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ABSTRACT. The main purpose of this work is to extend the sequence spaces

which are defined in [KARAKAYA, V.—POLAT, H.: Some new paranormed

sequence spaces defined by Euler and difference operators, Acta Sci. Math.

(Szeged) 76 (2010), 87–100] and [POLAT, H.—BASAR, F.: Some Euler spaces

of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed. 27 (2007),

254–266] by using difference operator of order m, and to give their alpha, beta and

gamma duals. Furthermore, we characterize some classes of the related matrix

transformations.
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1. Introduction

In studies on the sequence spaces, there are some basic approaches which are

determination of topologies, matrix mapping and inclusions of sequence spaces

(see [18]). These methods are applied to study the matrix domain λA of an

infinite matrix A defined by λA = {x = (xk) ∈ w : Ax ∈ λ}. Especially, the

Euler transformations and the difference operators which are special cases for

the matrix A have been studied extensively via the methods mentioned above.

In the literature, some new sequence spaces are defined by using the Euler

transformation and the difference operator or by combining both of them. For

example, in [11], the difference sequence spaces are first defined by Kızmaz.

Further, the authors including Ahmad and Mursaleen [1], Çolak and Et[8], Başar

and Altay [6], and the others have defined and studied new sequence spaces by

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 46A45, 46A35.
Keywords: paranormed sequence space, matrix mapping, Köthe-Toeplitz duals, Euler trans-

formation and difference sequence spaces of order m.
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considering matrices that represent difference operators. On the other hand, by

using Euler transformation, several authors defined some new sequence spaces

and studied some properties of these spaces. The articles concerning this work

can be found in the list of references [4], [5] and [14].

Recently, by combining the Euler transformation with difference operator or

difference operator of order m, various authors have constructed new sequence

spaces and studied some properties of these new sequence spaces. Some of them

are as follows: Polat and Başar [16] defined and studied some Euler spaces

of difference sequences of order m over the normed spaces, Altay and Polat

[2] studied the Euler difference sequence spaces. Altay et al [4] defined the

Euler sequence spaces which include the spaces �p and �∞ and examined some

properties of these spaces. Also in [10], Karakaya and Polat defined and studied

the paranormed Euler spaces of mth order difference sequences.

In this work, our purpose is to introduce new paranormed sequence spaces by

combining the Euler transformation and difference operator of order m and also

to investigate topological structure, the α-, β-, γ- duals, some inclusion relations

and the bases of these sequence spaces. In addition, we characterize some matrix

mappings on these spaces. Also these new spaces are the generalization of the

sequence spaces defined in [10] and [16].

2. Preliminaries and notations

By w, we denote the set of all sequences x = (xk). Any subspace of w is

called a sequence space. We shall write �∞, c, c0 for the spaces of all bounded,

convergent and null sequences, respectively. Also by bs, cs and �1, we denote the

spaces of all bounded, convergent and absolutely convergent series, respectively.

A linear topological space X over the real field R is said to be a para-

normed space if there is a subadditive function h : X → R such that h(θ) = 0,

h(x) = h(−x) and scalar multiplication is continuous, i.e., |αn − α| → 0 and

h(xn − x) → 0 imply h(αnxn − αx) → 0 for all α in R and all x in X, where θ

is the zero vector in linear space X.

Throughout this paper, it is assumed that (pk) be a bounded sequence over

positive real numbers with sup pk = H and M = max (1, H). The linear spaces

�∞(p), c(p), c0(p) were defined by Maddox [12], (see also Simons [19]) as follows:

�∞(p) =
{
x = (xk) ∈ w : sup

k
|xk|pk < ∞

}
;

c(p) =
{
x = (xk) ∈ w : |xk − l|pk → 0 as k → ∞, for some l ∈ R

}
;
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c0(p) =
{
x = (xk) ∈ w : |xk|pk → 0 as k → ∞}.

In the sequel of this work, we will need inequalities (see, [13]).

|ak + bk|pk ≤ C (|ak|pk + |bk|pk) (2.1)

|ak + bk|tk ≤ |ak|tk + |bk|tk (2.2)

where tk = pk

M ≤ 1 and C = max
(
1, 2H−1

)
.

