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ABSTRACT. In this paper, we construct eight infinite families of binary linear

codes associated with double cosets with respect to a certain maximal parabolic

subgroup of the special orthogonal group SO−(2n, 2r). And we obtain four infi-

nite families of recursive formulas for the power moments of Kloosterman sums

and four those of 2-dimensional Kloosterman sums in terms of the frequencies of

weights in the codes. This is done via Pless power moment identity and by utiliz-

ing the explicit expressions of exponential sums over those double cosets related

to the evaluations of “Gauss sums” for the orthogonal groups O−(2n, 2r).
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1. Introduction

Let ψ be a nontrivial additive character of the finite field Fq with q = pr

elements (p a prime), and let m be a positive integer. Then the m-dimensional

Kloosterman sum Km(ψ; a) ([16]) is defined by

Km(ψ; a) =
∑

α1,...,αm∈F∗
q

ψ(α1 + · · ·+ αm + aα−1
1 · · ·α−1

m ) (a ∈ F∗
q).

In particular, if m = 1, then K1(ψ; a) is simply denoted by K(ψ; a), and is called

the Kloosterman sum. The Kloosterman sum was introduced in 1926 to give an

estimate for the Fourier coefficients of modular forms (cf. [4], [14]). It has also
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been studied to solve various problems in coding theory and cryptography over

finite fields of characteristic two (cf. [3], [5]).

For each nonnegative integer h, we denote by MKm(ψ)h the h-th moment of

the m-dimensional Kloosterman sum Km(ψ; a), i.e.,

MKm(ψ)h =
∑
a∈F∗

q

Km(ψ; a)h.

If ψ = λ is the canonical additive character of Fq, thenMKm(λ)h will be simply

denoted by MKh
m. If further m = 1, for brevity MKh

1 will be indicated by

MKh.

Explicit computations on power moments of Kloosterman sums were initiated

in the paper [21] of Salié in 1931, where it is shown that for any odd prime q,

MKh = q2Mh−1 − (q − 1)h−1 + 2(−1)h−1 (h ≥ 1).

Here M0 = 0, and for h ∈ Z>0,

Mh =
∣∣∣{(α1, . . . , αh) ∈ (F∗

q)
h |

h∑
j=1

αj = 1 =
h∑

j=1

α−1
j

}∣∣∣.
For q = p an odd prime, Salié obtained MK1,MK2,MK3,MK4 in [21] by

determining M1,M2,M3. MK5 can be expressed in terms of the p-th eigenvalue

of a weight 3 newform on Γ0(15) (cf. [17], [20]). MK6 can be expressed in terms

of the p-th eigenvalue for a weight 4 newform on Γ0(6) (cf. [7]). Also, based on

numerical evidence, in [6] Evans was led to propose a conjecture which expresses

MK7 in terms of Hecke eigenvalues for a weight 3 newform on Γ0(525) with

quartic nebentypus of conductor 105.

From now on, let us assume that q = 2r. Carlitz [1] evaluated MKh for the

other values of h with h ≤ 4. Recently, Moisio was able to find explicit expres-

sions of MKh, for h ≤ 10 (cf. [19]). This was done, via Pless power moment

identity, by connecting moments of Kloosterman sums and the frequencies of

weights in the binary Zetterberg code of length q+ 1, which were known by the

work of Schoof and Vlugt in [22].

In [8], the binary linear codes C(SL(n, q)) associated with finite special lin-

ear groups SL(n, q) were constructed when n, q are both powers of two. Then

we obtained a recursive formula for the power moments of multi-dimensional

Kloosterman sums in terms of the frequencies of weights in C(SL(n, q)).

In this paper, we will be able to produce four infinite families of recursive

formulas generating power moments of Kloosterman sums and four those of

2-dimensional Kloosterman sums. To do that, we construct eight infinite families
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of binary linear codes

C(DC+
1 (n, q)) (n = 2, 4, . . . ), C(DC−

1 (n, q)) (n = 1, 3, . . . ),

both associated with Q−σ−
n−1Q

−;
C(DC+

2 (n, q)) (n = 2, 4, . . . ), C(DC−
2 (n, q)) (n = 3, 5, . . . ),

both associated with Q−σ−
n−2Q

−;
C(DC+

3 (n, q)) (n = 2, 4, . . . ), C(DC−
3 (n, q)) (n = 3, 5, . . . ),

both associated with ρQ−σ−
n−2Q

−;
C(DC+

4 (n, q)) (n = 4, 6, . . . ), C(DC−
4 (n, q)) (n = 3, 5, . . . ),

both associated with ρQ−σ−
n−3Q

−,
with respect to the maximal parabolic subgroup Q− = Q−(2n, q) of the special

orthogonal group SO−(2n, q), and express those power moments in terms of the

frequencies of weights in each code. Then, thanks to our previous results on

the explicit expressions of exponential sums over those double cosets related to

the evaluations of “Gauss sums” for the orthogonal groups O−(2n, q)[13], we
can express the weight of each codeword in the duals of the codes in terms of

Kloosterman or 2-dimensional Kloosterman sums. Then our formulas will follow

immediately from the Pless power moment identity. Analogously to these, in

[10], for q a power of three, two infinite families of ternary linear codes associated

with double cosets in the symplectic group Sp(2n, q) were constructed in order

to generate infinite families of recursive formulas for the power moments of

Kloosterman sums with square arguments and for the even power moments of

those in terms of the frequencies of weights in those codes. We emphasize here

that there have been only a few recursive formulas generating power moments

of Kloosterman sums including the one in [19].

Theorem 1 in the following (cf. (17), (18), (20)–(25)) is the main result of

this paper. Henceforth, we agree that the binomial coefficient
(
b
a

)
= 0, if a > b

or a < 0. To simplify notations, we introduce the following ones which will be

used throughout this paper at various places.

A+
1 (n, q) = q

1
4 (5n

2−2n−4)(qn−1 − 1)

(n−2)
2∏

j=1

(q2j−1 − 1), (1)

B+
1 (n, q) = (q + 1)q

1
4n

2

(n−2)
2∏

j=1

(q2j − 1), (2)

A+
2 (n, q) = q

1
4 (5n

2−2n−8) [n−1
1 ]q

(n−2)
2∏

j=1

(q2j−1 − 1), (3)
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B+
2 (n, q) = (q + 1)q

1
4 (n−2)2(qn−1 − 1)

(n−2)
2∏

j=1

(q2j − 1), (4)

A+
3 (n, q) = (q + 1)q

1
4 (5n

2−2n−8) [n−1
1 ]q

(n−2)
2∏

j=1

(q2j−1 − 1), (5)

B+
3 (n, q) = q

1
4 (n−2)2(qn−1 − 1)

(n−2)
2∏

j=1

(q2j − 1), (6)

