σ2(x) = σ(x) = y. It follows that y ∈ {x ∈ A | σ(x) = x}. Conversely, if
y ∈ {x ∈ A | σ(x) = x} it follows that y ∈ σ(A).

(12) Suppose σ(x → y) = σ(x) → σ(y). Applying (S2), (6) and Proposi-
tion 2.2(2) we get:

σ(y → x) = σ(y) → σ(y ∧ x) = σ(y) → σ(x → y)� σ(x)

= σ(y) → (σ(x) → σ(y))� σ(x)= σ(y) → σ(x) ∧ σ(y)=σ(y) → σ(x).

Similarly, if σ(y → x) = σ(y) → σ(x), then σ(x → y) = σ(x) → σ(y). Suppose
again that σ(x → y) = σ(x) → σ(y), so that σ(y → x) = σ(y) → σ(x). Then we
have:

σ(x� y) = σ(x)� σ(x ∧ y) = σ(x)� (σ(y → x)� σ(y))

= σ(x)� ((σ(y) → σ(x))� σ(y)) = σ(x)� σ(x) ∧ σ(y) = σ(x)� σ(y).

Similarly, if σ(x� y) = σ(x)� σ(y), then σ(x → y) = σ(x) → σ(y).
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Finally, we can prove in the same manner that
σ(x� y) = σ(x)� σ(y) implies σ(y � x) = σ(y)� σ(x).

(13) Applying (6), (9), (S5) and Proposition 2.2(2) we get:

σ(σ(x) ∧ σ(y)) = σ2(x)� σ(σ(x)� σ(y)) = σ(x)� (σ(x)� σ(y))

= σ(x) ∧ σ(y).

(14) Applying (S5) and (9) we get:

σ(σ(x) ∨1 σ(y)) = σ((σ(x) → σ(y))� σ(y)) = σ(σ(x) → σ(y))� σ(y)

= (σ(x) → σ(y))� σ(y) = σ(x) ∨1 σ(y).

Similarly, σ(σ(x)∨2 σ(y)) = σ(x)∨2 σ(y). The second part follows applying (7)
twice.

(15) By (3) x < y implies σ(x) ≤ σ(y). Suppose σ(x) = σ(y). From (S2) it
follows that σ(y → x) = σ(y) → σ(x) = 1, that is y → x ∈ Ker(σ) = {1}. Thus
y → x = 1, hence y ≤ x, a contradiction. It follows that σ(x) < σ(y).

(16) Consider x ∈ A such that σ(x) �= x and let x and σ(x) be comparable.
We have x < σ(x) or σ(x) < x, so σ(x) < σ(x), a contradiction. It follows that
either σ(x) = x or σ(x) and x are not comparable.

(17) Since A is linearly ordered it follows that x and σ(x) are comparable.
Hence by (16), σ(x) = x. �

��	�

�	� 3.3� Let (A, σ) be a linearly ordered state pseudo-hoop. Then for
all x, y ∈ A the following hold:

(1) σ(x → y) = σ(x) → σ(y) and σ(x� y) = σ(x)� σ(y);

(2) σ(x ∨1 y) = σ(x) ∨1 σ(y) and σ(x ∨2 y) = σ(x) ∨2 σ(y);

(3) If A has (SO) property, then:
σ(x⊕ y−) = σ(x)⊕ σ(y−) and σ(y∼ ⊕ x) = σ(y∼)⊕ σ(x) or
σ(y ⊕ x−) = σ(y)⊕ σ(x−) and σ(x∼ ⊕ y) = σ(x∼)⊕ σ(y).

P r o o f.

(1) It follows from Proposition 3.2(7).

(2) It follows from Proposition 3.2(14).

(3) Consider the following cases:

(a) If x = 0, then applying Proposition 2.3(3) and Proposition 3.2(2) we have:

σ(0⊕ y−) = σ(y−∼−) = σ(y−) = σ(y)− and

σ(0)⊕ σ(y−) = 0⊕ σ(y−) = σ(y−)∼− = σ(y)−.

Thus σ(x⊕ y−) = σ(x)⊕ σ(y−) and similarly σ(y∼ ⊕ x) = σ(y∼)⊕ σ(x).

(b) If y = 0, then according to Proposition 2.3(4) we have:

σ(x⊕ 0−) = σ(x⊕ 1) = σ(1) = 1 and σ(1)⊕ σ(y−) = 1⊕ σ(y−) = 1.
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Thus σ(x⊕ y−) = σ(x)⊕ σ(y−) and similarly σ(y∼ ⊕ x) = σ(y∼)⊕ σ(x).

(c) Assume x �= 0, y �= 0 and x ≤ y. According to Proposition 2.12(2), x ⊥ y−

and y∼ ⊥ x. Applying Proposition 3.2(10) we have

σ(x⊕ y−) = σ(x)⊕ σ(y−) and σ(y∼ ⊕ x) = σ(y∼)⊕ σ(x).

Similarly, if x �= 0, y �= 0 and y ≤ x we get

σ(y ⊕ x−) = σ(y)⊕ σ(x−) and σ(x∼ ⊕ y) = σ(x∼)⊕ σ(y).

�

�	�
������� 3.4� Let (A, σ) be a state pseudo-hoop. Consider the properties:

(a) σ(x → y) = σ(x) → σ(y) or σ(x� y) = σ(x)� σ(y) for all x, y ∈ A;

(b) σ(x ∧ y) = σ(x) ∧ σ(y) for all x, y ∈ A;

(c) σ(x� y) = σ(x)� σ(y) for all x, y ∈ A;

(d) σ(x ∨1 y) = σ(x) ∨1 σ(y) and σ(x ∨2 y) = σ(x) ∨2 σ(y) for all x, y ∈ A.

Then (a) is equivalent with (b) and (a) implies (c), (d).

P r o o f. According to Proposition 3.2(12), σ preserves → iff it preserves �.

(a) =⇒ (b) By Proposition 3.2(6) and Proposition 2.2(2) we have:

σ(x ∧ y) = σ(x)� σ(x� y) = σ(x)� (σ(x)� σ(y)) = σ(x) ∧ σ(y).

(b) =⇒ (a) Applying (S2) we get:

σ(x → y) = σ(x) → σ(x ∧ y) = σ(x) → (σ(x) ∧ σ(y)) = σ(x) → σ(y).

Similarly, σ(x� y) = σ(x)� σ(y).

(a) =⇒ (c) By (A3) we have:

σ(x� y) → σ(z) = σ(x� y → z) = σ(x → (y → z))

= σ(x) → (σ(y) → (σ(z)) = (σ(x)� σ(y)) → σ(z).