Let λ, µ be any two sequence spaces and A = (ank) be any infinite matrix

of real numbers ank, where n, k ∈ N with N = {0, 1, 2, . . .}. Then we say that

A defines a matrix mapping from λ into µ by writing A : λ → µ, if for every

sequence x = (xk) ∈ λ, the sequence Ax = ((Ax)n), the A-transform of x, is in

µ, where

(Ax)n =
∑
k

ankxk (n ∈ N). (2.3)

By (λ, µ), we denote the class of all matrices A such that A : λ → µ. Thus,

A ∈ (λ, µ) if and only if the series on the right hand side of (2.3) converges for

each n ∈ N and every x ∈ λ, and we have Ax = ((Ax)n∈N ) ∈ µ for all x ∈ λ. A

sequence x is said to be A-summable to a if Ax converges to a which is called

as the A-limit of x.

The Euler means of order r is defined by the matrix Er = ernk, (see, [17])

ernk =

{(
n
k

)
(1− r)n−krk if 0 ≤ k ≤ n

0 if k > n

where 0 < r < 1.

The difference operator of order m is defined by the matrix ∆m = (∆m
nk),

(see [7]).

It is natural to expect that the sequence spaces er0(∆
m), erc(∆

m) and er∞(∆m)

can be extended to the paranormed sequence spaces er0(∆
m, p) erc(∆

m, p) and

er∞(∆m, p) just as c, c0 and �∞ were extended c(p), c0(p) and �∞(p) respectively.

3. The sequence spaces er0(∆
m, p), erc(∆

m, p) and er∞(∆m, p)

We define the following new sequence spaces

er0(∆
m, p) =

{
x = (xk) ∈ w : lim

n→∞
∣∣ n∑
k=0

(
n
k

)
(1− r)n−krk∆mxk

∣∣pn = 0
}

erc(∆
m, p) =

{
x = (xk) ∈ w : lim

n→∞
∣∣ n∑
k=0

(
n
k

)
(1− r)n−krk (∆mxk − l)

∣∣pn
= 0

for some l ∈ R

}
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er∞(∆m, p) =
{
x = (xk) ∈ w : sup

n

∣∣ n∑
k=0

(
n
k

)
(1− r)n−krk∆mxk

∣∣pn < ∞
}

where

∆mx = (∆mx)k =

m∑
i=0

(−1)i
(
m

i

)
xk−i =

m∑
i=max(0,k−m)

(−1)k−i

(
m

k − i

)
xi.

It is trivial that the sequence spaces er0(∆
m, p), erc(∆

m, p) and er∞(∆m, p) may

be reduced to some sequence spaces in the special cases of the sequence (pk)

and m ∈ N. For instance, the sequence spaces er0(∆, p), erc(∆, p) and er∞(∆, p)

correspond in the case pk = 1 for all k ∈ N to the sequence spaces er0(∆
m),

erc(∆
m) and er∞(∆m) defined by Polat and Başar [16]. If takingm = 1 and pk = 1

for all k ∈ N , then it can obtain the spaces er0(∆), erc(∆) and er∞(∆) defined by

Altay and Polat [2] from the spaces er0(∆
m, p), erc(∆

m, p) and er∞(∆m, p).

We should note that the new sequence spaces which are defined above can be

expressed by

er0(∆
m, p) = [c0(p)]Er∆m , erc(∆

m, p) = [c(p)]Er∆m ,

er∞(∆m, p) = [�∞(p)]Er∆m

where Er∆m denotes the composition ∆m with Er. Let us define the sequence

y = (yk) as E
r∆m-transform of the sequence x = (xk), that is;

yn(r) = (Er∆mx)n =

n∑
k=0

n∑
j=k

(
n

j

)(
m

j − k

)
(−1)

j−k
rj(1− r)n−jxk (3.1)

Throughout this work, we will use ∆xk = xk − xk−1.

The following theorem gives inclusion relations among the spaces erc(∆
m, p)

and er∞(∆m, p). This is routine verification and therefore we omit the proof.

������� 3.1� The sequence space er∞(∆m, p) includes the sequence space

erc(∆
m, p).