A+
4 (n, q) = (q + 1)q

1
4 (5n

2−6n−4) [n−1
2 ]q

(n−2)
2∏

j=1

(q2j−1 − 1), (7)

B+
4 (n, q) = q

1
4 (n−2)2(qn−1 − 1)

(n−2)
2∏

j=1

(q2j − 1), (8)

A−
1 (n, q) = q

5
4 (n

2−1)

(n−1)
2∏

j=1

(q2j−1 − 1), (9)

B−
1 (n, q) = (q + 1)q

1
4 (n−1)2

(n−1)
2∏

j=1

(q2j − 1), (10)

A−
2 (n, q) = q

1
4 (5n

2−4n−5) [n−1
1 ]q

(n−1)
2∏

j=1

(q2j−1 − 1), (11)

B−
2 (n, q) = (q + 1)q

1
4 (n−1)2

(n−1)
2∏

j=1

(q2j − 1), (12)

A−
3 (n, q) = (q + 1)q

1
4 (5n

2−4n−5) [n−1
1 ]q

(n−1)
2∏

j=1

(q2j−1 − 1), (13)

B−
3 (n, q) = q

1
4 (n−1)2

(n−1)
2∏

j=1

(q2j − 1), (14)

A−
4 (n, q) = (q + 1)q

1
4 (5n

2−4n−9) [n−1
2 ]q

(n−3)
2∏

j=1

(q2j−1 − 1), (15)
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B−
4 (n, q) = q

1
4 (n−3)2(qn−2 − 1)(qn−1 − 1)

(n−3)
2∏

j=1

(q2j − 1). (16)

From now on, it is assumed that either + signs or − signs are chosen everywhere,

whenever ± signs appear.

������� 1� Let q = 2r. Then, with the notations in (1)–(16), we have the

following.

(a) With i = 1 and + signs everywhere for ± signs, we have a recursive formula

generating power moments of Kloosterman sums over Fq, for each n ≥ 2

even and all q; with i = 3 and + signs everywhere for ± signs, we have

such a formula, for either each n ≥ 4 even and all q, or n = 2 and q ≥ 8;

with i = 1 and − signs everywhere for ± signs, we have such a formula,

for each n ≥ 1 odd and all q; with i = 3 and − signs everywhere for ±
signs, we have such a formula, for each n ≥ 3 odd and all q.

(±(−1))hMKh = −
h−1∑
l=0

(±(−1))l
(
h

l

)
B±

i (n, q)h−lMKl + qA±
i (n, q)

−h

×
min{N±

i (n,q),h}∑
j=0

(−1)jC±
i,j(n, q)

h∑
t=j

t!S(h, t)2h−t

(
N±

i (n, q)− j

N±
i (n, q)− t

)

(h = 1, 2, . . . ), (17)

where N±
i (n, q)= |DC±

i (n, q)|=A±
i (n, q)B

±
i (n, q), and {C±

i,j(n, q)}N
±
i (n,q)

j=0

is the weight distribution of the binary code C(DC±
i (n, q)) given by

C±
i,j(n, q) =

∑(
q−1A±

i (n, q)(B
±
i (n, q)± 1)

ν0

)

×
∏

tr (β−1)=0

(
q−1A±

i (n, q)(B
±
i (n, q)± (q + 1))

νβ

)

×
∏

tr (β−1)=1

(
q−1A±

i (n, q)(B
±
i (n, q)± (−q + 1))

νβ

)
,

(18)

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq
sat-

isfying
∑

β∈Fq

νβ = j and
∑

β∈Fq

νββ = 0. In addition, S(h, t) is the Stirling

number of the second kind defined by

S(h, t) =
1

t!

t∑
j=0

(−1)t−j

(
t

j

)
jh. (19)
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(b) With + signs everywhere for ± signs, we have recursive formulas generat-

ing power moments of 2-dimensional Kloosterman sums over Fq and even

power moments of Kloosterman sums over Fq, for each n ≥ 2 even and

q ≥ 4; with − signs everywhere for ± signs, we have such formulas, for

each n ≥ 3 odd and q ≥ 4.

(±1)hMKh
2 = −

h−1∑
l=0

(±1)l
(
h

l

)
(B±

2 (n, q)± q)h−lMKl
2 + qA±

2 (n, q)
−h

×
min{N±

2 (n,q),h}∑
j=0

(−1)jC±
2,j(n, q)

h∑
t=j

t!S(h, t)2h−t

(
N±

2 (n, q)− j

N±
2 (n, q)− t

)

(h = 1, 2, . . . ), (20)
and

(±1)hMK2h = −
h−1∑
l=0

(±1)l
(
h

l

)
B±

2 (n, q)h−lMK2l + qA±
2 (n, q)

−h

×
min{N±

2 (n,q),h}∑
j=0

(−1)jC±
2,j(n, q)

h∑
t=j

t!S(h, t)2h−t

(
N±

2 (n, q)− j

N±
2 (n, q)− t

)

(h = 1, 2, . . . ),

(21)

where N±
2 (n, q)= |DC±

2 (n, q)|=A±
2 (n, q)B

±
2 (n, q), and {C±

2,j(n, q)}N
±
2 (n,q)

j=0

is the weight distribution of the binary code C(DC±
2 (n, q)) given by

C±
2,j(n, q) =

∑(
q−1A±

2 (n, q)(B
±
2 (n, q)± (q + 1− q2))

ν0

)

×
∏

|τ |<2
√
q

τ≡−1 (mod 4)

∏
K(λ;β−1)=τ

(
q−1A±

2 (n, q)(B
±
2 (n, q)± (q + 1− qτ))

νβ

)
,

(22)

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq
satis-

fying
∑

β∈Fq

νβ = j and
∑

β∈Fq

νββ = 0.

(c) With + signs everywhere for ± signs, we have recursive formulas generat-

ing power moments of 2-dimensional Kloosterman sums over Fq and even

power moments of Kloosterman sums over Fq, for each n ≥ 4 even and

q ≥ 4; with − signs everywhere for ± signs, we have such formulas, for

each n ≥ 3 odd and q ≥ 4.
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(±1)hMKh
2 = −

h−1∑
l=0

(±1)l
(
h

l

)
{B±

4 (n, q)± q2}h−lMKl
2 + qA±

4 (n, q)
−h

×
min{N±

4 (n,q),h}∑
j=0

(−1)jC±
4,j(n, q)

h∑
t=j

t!S(h, t)2h−t

(
N±

4 (n, q)− j

N±
4 (n, q)− t

)

(h = 1, 2, . . . ), (23)

and

(±1)hMK2h=−
h−1∑
l=0

(±1)l
(
h

l

)
{B±

4 (n, q)± (q2−q)}h−lMK2l+qA±
4 (n, q)

−h

×
min{N±

4 (n,q),h}∑
j=0

(−1)jC±
4,j(n, q)

h∑
t=j

t!S(h, t)2h−t

(
N±

4 (n, q)− j

N±
4 (n, q)− t

)

(h = 1, 2, . . . ), (24)

where N±
4 (n, q)= |DC±

4 (n, q)|=A±
4 (n, q)B

±
4 (n, q), and {C±

4,j(n, q)}N
±
4 (n,q)

j=0

is the weight distribution of the binary code C(DC±
4 (n, q)) given by

C±
4,j(n, q) =

∑(
q−1A±

4 (n, q)(B
±
4 (n, q)± (q2 + 1− q3))

ν0

)

×
∏

|τ |<2
√
q

τ≡−1 (mod 4)

∏
K(λ;β−1)=τ

(
q−1A±

4 (n, q)(B
±
4 (n, q)± (q2 + 1− qτ))

νβ

)
,

(25)

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq
satis-

fying
∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0.