Taking z = σ(x)� σ(y) we get:

σ(x� y) → σ(σ(x)� σ(y)) = (σ(x)� σ(y)) → σ(σ(x)� σ(y))

= (σ(x)� σ(y)) → (σ(x)� σ(y)) = 1.

Thus σ(x� y) ≤ σ(σ(x)�σ(y)) = σ(x)�σ(y). Applying Proposition 3.2(4), we
get σ(x� y) = σ(x)� σ(y).

(a) =⇒ (d) It follows by the definitions of ∨1 and ∨2, applying (a). �

Let A be a bounded pseudo-hoop and σ : A → A be a mapping such that for
all x, y ∈ A:

(S′3) σ(x� y) = σ(y− ∨1 x)� σ(y) = σ(x)� σ(x∼ ∨2 y).
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���������� 3.5� A mapping σ : A → A is called a strong state operator on A
if σ satisfies conditions (S1), (S2), (S

′
3), (S4), (S5).

A pair (A, σ) such that A is a bounded pseudo-hoop and σ is a strong state
operator on A is called strong state pseudo-hoop.

A state operator σ is called C-state operator if it satisfies the following con-
dition (C):

(C) σ(x ∨1 y) = σ(y ∨1 x) and σ(x ∨2 y) = σ(y ∨2 x).

A pair (A, σ) such that A is a bounded pseudo-hoop and σ is a C-state
operator on A is called C-state pseudo-hoop. If a C-state operator is strong,
then we call it C-strong state operator.

Remark 3.6� Every state Wajsberg pseudo-hoop is a C-state Wajsberg pseudo-
hoop.

�	�
������� 3.7� Let A be a bounded pseudo-hoop. If σ : A → A is an order-
preserving mapping satisfying condition (C), then σ(x ∨1 y) = σ(x ∨2 y) for all
x, y ∈ A.

P r o o f. First we prove the equality for y ≤ x. Applying Proposition 2.6(2) and
condition (C) we get:

σ(x ∨1 y) = σ(y ∨1 x) = σ(x) and σ(x ∨2 y) = σ(x),

i.e., σ(x ∨1 y) = σ(x ∨2 y).

Assume now that x and y are arbitrary elements of A. Using again Proposi-
tion 2.6(2), condition (C) and the first part of the proof, we get:

σ(x ∨1 y) = σ(x ∨1 (x ∨1 y)) = σ((x ∨1 y) ∨1 x)

= σ((x ∨1 y) ∨2 x) ≥ σ(y ∨2 x)

= σ(x ∨2 (y ∨2 x)) ≥ σ(x ∨2 y)

= σ(y ∨2 (x ∨2 y)) = σ((x ∨2 y) ∨2 y)

≥ σ(x ∨1 y).

Thus σ(x ∨1 y) = σ(x ∨2 y). �

��	�

�	� 3.8� If σ is a C-state operator, then σ(x ∨1 y) = σ(x ∨2 y).

����	�� 3.9� Every strong state pseudo-hoop is a state pseudo-hoop.

P r o o f. Consider the strong state pseudo-hoop (A, σ) and x, y ∈ A. Taking
into consideration that y− ≤ y → x and x∼ ≤ x� y we get:

y− ∨1 (y → x) = y → x and x∼ ∨2 (x� y) = x� y.

Then we have:

σ(x ∧ y) = σ(x� (x� y)) = σ(x)� σ(x∼ ∨2 (x� y)) = σ(x)� σ(x� y).

916



BOUNDED PSEUDO-HOOPS WITH INTERNAL STATES

It follows that

σ(x� y) = σ(x ∧ (x� y)) = σ(x)� σ(x� (x� y)).

Similarly,

σ(x ∧ y) = σ((y → x)� y) = σ(y− ∨1 (y → x))� σ(y) = σ(y → x)� σ(y),

so
σ(x� y) = σ((x� y) ∧ y) = σ(y → (x� y))� σ(y).

Thus condition (S′3) implies condition (S3), hence σ is a state operator on A. �

�	�
������� 3.10� If σ is a strong state operator on a bounded pseudo-hoop
A such that x∼ ≤ y or y− ≤ x for some x, y ∈ A, then σ(x� y) = σ(x)� σ(y).

P r o o f. Since σ is a strong state operator, it satisfies the condition

σ(x� y) = σ(y− ∨1 x)� σ(y) = σ(x)� σ(x∼ ∨2 y).

According to Proposition 2.6, y− ≤ x implies σ(y− ∨1 x) = σ(x) and x∼ ≤ y
implies σ(x∼ ∨2 y) = σ(y). Thus σ(x� y) = σ(x)� σ(y). �

�	�
������� 3.11� If σ is a state operator on a linearly ordered bounded
pseudo-hoop A, then σ is a pseudo-hoop endomorphism such that σ2 = σ.

P r o o f. Since (A, σ) is a linearly ordered state pseudo-hoop, according to Corol-
lary 3.3 σ preserves → and �. Applying Proposition 3.4, it follows that σ
preserves �.

Taking into consideration that σ preserves also the constants 0 (by Defini-
tion 3.1(S1)) and 1 (by Proposition 3.2(1)), we conclude that σ is an endomor-
phism. Condition σ2 = σ follows from Proposition 3.2(9). �

�	�
������� 3.12� If (A, σ) is a state pseudo-hoop, then σ(A) is a subalgebra
of A.

P r o o f. By (S4), (S5) and Proposition 3.2(1), σ(A) is closed under the opera-
tions �, →, �, 1. Thus σ(A) is a subalgebra of A. �

���������� 3.13�

(1) A state operator σ on a bounded pseudo-hoop A is called a weak state-
morphism operator on A if for all x, y ∈ A:
(S6) σ(x� y) = σ(x)� σ(y).
In this case (A, σ) is called a weak state-morphism pseudo-hoop.

(2) A bounded pseudo-hoop endomorphism σ : A → A is said to be a state-
morphism operator if σ2 = σ.

Obviously, a state-morphism operator is always a weak state-morphism oper-
ator.
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Example 3.14. ([28])

(1) If A is a bounded pseudo-hoop, then the identity idA is a state operator
on A.

(2) Let A be a bounded pseudo-hoop and B = A × A. Then the mappings
σ1, σ2 : B → B such that σ1(x1, x2) = (x1, x1), σ2(x1, x2) = (x2, x2) are
state-morphism operators on the bounded pseudo-hoop B.