After this, we would like to drive addition some inclusion relations concerning

the spaces er0(∆
m, p), erc(∆

m, p) and er∞(∆m, p) with respect to r, m and the

sequence (pk). We shall prove them for the space er0(∆
m, p) in Theorems 3.2

and 3.3. The proofs of the spaces erc(∆
m, p) and er∞(∆m, p) can be proved in

the similar manner.
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������� 3.2� Let 0 < s < r < 1. Then the inclusions er0(∆
m, p) ⊂ es0(∆

m, p),

erc(∆
m, p) ⊂ esc(∆

m, p) and er∞(∆m, p) ⊂ es∞(∆m, p) hold.

P r o o f. Let x ∈ er0(∆
m, p). We consider the equality

|vn|pn =

∣∣∣∣
n∑

k=0

[ n∑
j=k

(
n

j

)(
m

j − k

)
(−1)

j−k
sj (1− s)

n−j

]
xk

∣∣∣∣
pn

=

∣∣∣∣
n∑

k=0

e
s
r

nkyk

∣∣∣∣
pn

.

Hence we get (vn)∈c0(p) whenever (yn)∈c0(p) which means that er0(∆
m, p)⊂

es0(∆
m, p). �

������� 3.3� The inclusions er0(∆
m, p) ⊂ er0

(
∆m+1, p

)
, erc(∆

m, p) ⊂
erc
(
∆m+1, p

)
and er∞(∆m, p) ⊂ er∞

(
∆m+1, p

)
hold.

P r o o f. Let x ∈ er0(∆
m, p). We consider (2.1) and the following inequality

|(Er∆m+1x)n|pn

= |(Er∆m (∆x))n|pn

=
∣∣(Er∆mx)n − (Er∆mx)n−1

∣∣pn

≤ C
(|(Er∆mx)n|pn +

∣∣(Er∆mx)n−1

∣∣pn
)

(3.2)

It is easy to show that (3.2) tends to zero as n → ∞. So we obtain x ∈
er0
(
∆m+1, p

)
. This shows that the inclusion er0(∆

m, p) ⊂ er0
(
∆m+1, p

)
. �

������� 3.4� The sequence spaces er0(∆
m, p), erc(∆

m, p) and er∞(∆m, p) are

complete linear metric space with paranorm defined by

h(x) = sup
n∈N

∣∣∣∣
n∑

k=0

(
n

k

)
(1− r)n−krk∆mxk

∣∣∣∣
pn
M

. (3.3)

P r o o f. We shall give the proof for only the space er0(∆
m, p). The others can

be proved similarly.

The linearity of er0(∆
m, p) with respect to the coordinatewise addition and

scalar multiplication follows from the inequality (2.2). Because for any λ ∈ R,

we have

|λ|pn ≤ max
(
1, |λ|M

)
.

853



VATAN KARAKAYA — EKREM SAVAS — HARUN POLAT

It is clear that h(θ) = 0, h(x) = h(−x) for all x ∈ er0(∆
m, p). Also it can be seen

that for λ ∈ R

h (λx) ≤ max{1, |λ|}h(x).
Let (xj) be any sequence of the points of the space er0(∆

m, p) such that

h
(
xj − x

)→ 0 and (λj) also be any sequence of scalars such that λj → λ. Then

since the inequality h(x) ≤ h
(
xj − x

)
+ h(xj) holds and h is subadditive, the

sequence
(
h(xj)

)
j∈N

is bounded and we have

h
(
λjx

j − λx
)
= sup

n

∣∣∣∣∣
n∑

k=0

(
n

k

)
(1− r)n−krk

(
λj∆xj

k − λ∆xk

)∣∣∣∣∣
pn
M

≤ |λj − λ|h(xj) + |λ|h (xj − x
)
.

The last expression tends to zero as j → ∞, that is, the scalar multiplication is

continuous. Hence h is a paranorm on the space er0(∆
m, p).

Now let (xi) be any Cauchy sequence in the space er0(∆
m, p) where x = (xi

k) =

{xi
0, xi

1, xi
2, . . . }. Then, for a given ε > 0, there exists a positive integer N0(ε)

such that

h
(
xi − xj

)
<

ε

2
for every i, j ≥ N0(ε). By using the definition of h, for each fixed k ∈ N, we

obtain that ∣∣(Er∆mxi
)
n
− (Er∆mxj

)
n

∣∣ pnM
≤ sup

n

∣∣(Er∆mxi
)
n
− (Er∆mxj

)
n

∣∣ pnM <
ε

2

(3.4)

for every i, j ≥ N0(ε) which leads us to the fact that
{(

Er∆mx0
)
n
,(

Er∆mx1
)
n
, . . .

