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ABSTRACT. In this paper, we construct eight infinite families of binary linear
codes associated with double cosets with respect to a certain maximal parabolic
subgroup of the special orthogonal group SO~ (2n,2"). And we obtain four infi-
nite families of recursive formulas for the power moments of Kloosterman sums
and four those of 2-dimensional Kloosterman sums in terms of the frequencies of
weights in the codes. This is done via Pless power moment identity and by utiliz-
ing the explicit expressions of exponential sums over those double cosets related
to the evaluations of “Gauss sums” for the orthogonal groups O~ (2n, 2").
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1. Introduction

Let 1 be a nontrivial additive character of the finite field F, with ¢ = p"
elements (p a prime), and let m be a positive integer. Then the m-dimensional
Kloosterman sum K,,(1;a) ([16]) is defined by

Kn(ia)= Y dlar++omtany'-ayl)  (a€F)).
al,...,amEF;
In particular, if m = 1, then K (1);a) is simply denoted by K (v; a), and is called
the Kloosterman sum. The Kloosterman sum was introduced in 1926 to give an
estimate for the Fourier coefficients of modular forms (cf. [4], [I4]). It has also
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been studied to solve various problems in coding theory and cryptography over
finite fields of characteristic two (cf. [3], [5]).

For each nonnegative integer h, we denote by M K,, ()" the h-th moment of
the m-dimensional Kloosterman sum K,,(¢;a), i.e.,

MEn (@) = 3 Ko (a)".
a€lFy
If 1) = X is the canonical additive character of F,, then M K,,(\)" will be simply
denoted by MK . If further m = 1, for brevity MK} will be indicated by
MK".
Explicit computations on power moments of Kloosterman sums were initiated
in the paper [21] of Salié in 1931, where it is shown that for any odd prime ¢,

MEK" =@My — (g—= D" " +2(-1)""  (h>1),
Here My = 0, and for h € Z~,

h h
My =|{(ar, . an) € F)" | 300y =1= 3 a; '},
j=1 j=1

For ¢ = p an odd prime, Salié obtained MK, MK? MK?* MK?* in [21] by
determining M;, Mo, M3. MK?® can be expressed in terms of the p-th eigenvalue
of a weight 3 newform on I'g(15) (cf. [17], [20]). M K® can be expressed in terms
of the p-th eigenvalue for a weight 4 newform on I'g(6) (cf. [7]). Also, based on
numerical evidence, in [6] Evans was led to propose a conjecture which expresses
MK in terms of Hecke eigenvalues for a weight 3 newform on I'g(525) with
quartic nebentypus of conductor 105.

From now on, let us assume that ¢ = 2". Carlitz [1] evaluated M K" for the
other values of h with h < 4. Recently, Moisio was able to find explicit expres-
sions of M K", for h < 10 (cf. [19]). This was done, via Pless power moment
identity, by connecting moments of Kloosterman sums and the frequencies of
weights in the binary Zetterberg code of length ¢+ 1, which were known by the
work of Schoof and Vlugt in [22].

In [§8], the binary linear codes C(SL(n,q)) associated with finite special lin-
ear groups SL(n,q) were constructed when n,q are both powers of two. Then
we obtained a recursive formula for the power moments of multi-dimensional
Kloosterman sums in terms of the frequencies of weights in C'(SL(n,q)).

In this paper, we will be able to produce four infinite families of recursive
formulas generating power moments of Kloosterman sums and four those of
2-dimensional Kloosterman sums. To do that, we construct eight infinite families
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of binary linear codes

C(DC{ (n,q)) (n=2,4,...), C(DC (n,q)) (n=1,3,...),

both associated with Q7 o,,_;Q7;

C(DCS (n,q)) (n=2,4,...), C(DCy (n,q)) (n=3,5,...),

both associated with Q7 o,,_,Q~;

C(DCY (n,q)) (n=2,4,...), C(DC5 (n,q)) (n=3,5,...),

both associated with pQ~ 0o, _,Q~;