Remark 3.15� From Propositions 3.4 and 3.10 it follows that:

(1) If σ is a state operator on A preserving → or preserving �, then σ is a
weak state-morphism operator and a state-morphism operator.

(2) If σ is a strong state operator on a bounded pseudo-hoop A such that
x∼ ≤ y or y− ≤ x for all x, y ∈ A, then σ is a weak state-morphism
operator.

�	�
������� 3.16� If A is a bounded cancellative pseudo-hoop, then any state
operator σ on A is a weak state-morphism operator.

P r o o f. According to (S3) and taking into consideration that in a cancellative
pseudo-hoop y → x� y = x, we get:

σ(x� y) = σ(y → x� y)� σ(y) = σ(x)� σ(y).

Thus σ is a weak state-morphism operator on A. (It can be proved similarly for
the case x� x� y = y). �

An element a of a pseudo-hoop A is said to be an idempotent if a2 = a. The
set of all idempotents of A is denoted by Id(A).

A pseudo-hoop A is called idempotent pseudo-hoop if Id(A) = A, that is all
elements of A are idempotent.

It was proved in [23: Prop. 3.1] that, if a ∈ Id(A), then for all x ∈ A we have:

(a) a� x = a ∧ x = x� a;

(b) a → x = a� x.

According to [43], representable Brouwerian algebras are idempotent basic
hoops and generalized Boolean algebras are idempotent Wajsberg hoops.

����	�� 3.17� If A is a bounded idempotent pseudo-hoop, then any state oper-
ator σ on A is a weak state-morphism operator and a state-morphism operator.

P r o o f. Consider x, y ∈ A. Applying the property of idempotent elements and
Proposition 3.2(4) we get:

σ(x ∧ y) = σ(x� y) ≥ σ(x)� σ(y) = σ(x) ∧ σ(y).
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On the other hand, σ(x ∧ y) ≤ σ(x) ∧ σ(y) = σ(x)� σ(y). Thus σ(x ∧ y) =
σ(x�y) = σ(x)�σ(y) = σ(x)∧σ(y). Thus σ is a weak state-morphism operator
on A.

Since ∧ is preserved, according to Proposition 3.4((a) ⇔ (b)), one of →, �
is preserved as well. The preservance of the second one follows from Proposi-
tion 3.2(12).

The constants 0 and 1 are preserved by Definition 3.1(S1) and Proposi-
tion 3.2(1), respectively. Thus σ is an endomorphism on A.

Since from Proposition 3.2(9) we have σ2 = σ, it follows that σ is also a
state-morphism operator on A. �

�	�
������� 3.18� If σ is a state operator on a bounded pseudo-hoop A, then
Ker(σ) is a normal filter of A.

P r o o f. Similarly as in [28: Prop. 5.6]. �

4. Glivenko and meet-negation properties

We introduce the Glivenko and meet-negation properties which will be used
in the next sections.

For a bounded pseudo-hoop (A,�,→,�, 0, 1) we define

Reg(A) = {a ∈ A | a−∼ = a∼− = a}.
Then (Reg(A),�,→,�, 0, 1) is a subalgebra of A (see [44]). Obviously, A
satisfies the (pDN) condition iff A = Reg(A). Moreover, if A is good, then
a−∼ ∈ Reg(A).

Based on the conditions introduced in [44] we introduce the notion of Glivenko
property for a good pseudo-hoop.

���������� 4.1� A good pseudo-hoop A has the Glivenko property iff the fol-
lowing identities are satisfied for all x, y ∈ A:

(x → y)−∼ = x → y−∼, (x� y)−∼ = x� y−∼.

Remark 4.2� If A is a good bounded R�-monoid, then according to Lemma 2.1
in [27], the following hold for all x, y ∈ A:

(x → y)−∼ = x−∼ → y−∼, (x� y)−∼ = x−∼ � y−∼.

Applying Proposition 2.2(13) it follows that

(x → y)−∼ = x → y−∼, (x� y)−∼ = x� y−∼.

Thus any good bounded R�-monoid satisfies Glivenko property.
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On the other hand by Proposition 2.8, every bounded Wajsberg pseudo-hoop
is a bounded R�-monoid. It follows that every bounded Wajsberg pseudo-hoop
has Glivenko property.

Remark 4.3� By Proposition 2.2(13), in any good pseudo-hoop A satisfying
Glivenko property the following hold:

(x → y)−∼ = x−∼ → y−∼, (x� y)−∼ = x−∼ � y−∼

for all x, y ∈ A.

���������� 4.4� A good pseudo-hoop A is said to be with meet-negation prop-
erty (mN for short) if

(mN) (x ∧ y)−∼ = x−∼ ∧ y−∼ for all x, y ∈ A.

Remark 4.5� According to [27: Lemma 2.1], any good bounded R�-monoid
satisfies (mN) property.

Applying Proposition 2.8, it follows that every bounded Wajsberg pseudo-
hoop has (mN) property.

�	�
������� 4.6� Let (A, σ) by an idempotent state pseudo-hoop. Then:

(1) σ(x ∧ y) = σ(x� y) = σ(x)� σ(y) = σ(x) ∧ σ(y) for all x, y ∈ A;

(2) σ(x → y) = σ(x) → σ(y) and σ(x� y) = σ(x)� σ(y) for all x, y ∈ A;

(3) If A has (mN) property, then
(x� y)−∼ = (x ∧ y)−∼ = x−∼ ∧ y−∼ = x−∼ � y−∼ for all x, y ∈ A.

P r o o f. We remark that an idempotent pseudo-hoop is commutative, so that it
is good.

(1) It follows from the proof of Theorem 3.17.

(2) By Proposition 3.4 it follows that

σ(x → y) = σ(x) → σ(y) or σ(x� y) = σ(x)� σ(y) for all x, y ∈ A

which are equivalent according to Proposition 3.2(12).

(3) Since A is idempotent, x� y = x ∧ y for all x, y ∈ A and we get:

(x� y)−∼ = (x ∧ y)−∼ = x−∼ ∧ y−∼ = x−∼ � y−∼.

�
�	�
������� 4.7� Let (A, σ) be a state pseudo-hoop and x, y ∈ Reg(A). Then:

(1) σ(x) ∈ Reg(A);

(2) If A is good, then x⊕ y ∈ Reg(A);

(3) If A has Glivenko property, then x → y, x� y, x∨1 y, x∨2 y ∈ Reg(A);

(4) If A has (mN) property, then x ∧ y ∈ Reg(A);

(5) If A is idempotent with (mN) property, then x� y ∈ Reg(A).
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P r o o f.