}
is a Cauchy sequence of real numbers for every fixed k ∈ N.

Since R is complete, (
Er∆mxj

)
n
→ (Er∆mx)n

as j → ∞. From (3.4) with j → ∞, we have∣∣(Er∆xi
)
n
− (Er∆x)n

∣∣ pnM ≤ ε

2
(3.5)

for every i ≥ N0(ε). Since (xi) = (xi
k) ∈ er0(∆

m, p) for each i ∈ N, there exists

n0(ε) ∈ N such that
∣∣(Er∆mxi

)
n

∣∣ pnM ≤ ε
2 for every n0(ε) ∈ N and for each

fixedi ∈ N. Therefore taking a fixed i ≥ N0(ε), we obtain by (3.5) that

|(Er∆mx)n|
pn
M ≤ ∣∣(Er∆mxi

)
n
− (Er∆mx)n

∣∣ pnM +
∣∣(Er∆mxi

)
n

∣∣ pnM ≤ ε

for every n ≥ n0(ε). This shows that x ∈ er0(∆
m, p). Since (xi) is an arbitrary

Cauchy sequence, the space er0(∆
m, p) is complete. �
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������� 3.5� The sequence spaces er0(∆
m, p), erc(∆

m, p) and er∞(∆m, p) are

linearly isomorphic to the spaces c0(p), c(p) and �∞(p), respectively,

where 0 < pk < H < ∞ for all k ∈ N.

P r o o f. We only prove for the space er0(∆, p). Since the isomorphism of the

spaces erc(∆, p) and er∞(∆, p) can be proved by the same way, so we omit them.

Firstly, we should show the existence of a linear bijection between the spaces

er0(∆
m, p) and c0(p). According to the notation (3.1), we define the transfor-

mation T from er0(∆
m, p) to c0(p) such that x �→ y = Tx. Since, for every

x, z ∈ er0(∆
m, p) and for all α ∈ R, T (αx+ z) = αTx+ Tz, the transformation

T is linear. Further, it is obvious that x = θ whenever Tx = θ and T is injective.

Lety ∈ c0(p) and define the sequencex = (xk) by

xn (m, r) =

n∑
k=0

[
n∑

i=k

(
m+ n− i− 1

n− i

)(
i

k

)
(r − 1)

i−k
r−i

]
yk (n ∈ N) . (3.6)

Then, from (3.6), we have

lim
n→∞

|(Er∆mx)n|pn = lim
n→∞

∣∣∣∣
n∑

k=0

(
n

k

)
(1− r)n−krk∆mxk

∣∣∣∣
pn

= lim
n→∞ |yn (m, r)|pn = 0

Thus, we obtain that x ∈ er0(∆
m, p). Therefore, it is obtained that T is surjective.

Hence since T is linear bijection, the spaces er0(∆
m, p) and c0(p) are linearly

isomorphic. �

We now give a theorem about the Schauder bases of the sequence spaces

er0(∆
m, p) and erc(∆

m, p). If a sequence space λ paranormed by h contains a

sequence (bn) with the property that for every x ∈ λ, there is a unique sequence

of scalar (αn) such that

lim
n→∞ h

(
x−

n∑
k=0

αkbk

)
= 0,

then (bn) is called a Schauder basis for λ.

������� 3.6� Define the sequence b(k) (m, r) = {bkn (m, r)}k∈N of the elements

of the space er0(∆
m, p) by

bkn (m, r) =

⎧⎨
⎩

0 if 0 < k
n∑

i=k

(
m+n−i−1

n−i

)(
i
k

)
(r − 1)

i−k
r−i if k ≥ n

for every fixed k ∈ N. Then,
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(a) The sequence{bk (m, r)}k∈N is a basis for the space er0(∆
m, p) and any

x ∈ er0(∆
m, p) has a unique representation of the form

x =
∑
k

λk (m, r) bk (m, r) (3.7)

where λk (m, r) = (Er∆mx)k for all k ∈ N.