C(DCf (n,q)) (n=4,6,...), C(DCy (n,q)) (n=3,5,...),

both associated with pQ~ 0o, _;Q,

with respect to the maximal parabolic subgroup @~ = Q@ (2n, q) of the special
orthogonal group SO~ (2n, ¢q), and express those power moments in terms of the
frequencies of weights in each code. Then, thanks to our previous results on
the explicit expressions of exponential sums over those double cosets related to
the evaluations of “Gauss sums” for the orthogonal groups O~ (2n,q)[13], we
can express the weight of each codeword in the duals of the codes in terms of
Kloosterman or 2-dimensional Kloosterman sums. Then our formulas will follow
immediately from the Pless power moment identity. Analogously to these, in
[10], for ¢ a power of three, two infinite families of ternary linear codes associated
with double cosets in the symplectic group Sp(2n,q) were constructed in order
to generate infinite families of recursive formulas for the power moments of
Kloosterman sums with square arguments and for the even power moments of
those in terms of the frequencies of weights in those codes. We emphasize here
that there have been only a few recursive formulas generating power moments
of Kloosterman sums including the one in [19].

Theorem 1 in the following (cf. (17), (18), (20)—(25)) is the main result of
this paper. Henceforth, we agree that the binomial coefficient (2) =0,ifa>0
or a < 0. To simplify notations, we introduce the following ones which will be
used throughout this paper at various places.

(n—2)
2
Af(n.q) = i 20— 1) I (¥ - 1), (1)
j=1
(";2)
1,2 .
Bf (n,q) = (g+1)g+" [] (¢ - 1), (2)
j=1
(n2—2)
L(5n2—2n—8) rn— .
Af(n,q) = 2 C» 28 gy T (@' -1, (3)

j=1
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(" 2)
(e Dake 2 - T

Jj=1

(n 2)
(q+1)q4(5n —2n— 8) n 1 H 2] 1

(n—2)
2

L (ne2)2, n— .
Bf(n,q)=q:™ 2 (" = 1) ] (¥ - 1),

2
1 2_6n—4) rn— .
Af(n,q) = (q¢+ 1)gt 0= noy) T (¢¥ " - 1),
j=1

(n—2)

(n—2)
2

L (ne2)2, n— B
Bf(n,q)=q:™ 2 (" = 1) ] (¥ - 1),

<.
Il
—

(n—1)
2

AT () =i TT (@ - 1),
j=1

By (n,q) =

(n—1)
(¢+1g: ™" IT (@ -1,

Jj=1
(n—1)
2

Ay (nq) =g == o T @ =),

By (n,q) =

A?? (nv Q) =

j=1

(n—1)
2

(q+Dg " T (6% - ),
j=1
(n=1)

(q+1) 4(Em —4n— 5) n 1 H 2] 1

(n—1)
2

By (n,q) = ¢+ V" ] (¢¥ - 1),

Ag(n,q) =

j=1
(n 3)

(q+1)q4(5n —4n— 9) n 1 H 23 1

(10)

(11)

(13)

(14)

(15)
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(n=3)
2
_ 1 _a2)2 _ _ -
Bi(n,q) =" (" = 1)(¢" ' = 1) ] (¢ - ). (16)
j=1
From now on, it is assumed that either 4+ signs or — signs are chosen everywhere,
whenever + signs appear.

THEOREM 1. Let ¢ = 2". Then, with the notations in (1)—(16), we have the
following.

(a) Withi =1 and+ signs everywhere for + signs, we have a recursive formula
generating power moments of Kloosterman sums over Fy, for each n > 2
even and all q; with i = 3 and + signs everywhere for £+ signs, we have
such a formula, for either each n > 4 even and all g, orn =2 and q > 8;
with i = 1 and — signs everywhere for + signs, we have such a formula,
for each n > 1 odd and all q; with i = 3 and — signs everywhere for +
signs, we have such a formula, for each n > 3 odd and all q.

h—1

(MR == (D) () B ) MK+ )
=0
min{ N (n,q),h} h £ ) —
xS (—1YCE g Y #S(h 12" @i((n Z)) _‘Z)
§=0 t=j i U0
(h=1,2,...), (17)

N* n,
where Nii(n,q) = \DC’;—L(n,q)] :Aii(n,q)Bi:t (n,q), and {ij(n, q)}j;o( 9

is the weight distribution of the binary code C’(DC';—L (n,q)) given by

—lp+ n + n
Cij’:j(n; q) — Z (q Ai ( aQ)i‘OBz ( ,Q) + 1))
g AF (n,q)(Bjf (n,q) £ (¢ + 1))
X
r (611)—0 < v ) (s
“1AF(n,q)(Bf (n,q) £ (—q + 1))
% H q 7 7 ,
tr<5—1>—1< ve >

where the sum is over all the sets of nonnegative integers {vg}ger, sat-

isfying Y, vg = j and > vgf = 0. In addition, S(h,t) is the Stirling
BEF, BEF,
number of the second kind defined by