The following corollary is just the n = 2 and n = 1 cases of (a) in the above.

������	�
 2�

(a) For all q, and h = 1, 2, . . . ,

MKh =

h−1∑
l=0

(−1)h+l+1

(
h

l

)
(q2 + q)h−lMKl + q1−3h(q − 1)−h

×
min{q4(q2−1),h}∑

j=0

(−1)h+jC+
1,j(2, q)

h∑
t=j

t!S(h, t)2h−t

(
q4(q2 − 1)− j

q4(q2 − 1)− t

)
,
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where {C+
1,j(2, q)}q

4(q2−1)
j=0 is the weight distribution of C(DC+

1 (2, q)) given

by

C+
1,j(2, q) =

∑(
q2(q − 1)(q2 + q + 1)

ν0

)

×
∏

tr (β−1)=0

(
q2(q + 1)(q2 − 1)

νβ

) ∏
tr (β−1)=1

(
q2(q − 1)(q2 + 1)

νβ

)
.

Here the sum is over all the sets of nonnegative integers {νβ}β∈Fq
satisfying∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0. In addition, S(h, t) is the Stirling number

of the second kind as defined in (19).

(b) For all q, and h = 1, 2, . . . ,

MKh = −
h−1∑
l=0

(
h

l

)
(q + 1)h−lMKl

+ q

min{q+1,h}∑
j=0

(−1)jC−
1,j(1, q)

h∑
t=j

t!S(h, t)2h−t

(
q + 1− j

q + 1− t

)
,

(26)

where {C−
1,j(1, q)}q+1

j=0 is the weight distribution of C(DC−
1 (n, q)) given by

C−
1,j(n, q) =

∑(
1

ν0

) ∏
tr (β−1)=1

(
2

νβ

)
. (27)

Here the sum is over all the sets of nonnegative integers {ν0}∪{νβ}tr (β−1)=1

satisfying ν0 +
∑

tr (β−1)=1

νβ = j and
∑

tr (β−1)=1

νββ = 0.

2. O−(2n, q)

For more details about the results of this section, one is referred to the paper

[13]. Throughout this paper, the following notations will be used:

q = 2r (r ∈ Z>0),

Fq = the finite field with q elements,

TrA = the trace of A for a square matrix A,
tB = the transpose of B for any matrix B.

Let θ− be the nondegenerate quadratic form on the vector space F2n×1
q of all

2n× 1 column vectors over Fq, given by

θ−
(

2n∑
i=1

xie
i

)
=

n−1∑
i=1

xixn−1+i + x22n−1 + x2n−1x2n + ax22n, (28)
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where {e1 =t [10 . . .0], e2 =t [01 . . .0], . . . , e2n =t [0 . . . 01]} is the standard basis

of F2n×1
q , and a is a fixed element in Fq such that z2+z+a is irreducible over Fq,

or equivalently a ∈ Fq\Θ(Fq), where Θ(Fq) = {α2 + α | α ∈ Fq} is a subgroup

of index 2 in the additive group F+
q of Fq.

Let δa(with a in the above paragraph), η denote respectively the 2×2 matrices

over Fq given by:

δa =

[
1 1

0 a

]
, η =

[
0 1

1 0

]
.

Then the group O−(2n, q) of all isometries of (F2n×1
q , θ−) consists of all matrices

⎡
⎣ A B e

C D f

g h i

⎤
⎦ (A,B,C,D (n− 1)× (n− 1),

e, f (n− 1)× 2,

g, h 2× (n− 1))

in GL(2n, q) satisfying the relations:

tAC + tgδag is alternating,

tBD + thδah is alternating,

tef + tiδai+ δa is alternating,

tAD + tCB + tgηh = 1n−1,

tAf + tCe + tgηi = 0,

tBf + tDe+ thηi = 0.

Here an n× n matrix (aij) is called alternating if{
aii = 0, for 1 ≤ i ≤ n,

aij = −aji = aji, for 1 ≤ i < j ≤ n.

P− = P−(2n, q) is the maximal parabolic subgroup of O−(2n, q) defined by:

P−(2n, q) =

⎧⎨
⎩
⎡
⎣ A 0 0

0 tA−1 0

0 0 i

⎤
⎦
⎡
⎣ 1n−1 B thtiηi

0 1n−1 0

0 h 12

⎤
⎦
∣∣∣∣∣

∣∣∣∣∣
A ∈ GL(n− 1, q),

i ∈ O−(2, q),
tB + thδah is alternating

⎫⎬
⎭,
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where O−(2, q) is the group of all isometries of (F2×1
q , θ−) with

θ−(x1e1 + x2e
2) = x21 + x1x2 + ax22 (cf.(28)).

One can show that

O−(2, q) = SO−(2, q)
∐[

1 1

0 1

]
SO−(2, q), (29)

SO−(2, q) =
{[

d1 ad2
d2 d1 + d2

] ∣∣∣ d21 + d1d2 + ad22 = 1

}

=

{[
d1 ad2
d2 d1 + d2

] ∣∣∣ d1 + d2b ∈ Fq(b), with

NFq(b)/Fq
(d1 + d2b) = 1

}
,

where b ∈ Fq is a root of the irreducible polynomial z2+z+a over Fq. SO
−(2, q)

is a subgroup of index 2 in O−(2, q), and

|SO−(2, q)| = q + 1, |O−(2, q)| = 2(q + 1).

SO−(2, q) here is defined as the kernel of a certain epimorphism δ− : O−(2n, q)
→ F+

2 (cf. [13: (3.45)]).

The Bruhat decomposition of O−(2n, q) with respect to P− = P−(2n, q) is

O−(2n, q) =
n−1∐
r=0

P−σ−
r P

−, (30)

where

σ−
r =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1r 0 0

0 1n−1−r 0 0 0

1r 0 0 0 0

0 0 0 1n−1−r 0

0 0 0 0 12

⎤
⎥⎥⎥⎥⎥⎦ ∈ O−(2n, q).