(b) The set
{
e, bk (m, r)

}
is a basis for the space erc(∆

m, p) and any

x ∈ erc(∆
m, p) has a unique representation of the form

x = le+
∑
k

[λk (m, r)− l] bk (m, r) ; (3.8)

where

l = lim
k→∞

((Er∆mx)k) . (3.9)

P r o o f.

(a) It is clear that
{
bkn (m, r)

} ⊂ er0(∆
m, p), since Er∆mb(k) (m, r) = e(k)

∈ c0(p) where e(k) is the sequence whose only non-zero term is a 1 in kth place

for each k ∈ N.

Let x ∈ c0(p) be given. For every non-negative integer s, we put

x[s] =

s∑
k=0

λk (m, r) bk (m, r) . (3.10)

Then, by applying (Er∆m) to (3.10) with (3.7), we get that

Er∆mx[s] =

s∑
k=0

λk (m, r)Er∆mbk (m, r)

=

s∑
k=0

λk (m, r) e(k) =

s∑
k=0

(Er∆mx)k e
(k)

and for i, s ∈ N.

{Er∆m
(
x− x[s]

)
}i =

{
0 if 0 ≤ i ≤ s

(Er∆mx)i if i > s
.

Given ε > 0, then there is an integer s0 such that
∣∣(Er∆mxi

)
s

∣∣ pmM < ε
2 for all

s ≥ s0. Hence, we have

h
(
x− x[s]

)
= sup

n≥s
|(Er∆mx)n|

pn
M ≤ sup

n≥s0

|(Er∆mx)n|
pn
M < ε

for all s ≥ s0. So we get that x ∈ er0(∆
m, p) is represented as in (3.7).
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Let us show the uniqueness of the representation for x ∈ er0(∆
m, p) given

by (3.7). On the contrary, suppose that there exists a representation x =
s∑

k=0

µk (m, r) bk (m, r). Since the linear transformation T , from er0(∆
m, p) to

c0(p), used in the proof of Theorem 3.5 is continuous we have

(Er∆mx)n =
∑
k

µk (m, r)
(
Er∆mbk (m, r)

)
n

=
∑
k

µk (m, r) e(k)n = µn (m, r)

which contradicts the fact that (Er∆mx)n = λn (m, r) for all n ∈ N. Hence the

representation (3.7) of x ∈ er0(∆
m, p) is unique.

(b) Since bkn (m, r)} ⊂ er0(∆
m, p) and e ∈ c, the inclusion

{
e, bk (m, r)

} ⊂
erc(∆

m, p) trivially holds. Let us take x ∈erc(∆m, p). Then, there uniquely exists

an l satisfying (3.9). We thus have the fact that u ∈ er0(∆
m, p) whenever we set

u = x− le. Therefore, we deduce by the Part (a) of the present theorem that the

representation of u is unique. This leads us to the fact that the representation

of x given by (3.8) is unique and this step concludes the proof. �

4. The α-, β-, γ-duals of the spaces er0(∆
m, p), erc(∆

m, p)
and er∞(∆m, p)

In this section, we prove the theorems determining the α-, β- and γ- duals

of the sequence spaces er0(∆
m, p), erc(∆

m, p) and er∞(∆m, p). For the sequence

spaces λ and µ, define the set S (λ, µ) by

S (λ, µ) =
⋂
x∈λ

x−1 ∗ µ =
{
a = (ak) ∈ w : ax ∈ µ for all x ∈ λ

}
(4.1)

is called the multiplier space of λ and µ. With the notation of (4.1), α-, β- and

γ-duals of a sequence space λ, which are respectively denote by λα, λβ and λγ

are defined by

λα = S (λ, �1) , λβ = S (λ, cs) , λγ = S (λ, bs) .

We now give some lemmas which are needed for the proofs of the theorems given

in sequel.