(1) By Proposition 3.2(2) we have:

σ(x)−∼ = σ(x−∼) = σ(x) and σ(x)∼− = σ(x∼−) = σ(x),

thus σ(x) ∈ Reg(A).

(2) Applying Proposition 2.3(6) we get:

(x⊕ y)−∼ = ((y− � x−)∼)−∼ = (y− � x−)∼ = x⊕ y.

From goodness property we have that (x ⊕ y)∼− = (x ⊕ y)−∼ = x ⊕ y. Thus
x⊕ y ∈ Reg(A).

(3) By Proposition 2.2(13) we have:

(x → y)−∼ = x → y−∼ = x−∼ → y−∼ = x → y and

(x� y)−∼ = x� y−∼ = x−∼ � y−∼ = x� y,

since A is good. As a consequence, it follows that x ∨1 y, x ∨2 y ∈ Reg(A).

(4) By (mN) property we have (x∧ y)−∼ = x−∼ ∧ y−∼ = x ∧ y, thus x ∧ y ∈
Reg(A).

(5) From Proposition 4.6 we have (x � y)−∼ = x−∼ � y−∼ = x � y, so
x� y ∈ Reg(A). �

5. On the existence of state operators on pseudo-hoops

In this section we investigate the existence of the state operators proving
that every perfect pseudo-hoop admits a nontrivial state operator on it. In what
follows A will be a bounded pseudo-hoop.

����� 5.1� Any state operator σ on a locally finite pseudo-hoop is faithful.

P r o o f. Assume that there exists 0 < x < 1 such that σ(x) = 1. Then there
is an integer n ≥ 1 such that xn = 0, hence 0 = σ(0) = σ(xn) ≥ σ(x)n = 1, a
contradiction. Thus σ is faithful. �

�	�
������� 5.2� If A is a strongly simple locally finite basic pseudo-hoop,
then the identity is the unique state operator on A.

P r o o f. Let σ be a state operator on A. By Lemma 5.1 it follows that σ
is faithful. Since every strongly simple basic pseudo-hoop is linearly ordered,
applying Proposition 3.2(17), we get σ(x) = x for all x ∈ A. �

We remark that any bounded idempotent pseudo-hoop A is good. Indeed,
applying the identity a → x = a � x for x = 0, we get a− = a∼, so that
a−∼ = a−− = a∼− for all a ∈ A.
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����	�� 5.3� Let A be an idempotent pseudo-hoop satisfying Glivenko and
(mN) properties and σ : Reg(A) → Reg(A) be a state operator on Reg(A). Then
the mapping σ̃ : A → A defined by σ̃(x) = σ(x−∼) is a state operator on A such
that σ̃|Reg(A) = σ.

P r o o f. Obviously, σ̃(0) = σ(0) = 0, so the condition (S1) is verified. Applying
Proposition 4.6 we get:

σ̃(x → y) = σ((x → y)−∼) = σ(x−∼ → y−∼) = σ(x−∼) → σ(x−∼ ∧ y−∼)

= σ(x−∼) → σ((x ∧ y)−∼) = σ̃(x) → σ̃(x ∧ y).

Similarly, σ̃(x � y) = σ̃(x) � σ̃(x ∧ y), so σ̃ satisfies (S2). By Proposition 4.6
we also have:

σ̃(x� y) = σ((x� y)−∼) = σ(x−∼ � y−∼) = σ(x−∼)� σ(x−∼ � x−∼ � y−∼)

= σ(x−∼)� σ(x−∼ � (x� y)−∼) = σ(x−∼)� σ((x� x� y)−∼)

= σ̃(x)� σ̃(x� x� y).

Similarly, σ̃(x � y) = σ̃(y → x � y) � σ̃(y), hence σ̃ satisfies (S3). For the
condition (S4) we have:

σ̃(σ̃(x)� σ̃(y)) = σ((σ(x−∼)� σ(y−∼))−∼) = σ(σ(x−∼)−∼ � σ(y−∼)−∼)

= σ(σ(x−∼)� σ(y−∼)) = σ(x−∼)� σ(y−∼) = σ̃(x)� σ̃(y)

thus it is verified too. Finaly we have:

σ̃(σ̃(x) → σ̃(y)) = σ((σ(x−∼) → σ(y−∼))−∼) = σ(σ(x−∼)−∼ → σ(y−∼)−∼)

= σ(σ(x−∼) → σ(y−∼)) = σ(x−∼) → σ(y−∼) = σ̃(x) → σ̃(y)

and similarly σ̃(σ̃(x)� σ̃(y)) = σ̃(x)� σ̃(y), that is the condition (S5) for σ̃.
We conclude that σ̃ is a state operator on A. If x ∈ Reg(A), then σ̃(x) =
σ(x−∼) = σ(x), so that σ̃|Reg(A) = σ. �
��	�

�	� 5.4� If A is an idempotent R�-monoid, then any state operator on
Reg(A) can be extended to a state operator on A.

In what follows we recall some notions and results regarding the perfect
pseudo-hoops. Since every pseudo-hoop is a pseudo-BCK(pP) algebra, the re-
sults proved in [4] and [11] for the pseudo-BCK(pP) algebras are also valid for
pseudo-hoops.

A pseudo-hoop A is called local if and only if it has a unique maximal filter.
We will denote by:

D(A) = {x ∈ A | ord(x) = ∞} and D(A)∗ = {x ∈ A | ord(x) < ∞}.
Obviously, D(A)∩D(A)∗ = ∅ and D(A)∪D(A)∗ = A. We can also remark that
1 ∈ D(A) and 0 ∈ D(A)∗.

The following are equivalent:
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(a) D(A) is a filter of A;

(b) D(A) is a proper filter of A;

(c) A is local;

(d) D(A) is the unique maximal filter of A;

(e) for all x, y ∈ A, ord(x� y) < ∞ implies (ord(x) < ∞ or ord(y) < ∞).

A pseudo-hoop A is called perfect if it satisfies the following conditions:

(i) A is a local good pseudo-hoop;

(ii) for any x ∈ A, ord(x) < ∞ iff [ord(x−) = ∞ and ord(x∼) = ∞].

The intersection of all maximal filters of A is called the radical of A and it is
denoted by Rad(A).

Let A be a perfect pseudo-hoop. Then:

(i) Rad(A) = D(A);

(ii) A = Rad(A) ∪Rad(A)∗;
(iii) Rad(A) is a normal filter of A.