For each r, with 0 ≤ r ≤ n− 1, put

A−
r =

{
w ∈ P−(2n, q) | σ−

r w(σ
−
r )

−1 ∈ P−(2n, q)
}
.

As a disjoint union of right cosets of P− = P−(2n, q), the Bruhat decomposition

in (30) can be written as

O−(2n, q) =
n−1∐
r=0

P−σ−
r (A

−
r \P−). (31)
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Q−(2n, q) is a subgroup of index 2 in P−(2n, q), defined by:

Q− = Q−(2n, q) =

⎧⎨
⎩
⎡
⎣ A 0 0

0 tA−1 0

0 0 i

⎤
⎦
⎡
⎣ 1n−1 B thtiηi

0 1n−1 0

0 h 12

⎤
⎦
∣∣∣∣∣

∣∣∣∣∣
A ∈ GL(n− 1, q),

i ∈ SO−(2, q),
tB + thδah is alternating

⎫⎬
⎭.

In fact, in view of (29), we have:

P−(2n, q) = Q−(2n, q)
∐

ρQ−(2n, q),

with

ρ =

⎡
⎢⎢⎣

1n−1 0 0 0

0 1n−1 0 0

0 0 1 1

0 0 1 1

⎤
⎥⎥⎦ ∈ P−(2n, q).

For each r, with 0 ≤ r ≤ n− 1, we define

B−
r =

{
w ∈ Q−(2n, q) | σ−

r w(σ
−
r )−1 ∈ P−(2n, q)

}
=
{
w ∈ Q−(2n, q) | σ−

r w(σ
−
r )−1 ∈ Q−(2n, q)

}
,

which is a subgroup of index 2 in A−
r .

The decompositions in (30) and (31) can be modified so as to give:

O−(2n, q) =
n−1∐
r=0

P−σ−
r Q

− =
( n−1∐

r=0

Q−σ−
r Q

−
)∐( n−1∐

r=0

ρQ−σ−
r Q

−
)
, (32)

O−(2n, q) =
n−1∐
r=0

P−σ−
r (B

−
r \Q−)

=
( n−1∐

r=0

Q−σ−
r (B

−
r \Q−)

)∐( n−1∐
r=0

ρQ−σ−
r (B

−
r \Q−)

)
.

(33)

The order of the general linear group GL(n, q) is given by

gn =

n−1∏
j=0

(qn − qj) = q(
n
2)

n∏
j=1

(qj − 1). (34)

For integers n, r with 0 ≤ r ≤ n, the q-binomial coefficients are defined as:

[nr]q =

r−1∏
j=0

(qn−j − 1)/(qr−j − 1).
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Then, for integers n, r with 0 ≤ r ≤ n, we have
gn

gn−rgr
= qr(n−r) [nr]q . (35)

In [13], it is shown that

|A−
r | = 2(q + 1)grgn−1−rq

(n−1)(n+2)/2qr(2n−3r−5)/2, (36)

|P−(2n, q)| = 2(q + 1)gn−1q
(n−1)(n+2)/2. (37)

So, from (35)–(37), we get:

|A−
r \ P−(2n, q)| = |B−

r \Q−(2n, q)| = [n−1
r ]q q

r(r+3)/2, (38)

and

|Q−(2n, q)σ−
r Q

−(2n, q)| = |ρQ−(2n, q)σ−
r Q

−(2n, q)|

=
1

2
|P−(2n, q)σ−

r Q
−(2n, q)|

=
1

2
|P−(2n, q)||B−

r \Q−(2n, q)|

=
1

2
|P−(2n, q)||A−

r \P−(2n, q)|

=
1

2
|P−(2n, q)|2|A−

r |−1

= (q + 1)qn
2−n

n−1∏
j=1

(qj − 1) [n−1
r ]q q

(r2)q2r

(39)

(cf. (34), (37), (38)). Let

DC+
1 (n, q) = Q−(2n, q)σ−

n−1Q
−(2n, q), for n = 2, 4, 6, . . . , (40)

DC+
2 (n, q) = Q−(2n, q)σ−

n−2Q
−(2n, q), for n = 2, 4, 6, . . . , (41)

DC+
3 (n, q) = ρQ−(2n, q)σ−

n−2Q
−(2n, q), for n = 2, 4, 6, . . . , (42)

DC+
4 (n, q) = ρQ−(2n, q)σ−

n−3Q
−(2n, q), for n = 4, 6, 8, . . . , (43)

DC−
1 (n, q) = Q−(2n, q)σ−

n−1Q
−(2n, q), for n = 1, 3, 5, . . . , (44)

DC−
2 (n, q) = Q−(2n, q)σ−

n−2Q
−(2n, q), for n = 3, 5, 7, . . . , (45)

DC−
3 (n, q) = ρQ−(2n, q)σ−

n−2Q
−(2n, q), for n = 3, 5, 7, . . . , (46)

DC−
4 (n, q) = ρQ−(2n, q)σ−

n−3Q
−(2n, q), for n = 3, 5, 7, . . . . (47)

Then, from (39), we have:

N±
i (n, q) := |DC±

i (n, q)| = A±
i (n, q)B

±
i (n, q), for i = 1, 2, 3, 4 (48)

(cf. (1)–(16)).
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Unless otherwise stated, from now on, we will agree that anything related to

DC+
1 (n, q), DC+

2 (n, q) and DC+
3 (n, q) are defined for n = 2, 4, 6, . . . , anything

related to DC+
4 (n, q) is defined for n = 4, 6, 8, . . . , anything related to DC−

1 (n, q)

is defined for n = 1, 3, 5, . . . , and anything related to DC−
2 (n, q), DC−

3 (n, q), and

DC−
4 (n, q) are defined for n = 3, 5, 7, . . . .

3. Exponential sums over double cosets of O−(2n, 2r)

The following notations will be used throughout this paper:

tr (x) = x+ x2 + · · ·+ x2
r−1

the trace function Fq → F2,

λ(x) = (−1)tr (x) the canonical additive character of Fq.

Then any nontrivial additive character ψ of Fq is given by ψ(x) = λ(ax), for

a unique a ∈ F∗
q .

For any nontrivial additive character ψ of Fq and a ∈ F∗
q , the Kloosterman

sum KGL(t,q)(ψ; a) for GL(t, q) is defined as

KGL(t,q)(ψ; a) =
∑

w∈GL(t,q)

ψ(Trw + aTrw−1).

Notice that, for t = 1, KGL(1,q)(ψ; a) denotes the Kloosterman sum K(ψ; a).

For the Kloosterman sum K(ψ; a), we have the Weil bound (cf. [16])

|K(ψ; a)| ≤ 2
√
q. (49)

In [11], it is shown thatKGL(t,q)(ψ; a) satisfies the following recursive relation:

for integers t ≥ 2, a ∈ F∗
q ,

KGL(t,q)(ψ; a)

= qt−1KGL(t−1,q)(ψ; a)K(ψ; a) + q2t−2(qt−1 − 1)KGL(t−2,q)(ψ; a),
(50)

where we understand that KGL(0,q)(ψ; a) = 1 . From (51), in [11] an explicit

expression of the Kloosterman sum for GL(t, q) was derived.