S(h,t) = tl' Z(—l)t*j (j)yh (19)
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(b) With + signs everywhere for + signs, we have recursive formulas generat-
ing power moments of 2-dimensional Kloosterman sums over Fy and even
power moments of Kloosterman sums over Fy, for each n > 2 even and
q > 4; with — signs everywhere for + signs, we have such formulas, for
eachn > 3 odd and ¢ > 4.

h—1
h _ _
eariy = = S () B ) £ 00K + 5 00)
=0
min{ N3 (n,q),h} h n .
: —t( Ny (n,q) =
X (=1)IC5 (n,q) ) t1S(h,t)2" t< 2
jz_(:) 7 tz_; NQi (’IL, Q) —t
) (h=1,2,...), (20)
an
h—1 h
) ME = = S0 () B () ME £ adf ()
=0

X

min{N;(n,q),h} h + . (21)
. (N5 (n,q)—j
S —1)IC, y o gh=t( " 2 M
( ) 02,] (’I’L, q) t S(h7 t) (N;(n, q) —t

j=0 t=j
(h=1,2,...),
N n,
where N3 (n,q) =|DC5 (n,q)| = A3 (n, q) B3 (n, 9), and {CF,(n, )} 2"
is the weight distribution of the binary code C’(DC’2i (n,q)) given by

+ B ¢ Ay (n,q)(By (n,q) £ (¢ +1—¢?))

g (P -0

< 11 1 <q‘1A§t(n7 Q)(By(n,q) £ (¢+1- q7))> (22)
Fiply o .

where the sum is over all the sets of nonnegative integers {vg}gcr, satis-

fying - vsg=j and ) vgB=0.
BeF, BeF,

(c) With + signs everywhere for + signs, we have recursive formulas generat-
ing power moments of 2-dimensional Kloosterman sums over IFy and even
power moments of Kloosterman sums over F,, for each n > 4 even and
q > 4; with — signs everywhere for + signs, we have such formulas, for
eachn > 3 odd and q > 4.
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h—1
h
e ariy = = o) () 1B ) £ MK 4 )
=0
min{N;" (n.q).h}

h .
x> (10 (ng) Y HS(h, )2 <N4i(”’q) ‘3>

j=0 t=j Nf(na Q) —t
(h=1,2,...), (23)
and
h—1
h _ _
(MR =Y ) () (B (0) £ (=) M AT ()
=0

min{ N;f(n,q),h}

h + .
: —i(Ni(n,q) —j
X (=1)CE(n,q) > t1S(h,t)2" t( 4
2 ) 2 Ni(ng) — 1
(h=1,2,...), (24)
N+ n,
where N3 (n,q)=|DCE (n,q)| = Af (n,q) B (n, 9), and {CF,(n, )} 5"
is the weight distribution of the binary code C’(DC’;t (n,q)) given by

CE(n,q) = Z <q_1A4i(n,q)(Bf(n7q) + (@241 qg))>

< 11 11 (qlAf(n, Q)(Bf(n,q) £ (¢ +1— qT))>7 (25)

Irl<2yq  K(AB-1)=r v
7=—1(mod 4)

where the sum is over all the sets of nonnegative integers {vg}gcr, satis-
fying > vg =13, and Y vsB=0.
BEF BEF,
The following corollary is just the n = 2 and n = 1 cases of (a) in the above.
COROLLARY 2.
(a) Forall q, and h=1,2,...,

h—1

MKh — Z(_l)h+l+1 <};> (q2 + q)hflMKl 4 q173h(q . 1)7}1
1=0
min{q*(¢*—1),h} ‘ h (@ -1)—j
x > (—D)"HCT(2,9) > #S(h, )2 <q4(q2 1) - t>,

7=0 t=j
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+ g*a®-1) e + :
where {C7 (2, 9)}; o is the weight distribution of C(DCY (2, q)) given

ZZ(Z(J) _y <q2(q —1)(¢* +q+ 1)>
< TI <q2(q + 1V)B(q2 - 1)) 1 <q2(q - ?B(QQ + 1)>‘

tr (8-1)=0
Here the sum is over all the sets of nonnegative integers {vg}ger, satisfying