Let A be a perfect pseudo-hoop and x ∈ Rad(A)∗, y ∈ A. Then the following
properties hold:

(i) If y ≤ x, then y ∈ Rad(A)∗;
(ii) x� y ∈ Rad(A)∗.

����	�� 5.5� Any perfect pseudo-hoop admits a nontrivial state operator on it.

P r o o f. Let A be a perfect pseudo-hoop, so A = Rad(A) ∪ Rad(A)∗. We will
prove that the map σ : A → A defined by

σ(x) =

{
1 if x ∈ Rad(A)
0 if x ∈ Rad(A)∗

is a state operator on A. Obviously, σ(0) = 0, hence (S1) is satisfied.

We consider the following cases:

(1) a, b ∈ Rad(A). Obviously, σ(a) = σ(b) = 1. Since Rad(A) is a filter of A
and b ≤ a → b, it follows that a → b ∈ Rad(A). Hence σ(a → b) = 1. Similarly,
σ(a � b) = 1. From the definition of a filter we have a � b, a ∧ b ∈ Rad(A).
Thus σ(a) = σ(b) = σ(a → b) = σ(a� b) = σ(a ∧ b) = σ(a� b) = 1.

Since a� b ∈ Rad(A) and a� b ≤ a� a� b, a� b ≤ b → a� b it follows that
a� a� b, b → a� b ∈ Rad(A), so σ(a� a� b) = σ(b → a� b) = 1.

One can easily check that the conditions (S2)–(S5) are satisfied.

(2) a, b ∈ Rad(A)∗. In this case, σ(a) = σ(b) = 0 and we will prove that
a → b, a � b ∈ Rad(A). Indeed, suppose that a → b ∈ Rad(A)∗. Since
a ≤ a−∼, it follows that a−∼ → b ≤ a → b, so a−∼ → b ∈ Rad(A)∗. But
a− ≤ a−∼ → b, hence a− ∈ Rad(A)∗, a contradiction with the condition (ii) in
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the definition of perfect pseudo-hoop (a ∈ Rad(A)∗ = D(A)∗ iff a− ∈ Rad(A)
= D(A)). It follows that a → b ∈ Rad(A) and similarly a� b ∈ Rad(A). Hence
σ(a → b) = σ(a� b) = 1. From a∧b ≤ b, a�b ≤ b, we get a∧b, a�b ∈ Rad(A)∗,
thus σ(a ∧ b) = σ(a� b) = 0.

We can see that the conditions (S2)–(S5) are also verified.

(3) a ∈ Rad(A), b ∈ Rad(A)∗. Obviously, σ(a) = 1 and σ(b) = 0.

We show that a → b ∈ Rad(A)∗. Indeed, suppose that a → b ∈ Rad(A).
Because b ≤ b−∼, we have a → b ≤ a → b−∼, so a → b−∼ ∈ Rad(A). It
means that (a� b∼)− ∈ Rad(A), that is, a� b∼ ∈ Rad(A)∗. On the other hand,
since Rad(A) is a filter of A and a, b∼ ∈ Rad(A) we have a � b∼ ∈ Rad(A), a
contradiction. We conclude that a → b ∈ Rad(A)∗, so σ(a → b) = 0. Similarly,
a� b ∈ Rad(A)∗, so σ(a� b) = 0.

Since a∧b ≤ b, a�b ≤ b, we have a∧b, a�b ∈ Rad(A)∗, so σ(a∧b) = σ(a�b)
= 0. Moreover, a ∈ Rad(A) and a� b ∈ Rad(A)∗ implies a� a� b ∈ Rad(A)∗,
hence σ(a� a� b) = 0.

It easy to see that the conditions (S2)–(S5) are satisfied.

(4) a ∈ Rad(A)∗, b ∈ Rad(A). Taking into consideration that b ≤ a → b,
b ≤ a� b we have a → b, a� b ∈ Rad(A).

From a∧b, a�b ≤ a we get a∧b, a�b ∈ Rad(A)∗. Hence σ(a) = 0, σ(b) = 1,
σ(a ∧ b) = σ(a � b) = 0, σ(a → b) = σ(a � b) = 1. Applying the case (3),
b ∈ Rad(A), a� b ∈ Rad(A)∗ implies b → a� b ∈ Rad(A)∗, so σ(b → a� b) = 0.

Thus the conditions (S2)–(S5) are also satisfied.

We conclude that σ is a state operator on A, that is (A, σ) is a state pseudo-
hoop. �

Remark 5.6� The state operator σ defined in Theorem 5.5 is a C-state operator.
Indeed, in the cases (1), (3), (4) from the proof of Theorem 5.5 we have a ∨1 b,
b ∨1 a, a ∨2 b, b ∨2 a ∈ Rad(A), so σ(a ∨1 b) = σ(b ∨1 a) = 1 and σ(a ∨2 b) =
σ(b ∨2 a) = 1. In the case (2), a ∨1 b, b ∨1 a, a ∨2 b, b ∨2 a ∈ Rad(A)∗, hence
σ(a ∨1 b) = σ(b ∨1 a) = 0 and σ(a ∨2 b) = σ(b ∨2 a) = 0. Thus σ is a C-state
operator.

6. State operators and states on pseudo-hoops

The notions of states on bounded pseudo-hoops have been investigated in [8].
A Bosbach state on the bounded pseudo-hoop A is a function s : A → [0, 1] such
that the following conditions hold for any x, y ∈ A:

(B1) s(x) + s(x → y) = s(y) + s(y → x);

(B2) s(x) + s(x� y) = s(y) + s(y � x);

(B3) s(0) = 0 and s(1) = 1.
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Let A be a good bounded pseudo-hoop. A Riečan state on A is a function
s : A → [0, 1] such that the following conditions hold for all x, y ∈ A:

(R1) if x ⊥ y, then s(x⊕ y) = s(x) + s(y);

(R2) s(1) = 1.

It was proved in [8] that any Bosbach state on a good pseudo-hoop is a
Riečan state. Let s be a Riečan state on a good pseudo-hoop A such that
s(x ∨1 y) = s(y ∨1 x) and s(x ∨2 y) = s(y ∨2 x) for all x, y ∈ A.
If A satisfies the conditions:

(x → y)−∼ = x ∨1 y → y−∼

(x� y)−∼ = x ∨2 y � y−∼,

then s is a Bosbach state on A.

It was also proved in [8] that, if s is a Riečan state on a bounded pseudo-hoop
A with (pDN) satisfying the properties s(x ∨1 y) = s(y ∨1 x) and s(x ∨2 y) =
s(y ∨2 x) for all x, y ∈ A, then s is a Bosbach state on A. As a consequence,
every Riečan state on a bounded Wajsberg pseudo-hoop is a Bosbach state.