�����
����� 3� ([12: Proposition 3.1]). Let ψ be a nontrivial additive char-

acter of Fq. Then

(a) ∑
i∈SO−(2,q)

ψ(Tr i) = K(ψ; 1), (51)
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(b) ∑
i∈SO−(2,q)

ψ

(
Tr

[
1 1

0 1

]
i

)
= q + 1. (52)

�����
����� 4� ([13: Proposition 4.4]). Let ψ be a nontrivial additive char-

acter of Fq. For each positive integer r, let Ωr be the set of all r× r nonsingular

symmetric matrices over Fq. Then the br(ψ) defined below is independent of ψ,

and is equal to:

br = br(ψ) =
∑

B∈Ωr

∑
h∈F

r×2
q

ψ(Tr δa
thBh)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qr(r+6)/4

r/2∏
j=1

(q2j−1 − 1), for r even,

−q(r2+4r−1)/4
(r+1)/2∏

j=1

(q2j−1 − 1), for r odd.

(53)

In Section 5 of [13], it is shown that the Gauss sum for O−(2n, q), with ψ a

nontrivial additive character of Fq, is given by:

∑
w∈O−(2n,q)

ψ(Trw) =

n−1∑
r=0

∑
w∈P−σ−

r Q−

ψ(Trw)

=

n−1∑
r=0

∑
w∈Q−σ−

r Q−

ψ(Trw) +

n−1∑
r=0

∑
w∈ρQ−σ−

r Q−

ψ(Trw) (cf.(32)),

with ∑
w∈Q−σ−

r Q−

ψ(Trw) =|B−
r \Q−|

∑
w∈Q−

ψ(Trwσ−
r )

= q(n−1)(n+2)/2
∑

i∈SO−(2,q)

ψ(Tr i)

× |B−
r \Q−|qr(n−r−3)br(ψ)KGL(n−1−r,q)(ψ; 1),

(54)

∑
w∈ρQ−σ−

r Q−

ψ(Trw) = |B−
r \Q−|

∑
w∈Q−

ψ(Tr ρwσ−
r )

= q(n−1)(n+2)/2
∑

i∈SO−(2,q)

ψ

(
Tr

[
1 1

0 1

]
i

)

× |B−
r \Q−|qr(n−r−3)br(ψ)KGL(n−1−r,q)(ψ; 1).

(55)

Here one uses (33) and the fact that ρ−1wρ ∈ Q− for all w ∈ Q−.
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Now, we see from (52)–(56) and (38) that, for each r with 0 ≤ r ≤ n− 1,∑
w∈Q−σ−

r Q−

ψ(Trw) = q(n−1)(n+2)/2 [n−1
r ]qK(ψ; 1)KGL(n−1−r,q)(ψ; 1)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−qrn− 1
4 r

2
r/2∏
j=1

(q2j−1 − 1), for r even,

qrn−
1
4 (r+1)2

(r+1)/2∏
j=1

(q2j−1 − 1), for r odd,

(56)

∑
w∈ρQ−σ−

r Q−

ψ(Trw) = (q + 1)q(n−1)(n+2)/2 [n−1
r ]qKGL(n−1−r,q)(ψ; 1)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qrn−

1
4 r

2
r/2∏
j=1

(q2j−1 − 1), for r even,

−qrn− 1
4 (r+1)2

(r+1)/2∏
j=1

(q2j−1 − 1), for r odd.

(57)

For our purposes, we need the following special cases of exponential sums in

(57) and (58). We state them separately as a theorem.

������� 5� Let ψ be any nontrivial additive character of Fq. Then, in the

notations of (1), (3), (5), (7), (9), (11), (13), and (15), we have∑
w∈DC±

i (n,q)

ψ(Trw) = ±A±
i (n, q)K(ψ; 1), for i = 1, 3,

∑
w∈DC±

2 (n,q)

ψ(Trw) = ±(−1)A±
2 (n, q)K(ψ; 1)2,

∑
w∈DC±

4 (n,q)

ψ(Trw) = ±(−1)q−1A±
4 (n, q)KGL(2,q)(ψ; 1)

= ±(−1)A±
4 (n, q)(K(ψ; 1)2 + q2 − q)

(cf. (40)–(47), (51)).

�����
����� 6� ([9]) For n = 2s (s ∈ Z≥0), and ψ a nontrivial additive char-

acter of Fq,

K(ψ; an) = K(ψ; a).

For the next corollary, we need a result of Carlitz.
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������� 7� ([2]) For the canonical additive character λ of Fq, and a ∈ F∗
q ,

K2(λ; a) = K(λ; a)2 − q. (58)

The next corollary follows from Theorems 5 and 7, Proposition 6, and by

simple change of variables.

������	�
 8� Let λ be the canonical additive character of Fq, and let a ∈ F∗
q .

Then we have∑
w∈DC±

i (n,q)

λ(aTrw) = ±A±
i (n, q)K(λ; a), for i = 1, 3, (59)

∑
w∈DC±

2 (n,q)

λ(aTrw) = ±(−1)A±
2 (n, q)K(λ; a)2

= ±(−1)A±
2 (n, q)(K2(λ; a) + q),

(60)

∑
w∈DC±

4 (n,q)

λ(aTrw) = ±(−1)A±
4 (n, q)(K(λ; a)2 + q2 − q)

= ±(−1)A±
4 (n, q)(K2(λ; a) + q2).

(61)

�����
����� 9� ([9]) Let λ be the canonical additive character of Fq, m ∈ Z>0,

β ∈ Fq. Then

∑
a∈F∗

q

λ(−aβ)Km(λ; a) =

{
qKm−1(λ; β

−1) + (−1)m+1, if β �= 0,

(−1)m+1, if β = 0,
(62)

with the convention K0(λ; β
−1) = λ(β−1).

For any integer r with 0 ≤ r ≤ n− 1, and each β ∈ Fq, we let

NQ−σ−
r Q−(β) = |{w ∈ Q−σ−

r Q
− | Trw = β}|,

NρQ−σ−
r Q−(β) = |{w ∈ ρQ−σ−

r Q
− | Trw = β}|.

Then it is easy to see that

qNQ−σ−
r Q−(β) = |Q−σ−

r Q
−|+

∑
a∈F∗

q

λ(−aβ)
∑

w∈Q−σ−
r Q−

λ(aTrw), (63)

qNρQ−σ−
r Q−(β) = |ρQ−σ−

r Q
−|+

∑
a∈F∗

q

λ(−aβ)
∑

w∈ρQ−σ−
r Q−

λ(aTrw). (64)

Now, from (60)–(65) and (40)–(48), we have the following result.