����� 4.1� ([9: Theorem 5.1.1]) A ∈ (c0(p), �(q)) if and only if

lim
M→∞

sup
K

∑
n

∣∣∣ ∑
k∈K

ankM
− 1

pk

∣∣∣qn = 0. (4.2)
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����� 4.2� ([9: Theorem 5.1.9]) A ∈ (c0(p), c(q)) if and only if, for (αk) ⊂ R,

lim
M→∞

sup
n

∑
k

|ank|M− 1
pk = 0; (4.3)

lim
M→∞

sup
n

(∑
k

|ank − αk|M− 1
pk

)qn

= 0; (4.4)

lim
n→∞ |ank − αk|qn = 0 for all k. (4.5)

����� 4.3� ([9: Theorem 5.1.13]) A ∈ (c0(p), �∞(q)) if and only if

sup
n

(∑
k

|ank|M− 1
pk

)qn

< ∞. (4.6)

In the following theorems, by K, we denote the finite subset of N and also M

is a positive integer.

������� 4.1� Let us define the following sets forα-duals of the spaces er0(∆
m, p),

erc(∆
m, p) and er∞(∆m, p).

dr1(p) =
{
a = (ak) ∈ w : lim

M→∞
sup
K

∣∣ ∑
k∈K

dnkM
− 1

pk

∣∣ = 0
}

dr2 =
{
a = (ak) ∈ w :

∑
n

∣∣∑
k

dnk
∣∣ < ∞

}
dr3(p) =

{
a = (ak) ∈ w : sup

K

∑
n

∣∣ ∑
k∈K

dnkM
1
pk

∣∣ < ∞ for every M ∈ N

}
where

dnk =

⎧⎨
⎩

n∑
i=k

(
m+n−i−1

n−i

)(
i
k

)
(r − 1)

i−k
r−ian if 0 ≤ k ≤ n,

0 if k > n.
(4.7)

Thus, [er0(∆, p)]
α
= dr1(p), [erc(∆, p)]

α
= [er0(∆, p)]

α ∩ dr2, [er∞(∆, p)]
α
= dr3(p).

P r o o f. We only give the proof for the space er0(∆
m, p). Since the proof may be

obtained by the same way for the spaces erc(∆
m, p) and er∞(∆m, p), so we omit

them.

Let us define the matrix D whose rows are the product of the rows of the

matrix (Er∆m)
−1

and the sequence a = (an). By (3.1), we derive that

anxn =

n∑
k=0

[ n∑
i=k

(
m+ n− i− 1

n− i

)(
i

k

)
(r − 1)

i−k
r−ian

]
yk

=

n∑
k=0

dnkyk = (Dy)n
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Also since y ∈ c0(p), there exists M > 1 such that |yk|pk < 1
M . Therefore

we observe that (anxn) ∈ �1 whenever x ∈ er0(∆
m, p) if and only if Dy ∈ �1

whenever y ∈ c0(p). By using Lemma 4.1 with qn = 1 for every n ∈ N we get

lim
M→∞

sup
K

∑
n

∣∣∣∑
k∈K

dnkM
− 1

pk

∣∣∣ = 0.

Consequently, we write that [er0(∆
m, p)]

α
= dr1(p). This completes the proof. �

������� 4.2� Suppose that the matrix D = (dnk) given with (4.7) and define

the following sets:

dr4(p) =
{
a = (ak) ∈ w : lim

M→∞
sup
n

∑
k

|dnk|M− 1
pk = 0

}
;

dr5(p) =
{
a = (ak) ∈ w : lim

M→∞
sup
n

∑
k

|dnk − αk|M− 1
pk = 0

}
;

dr6 =
{
a = (ak) ∈ w : lim

n→∞ |dnk − αk| = 0 for all k ∈ N

}
;

dr7 =
{
a = (ak) ∈ w : lim

n→∞
∑
k

|dnk − αk| = 0 for all k ∈ N

}
;

dr8(p) =
{
a = (ak) ∈ w : sup

n

∑
k

|dnk|M
1
pk < ∞ for every M ∈ N

}
;

dr9(p) =
{
a = (ak) ∈ w : lim

n→∞
∑
k

|dnk − αk|M
1
pk = 0 for every M ∈ N

}
;

dr10(p) =
{
a = (ak) ∈ w : sup

n

∑
k

|dnk|M− 1
pk < ∞ for some M ∈ N

}
;

dr11 =
{
a = (ak) ∈ w : sup

n

∣∣∑
k

dnk
∣∣ < ∞

}
.