����	�� 6.1� Let σ be a state operator on a bounded pseudo-hoop A preserving
→ or �. If s is a Bosbach state on A, then the mapping sσ : A → [0, 1] defined
by sσ(x) = s(σ(x)) is a Bosbach state on A.

P r o o f. Obviously, sσ(0) = 0 and sσ(1) = 1, so (B3) is verified.

It is sufficient to assume that just one of the arrows →, � is preserved, the
preservance of the second one is implied by Proposition 3.2(12). It follows that:

sσ(x) + sσ(x → y) = s(σ(x)) + s(σ(x → y)) = s(σ(x)) + s(σ(x) → σ(y))

= s(σ(y)) + s(σ(y) → σ(x)) = s(σ(y)) + s(σ(y → x)) = sσ(y) + sσ(y → x).

Thus sσ satisfies (B1) and similarly sσ satisfies (B2). It follows that sσ is a
Bosbach state on A. �
��	�

�	� 6.2� Let (A, σ) be a linearly ordered state pseudo-hoop and s be a
Bosbach state on A. Then the mapping sσ : A → [0, 1] defined by sσ(x) = s(σ(x))
is a Bosbach state on A.

P r o o f. According to Corollary 3.3, σ preserves → and �, hence by Theo-
rem 6.1 sσ is a Bosbach state on A. �
��	�

�	� 6.3� Let (A, σ) be an idempotent state pseudo-hoop and s be a
Bosbach state on A. Then the mapping sσ : A → [0, 1] defined by sσ(x) = s(σ(x))
is a Bosbach state on A.

P r o o f. By Proposition 4.6 we have σ(x ∧ y) = σ(x) ∧ σ(y). According to
Proposition 3.4, σ preserves → and �, hence by Theorem 6.1 sσ is a Bosbach
state on A. �
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����	�� 6.4� Let A be a bounded pseudo-hoop with Glivenko property and σ
be a state operator on A preserving → or �. If s is a Bosbach state on Reg(A),
then the mapping s̃σ : A → [0, 1] defined by s̃σ(x) = s(σ(x−∼)) is a Bosbach
state on A.

P r o o f. Obviously, sσ(0) = 0 and sσ(1) = 1, so (B3) is verified.

If σ preserves one of the arrows →,�, then by Proposition 3.2(12) the second
one is also preserved. Applying Remark 4.3, we have:

s̃σ(x) + s̃σ(x → y) = s(σ(x−∼)) + s(σ((x → y)−∼))

= s(σ(x−∼)) + s(σ(x−∼ → y−∼)) = s(σ(x−∼)) + s(σ(x−∼) → σ(y−∼))

= s(σ(y−∼)) + s(σ(y−∼) → σ(x−∼)) = s(σ(y−∼)) + s(σ(y−∼ → x−∼))

= s(σ(y−∼)) + s(σ((y → x)−∼)) = s̃σ(y) + s̃σ(y → x).

Thus s̃σ satisfies the condition (B1).

Similarly, s̃σ(x) + s̃σ(x � y) = s̃σ(y) + s̃σ(y � x), so the condition (B2) is
also satisfied. It follows that s̃σ is a Bosbach state on A. �

��	�

�	� 6.5� Let A be a bounded R�-monoid and σ be a state operator on
A preserving → or �. If s is a Bosbach state on Reg(A), then the mapping
s̃σ : A → [0, 1] defined by s̃σ(x) = s(σ(x−∼)) is a Bosbach state on A.

����	�� 6.6� Let A be a good pseudo-hoop satisfying (SO) property, σ be a
state operator and s be a Riečan state on A. Then the mapping sσ : A → [0, 1]
defined by sσ(x) = s(σ(x)) is a Riečan state on A.

P r o o f. Obviously, sσ(1) = 1. It is easy to check that sσ(x⊕0) = sσ(x)+sσ(0)
and sσ(0 ⊕ x) = sσ(0) + sσ(x). Consider x, y ∈ A such that x �= 0, y �= 0 and
x ⊥ y. It follows that σ(x) ⊥ σ(y).

By (SO) property we have x ⊥no y and applying Proposition 3.2(10) we get
σ(x⊕ y) = σ(x)⊕ σ(y). Hence:

sσ(x⊕ y) = s(σ(x⊕ y)) = s(σ(x)⊕ σ(y)) = s(σ(x)) + s(σ(y)) = sσ(x) + sσ(y).

Thus sσ is a Riečan state on A. �

����	�� 6.7� Let A be a good pseudo-hoop with (SO) property and τ be a state
operator on A. If s is a Riečan state on Reg(A), then the mapping s̃τ : A → [0, 1]
defined by s̃τ (x) = s(τ(x−∼)) is a Riečan state on A.

P r o o f. Since s is Riečan state on Reg(A), according to [8: Prop. 5.13], s(x−∼)=
s(x) for all x ∈ Reg(A). Obviously, s̃τ (1) = 1, s̃τ (x ⊕ 0) = s̃τ (x) + s̃τ (0) and
s̃τ (0⊕ x) = s̃τ (0) + s̃τ (x).

Consider x, y ∈ A such that x �= 0, y �= 0 and x ⊥ y. It follows that
x−∼ ⊥ y−∼ (Proposition 2.12(6)). Hence by (SO) property, x−∼ ⊥no y−∼.
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Since (x ⊕ y)−∼ = x−∼ ⊕ y−∼ (Proposition 2.3(5)), by Proposition 3.2(10) we
get:

s̃τ (x⊕ y) = s(τ((x⊕ y)−∼)) = s(τ(x−∼ ⊕ y−∼)) = s(τ(x−∼)⊕ τ(y−∼))

= s(τ(x−∼))⊕ s(τ(y−∼)) = s̃τ (x) + s̃τ (y)

(since s is a Riečan state and from x−∼ ⊥ y−∼ it follows that τ(x−∼) ⊥ τ(y−∼)).
Thus s̃τ is a Riečan state on A. �

7. State operators and generalized states on pseudo-hoops

Starting from the observation that in the definition of Bosbach states there
intervenes the standard MV-algebra structure of [0, 1], for the case of the resid-
uated lattices the notion of a state was generalized as a function with values in a
residuated lattice ([12], [13]). Recently, this concept was extended to the case of
pseudo-BCK algebras and pseudo-hoops ([14]). Properties of generalized states
are useful for the development of an algebraic theory of probabilistic models for
non-commutative fuzzy logics.