748



INFINITE FAMILIES OF RECURSIVE FORMULAS

�����
����� 10�

(a) For i = 1, 3

NDC±
i (n,q)(β) = q−1A±

i (n, q)B
±
i (n, q)± q−1A±

i (n, q)

×
⎧⎨
⎩

1, β = 0,

q + 1, tr (β−1) = 0,

−q + 1, tr (β−1) = 1,

(65)

(b)

NDC±
2 (n,q)(β) = q−1A±

2 (n, q)B
±
2 (n, q)± (−1)q−1A±

2 (n, q)

×
{
qK(λ; β−1)− q − 1, β �= 0,

q2 − q − 1, β = 0,

(66)

(c)

NDC±
4 (n,q)(β) = q−1A±

4 (n, q)B
±
4 (n, q)± (−1)q−1A±

4 (n, q)

×
{
qK(λ; β−1)− q2 − 1, β �= 0,

q3 − q2 − 1, β = 0.

(67)

������	�
 11�

(a) For all even n ≥ 2 and all q, NDC+
i (n,q)(β) > 0, for all β and i = 1, 2.

(b) For all even n ≥ 4 and all q, NDC+
3 (n,q)(β) > 0, for all β; for n = 2 and

all q,

NDC+
3 (2,q)(β) =

⎧⎨
⎩
q3 + q2, β = 0,

2q3 + 2q2, tr (β−1) = 0,

0, tr (β−1) = 1.

(68)

(c) For all even n ≥ 4 and all q, NDC+
4 (n,q)(β) > 0, for all β.

(d) For all odd n ≥ 3 and all q, NDC−
1 (n,q)(β) > 0, for all β; for n = 1 and

all q,

NDC−
1 (1,q)(β) =

⎧⎨
⎩

1, β = 0,

0, tr (β−1) = 0,

2, tr (β−1) = 1.

(69)

(e) For all odd n ≥ 3 and all q, NDC−
i (n,q)(β) > 0, for all β and i = 2, 3.

(f) For all odd n ≥ 5 and all q, or n = 3 and all q ≥ 4, NDC−
4 (n,q)(β) > 0, for

all β; for n = 3 and q = 2,

NDC−
4 (3,2)(β) =

{
576 = |ρQ−(6, 2)|, β = 0,

0, β = 1.
(70)
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P r o o f. All assertions except (f) are left to the reader.

(f) Let β = 0. Then NDC−
4 (n,q)(0) > 0, for all odd n ≥ 3 and all q, as one

can see from (68). Now, let β �= 0. Then, by invoking the Weil bound in (50),

we have

NDC−
4 (n,q)(β)

≥ q−1A−
4 (n, q)

{
q

1
4 (n−3)2(qn−2 − 1)

(n−1)/2∏
j=1

(q2j − 1)− (q2 + 2q
3
2 + 1)

}
. (71)

Let n ≥ 5. Then we see from (72) that, for all q,

NDC−
4 (n,q)(β) ≥ q−1A−

4 (n, q){q(q3 − 1)− (q2 + 2q
3
2 + 1)} > 0.

If n = 3 and q ≥ 4, then, from (72), we have

NDC−
4 (3,q)(β) ≥ q−1A−

4 (3, q){(q − 1)(q2 − 1)− (q2 + 2q
3
2 + 1)} > 0.

On the other hand, if n = 3 and q = 2, then we get the values in (71) directly

from (68). �

4. Construction of codes

Here we will construct eight infinite families of binary linear codes

C(DC+
1 (n, q)) of length N+

1 (n, q),

C(DC+
2 (n, q)) of length N+

2 (n, q),

C(DC+
3 (n, q)) of length N+

3 (n, q) for n = 2, 4, 6, . . . and all q;

C(DC+
4 (n, q)) of length N+

4 (n, q) for n = 4, 6, 8, . . . and all q;

C(DC−
1 (n, q)) of length N−

1 (n, q) for n = 1, 3, 5, . . . and all q;

C(DC−
2 (n, q)) of length N−

2 (n, q),

C(DC−
3 (n, q)) of length N−

3 (n, q), C(DC−
4 (n, q)) of length N−

4 (n, q)

for n = 3, 5, 7, . . . and all q, respectively, associated with the double cosets

DC+
1 (n, q), DC+

2 (n, q), DC+
3 (n, q), DC+

4 (n, q), DC−
1 (n, q), DC−

2 (n, q),

DC−
3 (n, q), DC−

4 (n, q) (cf. (40)–(48)).

Let g1, g2, . . . , gN±
i (n,q) be fixed orderings of the elements in DC±

i (n, q), for

i = 1, 2, 3, 4, by abuse of notations. Then we put

v±i (n, q) = (Tr g1,Tr g2, . . . ,Tr gN±
i (n,q)) ∈ F

N±
i (n,q)

q , for i = 1, 2.
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The binary codes C(DC+
1 (n, q)), C(DC+

2 (n, q)), C(DC+
3 (n, q)), C(DC+

4 (n, q)),

C(DC−
1 (n, q)),C(DC−

2 (n, q)),C(DC−
3 (n, q)), andC(DC−

4 (n, q)) are defined as:

C(DC±
i (n, q)) =

{
u ∈ F

N±
i (n,q)

q | u · v±i (n, q) = 0
}
, for i = 1, 2, 3, 4, (72)

where the dot denotes respectively the usual inner product in F
N±

i (n,q)
q

for i = 1, 2, 3, 4.

The following theorem of Delsarte is well-known.

������� 12� ([18]) Let B be a linear code over Fq. Then

(B|F2
)⊥ = tr (B⊥).

In view of this theorem, the respective duals of the codes in (73) are given

by:

C(DC±
i (n, q))⊥

=
{
c±i (a) = c±i (a;n, q) =

(
tr (aTr g1), . . . , tr (aTr gN±

i (n,q))
) | a ∈ Fq

}
,
(73)

for i = 1, 2, 3, 4.

Let F+
2 , F

+
q denote the additive groups of the fields F2, Fq, respectively. Then

we have the following exact sequence of groups:

0 → F+
2 → F+

q → Θ(Fq) → 0,

where the first map is the inclusion and the second one is the Artin-Schreier

operator in characteristic two given by Θ(x) = x2 + x. So

Θ(Fq) = {α2 + α | α ∈ Fq}, and [F+
q : Θ(Fq)] = 2. (74)

������� 13� ([9]) Let λ be the canonical additive character of Fq, and let

β ∈ F∗
q . Then

(a) ∑
α∈Fq−{0,1}

λ

(
β

α2 + α

)
= K(λ; β)− 1, (75)

(b) ∑
α∈Fq

λ

(
β

α2 + α+ b

)
= −K(λ; β)− 1, (76)

if x2 + x + b(b ∈ Fq) is irreducible over Fq, or equivalently if b ∈ Fq \ Θ(Fq)

(cf. (75)).
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������� 14�

(a) The map Fq → C(DC+
i (n, q))⊥ (a �→ c+i (a)) (i = 1, 2) is an F2-linear

isomorphism for n ≥ 2 even and all q.