Thus, we have

[er0(∆
m, p)]

β
= dr4(p) ∩ dr5(p) ∩ d6; [er0(∆

m , p)]
γ
= dr10(p);

[erc(∆
m, p)]

β
= dr4(p) ∩ dr5(p) ∩ d6 ∩ dr7; [erc(∆

m , p)]
γ
= dr10(p) ∩ dr11;

[er∞(∆m, p)]β = dr8(p) ∩ dr9(p); [er∞(∆m, p)]γ = dr8(p).

P r o o f. We only give the proof for the space er0(∆
m, p). We consider the fol-

lowing equation

n∑
k=0

akxk =

n∑
k=0

[ k∑
j=0

k∑
i=j

(
m+ k − i− 1

k − i

)(
i

j

)
(r − 1)

i−j
r−iyj

]
ak
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=

n∑
k=0

[ n∑
j=k

j∑
i=k

(
m+ j − i− 1

j − i

)(
i

k

)
(r − 1)

i−k
r−iaj

]
yk

=

n∑
k=0

dnkyk = (Dy)n

where D = (dnk) defined by (4.7). Therefore it is easy to see from Lemma 4.2.

with qn = 1 that ax = (anxn) ∈ cs whenever x ∈ er0(∆
m, p) if and only if Dy ∈ c

whenever y ∈ c0(p). This shows that

[er0(∆
m, p)]

β
= dr4(p) ∩ dr5(p) ∩ dr6.

By the same way, we can show that ax = (anxn) ∈ bs whenever x ∈ er0(∆
m, p)

if and only if Dy ∈ �∞ whenever y ∈ c0(p). By Lemma 4.3 with qn = 1 for all

n ∈ N, we obtain that

[er0(∆
m, p)]

γ
= dr10(p).

This completes the proof. �

5. Some matrix mappings on the sequence space er0(∆, p)

In this section, our demand is to characterize the matrix transformations from

the sequence space er0(∆
m, p) into any given sequence space. Define the infinite

matrix B = (bnk) via an infinite matrix A = (ank) by B = A (Er∆m)
−1

, i.e.,

bnk (m, r) =

∞∑
j=k

(
m+ n− j − 1

n− j

)(
j

k

)
(r − 1)

j−k
r−janj (n, k ∈ N) (5.1)

and (Er∆m)−1 is the inverse of products of the matrices ∆m and Er.

We now record our basic theorem for this section.

������� 5.1� Let µ be any given sequence space and the entries of the matrices

A = (ank) and B = (bnk) are connected with the relation (5.1). Then A ∈
(er0(∆

m, p);µ) if and only if B ∈ (c0(p);µ).

P r o o f. Suppose that (5.1) holds and µ be any given sequence space. Let

A ∈ (er0(∆
m, p);µ) and take any y ∈ c0(p). Then since (ank)k∈N

∈ [er0(∆
m, p)]β ,

A-transform of x ∈ er0(∆
m, p) exists. Also since for every x ∈ er0(∆

m, p),

xk (m, r) =
(
(∆m)−1E

1
r

)
yk (m, r), we have that Ax = A

(
(∆m)−1E

1
r

)
y = By,

which leads us to the consequence B ∈ (c0(p);µ).

Conversely, let B ∈ (c0(p);µ) and (5.1) holds. Since for every y ∈ c0(p),

yk (r,m) = (Er∆mx)k whenever x ∈ er0(∆
m, p) and (bnk)k∈N

∈ �1, B-transform
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ofy exists. Then we have that By = B (Er∆m) x = Ax and this shows that

A ∈ (er0(∆, p);µ). This completes the proof. �

We give some corollaries by combining Theorem 5.1 with Lemmas 4.1–4.3.

	���

��� 5.1.1� A ∈ (er0(∆, p); �∞ (q)) if and only if (4.6) holds with bnk in

place of ank for all n, k ∈ N.

	���

��� 5.1.2� A ∈ (er0(∆, p); c (q)) if and only if (4.3)–(4.5) hold with bnk
in place of ank for all n, k ∈ N.

	���

��� 5.1.3� A ∈ (er0(∆, p); c0 (q)) if and only if (4.4), (4.5) hold with

αk = 0 and bnk in place of ank for all n, k ∈ N.
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