Let A be a bounded pseudo-hoop and s : A → A an arbitrary function such
that s(0) = 0 and s(x ∨1 y) = s(y ∨2 x) for all x, y ∈ A. Then s is said to be
a generalized Bosbach state of type I or a type I state if it satisfies one of the
following equivalent conditions:

(bsI1) for all x, y ∈ A with x ≥ y, s(x → y) = s(x) → s(y) and s(x � y) =
s(x)� s(y);

(bsI2) for all x, y ∈ A, s(x ∨1 y) = s(x → y) � s(y) and s(x ∨2 y) = s(x � y)
→ s(y);

(bsI3) for all x, y ∈ A, s(x → y)� s(y) = s(y � x) → s(x) and s(1) = 1;

(bsI4) for all x, y ∈ A with x ≥ y, s(x) = s(x → y)� s(y) = s(x� y) → s(y);

(bsI5) for all x, y ∈ A, s(x → y) = s(x ∨1 y) → s(y) and s(x � y) = s(x ∨2 y)
� s(y);

(bsI6) for all x, y ∈ A, s(x → y) = s(x) → s(x ∧ y) and s(x � y) = s(x) �
s(x ∧ y).

�	�
������� 7.1� Let A be a bounded pseudo-hoop and s : A → A an order-
preserving type I state on A. Then the following hold for all a, b ∈ A:

(1) s(a� b) = s(b → a� b)� s(b) = s(a)� s(a� a� b);

(2) s(a)� s(b) ≤ s(a� b).
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P r o o f.

(1) Since a� b ≤ a, b, applying (bsI1) we have:

s(b → a� b)� s(b) = (s(b) → s(a� b))� s(b) = s(b) ∧ s(a� b) = s(a� b) and

s(a)� s(a� a� b) = s(a)� (s(a)� s(a� b)) = s(a) ∧ s(a� b) = s(a� b).

(2) By Proposition 2.2(9), a ≤ b → a � b, so s(a) ≤ s(b → a � b). Applying
(1) we get: s(a)� s(b) ≤ s(b → a� b)� s(b) = s(a� b). �

Let A be a bounded pseudo-hoop and s : A → A an arbitrary function such
that s(0) = 0 and s(x ∨1 y) = s(y ∨2 x) for all x, y ∈ A. The function s is said
to be a generalized Bosbach state of type II or a type II state if it satisfies one
of the following equivalent conditions:

(bsII1) for all x, y ∈ A with x ≥ y, s(x → y) = s(x) � s(y) and s(x � y) =
s(x) → s(y);

(bsII2) for all x, y ∈ A, s(x ∨1 y) = s(x → y) → s(y) and s(x ∨2 y) =
s(x� y)� s(y);

(bsII3) for all x, y ∈ A, s(x → y) → s(y) = s(y � x)� s(x) and s(1) = 1;

(bsII4) for all x, y ∈ A with x ≥ y, s(x) = s(x → y) → s(y) = s(x� y)� s(y);

(bsII5) for all x, y ∈ A, s(x → y) = s(x ∨1 y) � s(y) and s(x � y) =
s(x ∨2 y) → s(y);

(bsII6) for all x, y ∈ A, s(x → y) = s(x) � s(x ∧ y) and s(x � y) =
s(x) → s(x ∧ y).

Let A be a bounded Wajsberg pseudo-hoop and s : A → A be a mapping
satisfying s(0) = 0, s(1) = 1 and s(x ∨1 y) = s(y ∨2 x). Then:

(1) s is a type I state iff

s(d1(x, y)) = s(x∨ y) → s(x∧ y) and s(d2(x, y)) = s(x∨ y)� s(x∧ y);

(2) s is a type II state iff

s(d1(x, y)) = s(x∨ y)� s(x∧ y) and s(d2(x, y)) = s(x∨ y) → s(x∧ y).

Let A be a bounded pseudo-hoop. An endomorphism h : A → A satisfying
the condition h(x ∨1 y) = h(y ∨2 x) for all x, y ∈ A is called a generalized state-
morphism. If, moreover, h(x → y) = h(x � y) for all x, y ∈ A, then h is a
strong generalized state-morphism.

A mapping m : A → A is called generalized Riečan state iff the following
conditions are satisfied for all x, y ∈ A:

(rs1) m(1) = 1;

(rs2) for all x, y ∈ A, if x ⊥ y, then m(x) ⊥ m(y) and m(x⊕ y) = m(x)⊕m(y).
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�	�
������� 7.2� Every C-state operator on a bounded pseudo-hoop is a type
I state.

P r o o f. Let σ be a state operator on a bounded pseudo-hoop A. From (S1) we
have σ(0) = 0. By condition (C) and Proposition 3.7 we get σ(x∨1y) = σ(y∨2x).
Since condition (S2) in the definition of a state operator is condition (bsI6), it
follows that σ is a type I state on A. �

��	�

�	� 7.3� Every perfect pseudo-hoop admits a type I state on it.

P r o o f. According to Theorem 5.5 and Remark 5.6, every perfect pseudo-hoop
has a C-state operator, hence by Proposition 7.2 every perfect pseudo-hoop
admits a type I state on it. �

�	�
������� 7.4� Let (A, σ) be an idempotent state pseudo-hoop such that
σ(x ∨1 y) = σ(y ∨2 x). Then σ is a generalized state-morphism on A.

P r o o f. It follows by Propositions 4.6 and Proposition 3.4. �

�	�
������� 7.5� Let (A, σ) be a linearly ordered state pseudo-hoop such that
σ(x ∨1 y) = σ(y ∨2 x). Then σ is a generalized state-morphism on A.

P r o o f. It follows by Corollary 3.3 and Proposition 3.4. �

�	�
������� 7.6� If (A, σ) is a good state pseudo-hoop satisfying (SO) prop-
erty, then σ is a generalized Riečan state on A.

P r o o f. From Proposition 3.2(1) we have σ(1) = 1, that is (rs1). It is easy to
check that σ(x⊕ 0) = σ(x)⊕ σ(0) and σ(0⊕ x) = σ(0)⊕ σ(x).

Consider x, y ∈ A such that x �= 0, y �= 0 and x ⊥ y. From (SO) property we
have x ⊥no y and applying Proposition 3.2(10), we get σ(x⊕ y) = σ(x)⊕ σ(y),
so (rs2) is verified too. Thus σ is a generalized Riečan state on A. �

����	�� 7.7� If A is a linearly ordered bounded pseudo-hoop and s : A → A is
an order-preserving type I state such that s2(x) = s(x) ≤ x for all x ∈ A, then
s is a state operator on A.