(b) The map Fq → C(DC+
3 (n, q))⊥ (a �→ c+3 (a)) is an F2-linear isomorphism

for n ≥ 4 even and all q, or n = 2 and q ≥ 8.

(c) The map Fq → C(DC+
4 (n, q))⊥ (a �→ c+4 (a)) is an F2-linear isomorphism

for n ≥ 4 even and all q.

(d) The map Fq → C(DC−
1 (n, q))⊥ (a �→ c−1 (a)) is an F2-linear isomorphism

for n ≥ 1 odd and all q.

(e) The map Fq → C(DC−
i (n, q))⊥ (a �→ c−i (a)) (i = 2, 3) is an F2-linear

isomorphism for n ≥ 3 odd and all q.

(f) The map Fq → C(DC−
4 (n, q))⊥ (a �→ c−4 (a)) is an F2-linear isomorphism

for n ≥ 5 odd and all q, or n = 3 and q ≥ 4.

P r o o f. All maps are clearly F2-linear and surjective. Let a be in the ker-

nel of map Fq → C(DC+
1 (n, q))⊥ (a �→ c+1 (a)). Then tr (aTr g) = 0, for all

g ∈ DC+
1 (n, q). Since, by Corollary 12(a), Tr : DC+

1 (n, q) → Fq is surjec-

tive, tr (aα) = 0, for all α ∈ Fq. This implies that a = 0, since otherwise

tr : Fq → F2 would be the zero map. This shows (a). All the other assertions

can be handled in the same way, except for n = 2 and q ≥ 8 case of (b) and

n = 1 case of (d). Assume first that we are in the n = 2 and q ≥ 8 case

of (b). Let a be in the kernel of the map Fq → C(DC+
3 (2, q))⊥ (a �→ c+3 (a)).

Then, by (69), tr (aβ) = 0, for all β ∈ F∗
q , with tr (β−1) = 0. Hilbert’s theo-

rem 90 says that tr (γ) = 0 ⇐⇒ γ = α2 + α, for some α ∈ Fq, and hence∑
α∈Fq−{0,1}

λ( a
α2+α) = q − 2. If a �= 0, then, using (76) and the Weil bound (50),

we would have

q − 2 =
∑

α∈Fq−{0,1}
λ
( a

α2 + α

)
= K(λ; a)− 1 ≤ 2

√
q − 1.

But this is impossible, since x > 2
√
x+ 1, for x ≥ 8.

Assume next that we are in the n = 1 case of (d). Let a be in the kernel of the

map Fq → C(DC−
1 (1, q))⊥(a �→ c−1 (a)). Then, by (70), tr (aβ) = 0, for all β ∈ F∗

q

with tr (β−1) = 1. Let b ∈ Fq\Θ(Fq). Then tr (γ) = 1 ⇐⇒ γ = α2 + α+ b, for

some α ∈ Fq. As z
2 + z + b is irreducible over Fq, α

2 +α+ b �= 0, for all α ∈ Fq,

and hence tr ( a
α2+α+b) = 0, for all α ∈ Fq. So

∑
α∈Fq

λ( a
α2+α+b) = q. Assume now
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that a �= 0. Then, from (77) and (50),

q = −K(λ; a)− 1 ≤ 2
√
q − 1.

But this is impossible, since, x > 2
√
x− 1, for x ≥ 2. �

Remark� One can show that the kernel of the maps Fq → C(DC+
3 (2, q))⊥

(a �→ c+3 (a)), for q = 2, 4, and of the map F2 → C(DC−
4 (3, 2))⊥ (a �→ c−4 (a)) are

all equal to F2.

5. Recursive formulas for power moments

of Kloosterman sums

Here we will be able to find, via Pless power moment identity, infinite families

of recursive formulas generating power moments of Kloosterman and 2-dimen-

sional Kloosterman sums over all Fq (with three exceptions) in terms of the

frequencies of weights in C(DC±
i (n, q)), for i = 1, 3 and C(DC±

i (n, q)), for

i = 2, 4, respectively.

������� 15 (Pless power moment identity)� ([18]) Let B be an q-ary [n, k]

code, and let Bi (resp. B⊥
i ) denote the number of codewords of weight i in B

(resp. in B⊥). Then, for h = 0, 1, 2, . . . ,

n∑
j=0

jhBj =

min{n,h}∑
j=0

(−1)jB⊥
j

h∑
t=j

t!S(h, t)qk−t(q − 1)t−j

(
n− j

n− t

)
, (77)

where S(h, t) is the Stirling number of the second kind defined in (19).

����	 16� Let c±i (a) = (tr (Tr g1), . . . , tr (Tr gN±
i (n,q))) ∈ C(DC±

i (n, q))⊥, for
a ∈ F∗

q and i = 1, 2, 3, 4. Then their Hamming weights are expressed as follows:

(a)

w(c±i (a)) =
1

2
A±

i (n, q){B±
i (n, q)± (−1)K(λ; a)}, for i = 1, 3, (78)

(b)

w(c±2 (a)) =
1

2
A±

2 (n, q)(B
±
2 (n, q)±K(λ; a)2)

=
1

2
A±

2 (n, q){B±
2 (n, q)± (q +K2(λ; a))},

(79)
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(c)

w(c±4 (a)) =
1

2
A±

4 (n, q){B±
4 (n, q)± (q2 − q +K(λ; a)2)}

=
1

2
A±

4 (n, q){B±
4 (n, q)± (q2 +K2(λ; a))}

(80)

(cf. (1)–(16)).

P r o o f.

w(c±i (a)) =
1

2

N±
i (n,q)∑
j=1

(1− (−1)tr (aTr gj))

=
1

2
(N±

i (n, q)−
∑

w∈DC±
i (n,q)

λ(aTrw)) for i = 1, 2, 3, 4.

Our results now follow from (48) and (59)–(62). �

Let u = (u1, . . . , uN±
i (n,q)) ∈ F

N±
i (n,q)

2 , for i = 1, 2, 3, 4, with νβ 1’s in the

coordinate places where Tr (gj) = β, for each β ∈ Fq. Then from the definition

of the codes C(DC±
i (n, q)) (cf. (73)) we see that u is a codeword with weight

j if and only if
∑

β∈Fq

νβ = j and
∑

β∈Fq

νββ = 0 (an identity in Fq). As there are

∏
β∈Fq

(N
DC

±
i

(n,q)
(β)

νβ

)
many such codewords with weight j, we obtain the following

result.