P r o o f. Applying the hypothesis and the definition of a type I state, we will
check the axioms (S1)–(S5) from the definition of a state operator.

(S1) s(0) = 0: It follows from the definition of a type I state.

(S2) s(a → b) = s(a) → s(a ∧ b) and s(a � b) = s(a) � s(a ∧ b): It is the
condition (bsI6).

(S3) s(a� b) = s(a)� s(a� a� b) = s(b → a� b)� s(b):
It follows from Proposition 7.1(1).

(S4) s(s(a) � s(b)) = s(a) � s(b): Since s(x) ≤ x for all x ∈ A we have
s(s(a)� s(b)) ≤ s(a)� s(b).
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On the other hand, from Proposition 7.1(2), replacing a with s(a) and b with
s(b) we get s2(a) � s2(b) ≤ s(s(a) � s(b)), that is s(a) � s(b) ≤ s(s(a) � s(b)).
Thus s(s(a)� s(b)) = s(a)� s(b).

(S5) s(s(a) → s(b)) = s(a) → s(b) and s(s(a) � s(b)) = s(a) � s(b): Since
A is linearly ordered we consider the cases:

(a) b ≤ a, so s(b) ≤ s(a). According to condition (bsI1) we get

s(s(a) → s(b)) = s2(a) → s2(b) = s(a) → s(b).

(b) a ≤ b, so s(a) ≤ s(b). It follows that s(a) → s(b) = 1, thus

s(s(a) → s(b)) = s(a) → s(b) = s(1) = 1.

Similarly, s(s(a) � s(b)) = s(a) � s(b). We conclude that s is a state
operator on A. �

����	�� 7.8� If A is a linearly ordered bounded pseudo-hoop and s : A → A is
an order-preserving type I state such that s2 = s and s(x� y) = s(x)� s(y) for
all x, y ∈ A, then s is a weak state-morphism operator on A.

P r o o f. The axioms (S1), (S2), (S3) and (S5) are verified in a similar way as in
the case of Theorem 7.7.

For axiom (S4) we have: s(s(a) � s(b)) = s2(a) � s2(b) = s(a) � s(b). Since
s(x�y) = s(x)� s(y) for all x, y ∈ A, it follows that s is a weak state-morphism
operator on A. �

����	�� 7.9� Let σ be a C-state operator on the bounded pseudo-hoop A pre-
serving → or �. If s : A → A is a type I (type II) state on A, then sσ : A → A
defined by sσ(x) = s(σ(x)) is a type I (type II) state on A.

P r o o f. Obviously, sσ(0) = s(σ(0)) = s(0) = 0. We remark again that, if σ
preserves one of the arrows →, �, then by Proposition 3.2(12) the second one
is also preserved.

Since σ is a C-state operator on A, applying Corollary 3.8 we have:

sσ(x ∨1 y) = s(σ(x ∨1 y)) = s(σ(x ∨2 y)) = sσ(x ∨2 y).

On the other hand, from σ(x∨2 y) = σ(y∨2x), we get sσ(x∨2 y) = sσ(y∨2x).
Hence sσ(x∨1 y) = sσ(y∨2 x). Let s be a type I state on A, so it satisfies (bsI1).

Consider y ≤ x. It follows that σ(y) ≤ σ(x) and taking into consideration
that σ preserves →, we get:

sσ(x → y) = s(σ(x → y)) = s(σ(x) → σ(y))

= s(σ(x)) → s(σ(y)) = sσ(x) → sσ(y).

Similarly, sσ(x � y) = sσ(x) � sσ(y) for all x, y ∈ A. Hence sσ satisfies
(bsI1), thus it is a type I state on A. Consider s to be a type II state on A, so
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it satisfies (bsII1). Assume y ≤ x, so that σ(y) ≤ σ(x). Since σ preserves →, we
get:

sσ(x → y) = s(σ(x → y)) = s(σ(x) → σ(y))

= s(σ(x))� s(σ(y)) = sσ(x)� sσ(y).

Similarly, sσ(x� y) = sσ(x) → sσ(y) for all x, y ∈ A. Thus sσ satisfies (bsII1),
hence it is a type II state on A. �

��	�

�	� 7.10� Let (A, σ) be a linearly ordered C-state pseudo-hoop and s
be a type I (type II) state on A. Then the mapping sσ : A → A defined by
sσ(x) = s(σ(x)) is a type I (type II) state on A.

P r o o f. According to Corollary 3.3, σ preserves → and �, hence by Theo-
rem 7.9, sσ is a type I (type II) state on A. �

��	�

�	� 7.11� Let (A, σ) be an idempotent C-state pseudo-hoop and s be a
Bosbach state on A. Then the mapping sσ : A → A defined by sσ(x) = s(σ(x))
is a type I (type II) state on A.

P r o o f. By Proposition 4.6 we have σ(x ∧ y) = σ(x) ∧ σ(y). According to
Proposition 3.4, σ preserves → and �, hence by Theorem 7.9, sσ is a type I
(type II) state on A. �

Remark 7.12� The state operator σ from Corollaries 7.10 and 7.11 is an endo-
morphism satisfying condition (C). Moreover, σ(A) is a Wajsberg sub-pseudo-
hoop of A.

8. Concluding remarks

We suggest further directions of research, as the above topics are of current
interest.

1� The state operators investigated in this paper can be extended to other non-
commutative structures such as pseudo-BCK algebras.

2� A lot of work has been done regarding the relationship between the exis-
tence of states and the existence of maximal normal filters of non-commutative
fuzzy structures. For the case of state R�-monoids (M,σ) the notion of σ-filter
was introduced in [28]. One can try to investigate the correspondence between
the existence of state operators and the maximal and normal σ-filters on state
R�-monoids and state pseudo-hoops.
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3� Classes of state-morphism MV-algebras and varieties of MV-algebras with
internal states have been studied by Di Nola and Dvurečenskij in [17] and respec-
tively [18]. One can try to approach these topics for the case of state operators
on pseudo-hoops and bounded R�-monoids.

4� Dvurečenskij has investigated in [22] subdirectly irreductible state-morphism
BL-algebras. A further research topic could be to investigate similar results for
the case of state-morphism R�-monoids and state-morphism pseudo-hoops.

Acknowledgement� The author is very grateful to the anonimous referees for
their useful remarks and suggestions on the subject that helped improving the
presentation.
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