�����
����� 17� Let {C±
i,j(n, q)}N

±
i (n,q)

j=0 be the weight distribution of

C(DC±
i (n, q)), for i = 1, 2, 3, 4. Then we have

C±
i,j(n, q) =

∑ ∏
β∈Fq

(
NDC±

i (n,q)(β)

νβ

)
,

for 0 ≤ j ≤ N±
i (n, q), and i = 1, 2, 3, 4,

(81)

where the sum is over all the sets of integers {νβ}β∈Fq
(0 ≤ νβ ≤ NDC±

i (n,q)(β)),

satisfying ∑
β∈Fq

νβ = j, and
∑
β∈Fq

νββ = 0. (82)

������	�
 18� Let {C±
i,j(n, q)}N

±
i (n,q)

j=0 be the weight distribution of

C(DC±
i (n, q)), for i = 1, 2, 3, 4. Then we have

C±
i,j(n, q) = C±

i,N±
i (n,q)−j

(n, q), for all j, with 0 ≤ j ≤ N±
i (n, q).
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P r o o f. Under the replacements νβ → NDC±
i (n,q)(β)− νβ , for each β ∈ Fq, the

first equation in (82) is changed to N±
i (n, q)− j, while the second one in there

and the summands in (81) are left unchanged. The second sum in (82) is left

unchanged, since
∑

β∈Fq

NDC±
i (n,q)(β)β = 0, as one can see by using the explicit

expressions of NDC±
i (n,q)(β) in (66)–(68). �

������� 19� ([15]) Let q = 2r, with r ≥ 2. Then the range R of K(λ; a), as

a varies over F∗
q , is given by:

R =
{
τ ∈ Z | |τ | < 2

√
q, τ ≡ −1 (mod 4)

}
.

In addition, each value τ ∈ R is attained exactly H(τ2 − q) times, where H(d)

is the Kronecker class number of d.

The formulas appearing in the next theorem and stated in (18), (22), and (25)

follow by applying the formula in (81) to each C(DC±
i (n, q)), using the explicit

values of NDC±
i (n,q)(β) in (66)–(68), and taking Theorem 19 into consideration.

������� 20� Let {C±
i,j(n, q)}N

±
i (n,q)

j=0 be the weight distribution of C(DC±
i (n, q)),

for i = 1, 2, 3, 4, and assume that q ≥ 4, for C(DC±
i (n, q)) (i = 2, 4). Then we

have

(a) For i = 1, 3, and j = 0, . . . , N±
i (n, q),

C±
i,j(n, q) =

∑(
q−1A±

i (n, q)(B
±
i (n, q)± 1)

ν0

)

×
∏

tr (β−1)=0

(
q−1A±

i (n, q)(B
±
i (n, q)± (q + 1))

νβ

)

×
∏

tr (β−1)=1

(
q−1A±

i (n, q)(B
±
i (n, q)± (−q + 1))

νβ

)
,

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq
satis-

fying
∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0.

(b) For j = 0, . . . , N±
2 (n, q),

C±
2,j(n, q) =

∑(
q−1A±

2 (n, q)(B
±
2 (n, q)± (q + 1− q2))

ν0

)

×
∏

|τ |<2
√
q

τ≡−1 (mod 4)

∏
K(λ;β−1)=τ

(
q−1A±

2 (n, q)(B
±
2 (n, q)± (q + 1− qτ))

νβ

)
,
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where the sum is over all the sets of nonnegative integers {νβ}β∈Fq
satis-

fying
∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0.

(c) For j = 0, . . . , N±
4 (n, q),

C±
4,j(n, q) =

∑(
q−1A±

4 (n, q)(B
±
4 (n, q)± (q2 + 1− q3))

ν0

)

×
∏

|τ |<2
√
q

τ≡−1 (mod 4)

∏
K(λ;β−1)=τ

(
q−1A±

4 (n, q)(B
±
4 (n, q)± (q2 + 1− qτ))

νβ

)
,

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq
satis-

fying
∑

β∈Fq

νβ = j, and
∑

β∈Fq

νββ = 0.

From now on, we will assume that, for C(DC+
1 (n, q))⊥, n ≥ 2 even and all

q; for C(DC+
2 (n, q))⊥, n ≥ 2 even and q ≥ 4; for C(DC+

3 (n, q))⊥, either n ≥ 4

even and all q, or n = 2, q ≥ 8; for C(DC+
4 (n, q))⊥, n ≥ 4 even and q ≥ 4;

for C(DC−
1 (n, q))⊥, n ≥ 1 odd and all q; for C(DC−

2 (n, q))⊥, n ≥ 3 odd and

q ≥ 4; for C(DC−
3 (n, q))⊥, n ≥ 3 odd and all q; for C(DC−

4 (n, q))⊥, n ≥ 3 odd

and q ≥ 4. Under these assumptions, each codeword in C(DC±
i (n, q))⊥ can be

written as c±i (a), for i = 1, 2, 3, 4, and a unique a ∈ Fq (cf. Theorem 14, (74)).

Now, we apply the Pless power moment identity in (78) to C(DC±
i (n, q))⊥,

for those values of n and q, in order to get the results in Theorem 1 (cf. (17),

(18), (20)–(25)) about recursive formulas.

The left hand side of that identity in (78) is equal to∑
a∈F∗

q

w(c±i (a))
h,

with w(c±i (a)) given by (78)–(80). We have, for i = 1, 3,∑
a∈F∗

q

w(c±i (a))
h =

1

2h
A±

i (n, q)
h
∑
a∈F∗

q

{B±
i (n, q)± (−1)K(λ; a)}h

=
1

2h
A±

i (n, q)
h

h∑
l=0

(±(−1))l
(
h

l

)
B±

i (n, q)h−lMKl.

(83)

Similarly, we have

∑
a∈F∗

q

w(c±2 (a))
h =

1

2h
A±

2 (n, q)
h

h∑
l=0

(±1)l
(
h

l

)
B±

2 (n, q)h−lMK2l (84)
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=
1

2h
A±

2 (n, q)
h

h∑
l=0

(±1)l
(
h

l

)
(B±

2 (n, q)± q)h−lMKl
2, (85)

∑
a∈F∗

q

w(c±4 (a))
h =

1

2h
A±

4 (n, q)
h

h∑
l=0

(±1)l
(
h

l

)
{B±

4 (n, q)± (q2 − q)}h−lMK2l

(86)

=
1

2h
A±

4 (n, q)
h

h∑
l=0

(±1)l
(
h

l

)
(B±

4 (n, q)± q2)h−lMKl
2. (87)

Note here that, in view of (59), obtaining power moments of 2-dimensional

Kloosterman sums is equivalent to getting even power moments of Kloosterman

sums. Also, one has to separate the term corresponding to l = h in (83)–(87),

and notes dimF2
C(DC±

i (n, q))⊥ = r.
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