Y. vg=7j, and Y, vgB =0. In addition, S(h,t) is the Stirling number
BEF BEF,
of the second kind as defined in (19).

(b) For all g, and h =1,2,...,

tr (B H)=1

h—1

h
MK"= =% <z> (¢+ )" 'MK!
=0
min{q+1,h} h q+ 1— ] (26)
+ -1YC7.(1, t!S(h,t 2h—t< >
g ;; (~1)7Cry( mg; (hty2" (01

where {C7 (1, q)};’-ié is the weight distribution of C(DCY (n,q)) given by

ch(n,q):Z<1> 11 <2> (27)

Y07 e (=)= NP

Here the sum is over all the sets of nonnegative integers {vo }U{vg }er (5-1)=1

satisfying v + >, vg=jand >, veB=0.
tr (B—1)=1 tr(8-H)=1

2. O~ (2n,q)

For more details about the results of this section, one is referred to the paper
[13]. Throughout this paper, the following notations will be used:
q=2" (r € Zs),
F, = the finite field with ¢ elements,
Tr A = the trace of A for a square matrix A,
!B = the transpose of B for any matrix B.
Let 8~ be the nondegenerate quadratic form on the vector space Fg”“ of all
2n x 1 column vectors over [y, given by

2n n—1
0~ (Z :riei> = Tiln_14i + T,y + Ton_ 172 + T3, (28)
=1

=1
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where {e! =t [10...0],e? =t [01...0],...,e*" =' [0...01]} is the standard basis
of F2"*! and a is a fixed element in F, such that z*+z+a is irreducible over F,
or equivalently a € F,\O(F,), where O(F,) = {a? + a | « € F,} is a subgroup
of index 2 in the additive group " of F,.

Let d,(with a in the above paragraph), n denote respectively the 2 x 2 matrices

11 0 1
S P I

Then the group O~ (2n, q) of all isometries of (Fi”“, 0~) consists of all matrices

over F, given by:

A B e (A,B,C,D (n—1)x(n—1),
C D f e,f (n—1)x2,
g h i g,h 2x(n-1))

in GL(2n, q) satisfying the relations:

AC 4+ tgd.g s alternating,
t!BD +'hé,h is alternating,
tef + 0,1+ 0, is alternating,
YAD +'CB +'gnh = 1,_4,
PAf +'Ce+'gni =0,
'Bf +'De+"hni = 0.
Here an n x n matrix (a;;) is called alternating if
a;; = 0, for 1 <i<n,
Qij = —Qj; = Qjj, for1§z<j§n
P~ = P~ (2n,q) is the maximal parabolic subgroup of O~ (2n, q) defined by:

A 0 0 l,.1 B ‘thtini

P~ (2n,q) = 0 A7t o0 0 1,1 0
0 0 1 0 h 15
AeGL(n—1,q),
1€ 07(2,9), ,
‘B +thd,h is alternating
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where O~ (2, q) is the group of all isometries of (F2*!,0~) with
0~ (z1e' + x2€?) = 23 + 2179 + az3 (cf.(28)).

One can show that

o o =so-oll| ;| ]s0 @ (29)

2,q) = di + did dy; =1
SO ( ’q) { |: d2 dl + d2 :| ‘ 1 + 142 + a 2

B {|: dy ads :| ‘ dy + dob € ]Fq(b), with }
dy di+da Nr, v)/F, (d1 + d2b) = ’

where b € [Fy is a root of the irreducible polynomial 2?2+ z+a over F,. SO™(2,q)
is a subgroup of index 2 in O~ (2, ¢), and

1SO™(2,9)| = ¢+ 1, |07 (2,9)| =2(q + 1).

SO7(2,q) here is defined as the kernel of a certain epimorphism §~: O~ (2n, q)
— F3 (cf. [I3: (3.45)]).
The Bruhat decomposition of O~ (2n, ¢) with respect to P~ = P~ (2n,q) is

~(2n,q) HP o P, (30)
where
0 0 1, 0 0
0 1,1+ O 0 0
o, =| 1, 0 0 0 0 | €0 (2n,q).
0 0 0 1,1+ O
0 0 0 0 19

For each r, with 0 <7 <n —1, put
A ={we P (2n,q) | o w(o )™ € P™(2n, )}

As a disjoint union of right cosets of P~ = P~ (2n, q), the Bruhat decomposition
n (30) can be written as

0~ (2n,q) = HPU (A7\P7). (31)
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@~ (2n,q) is a subgroup of index 2 in P~ (2n, q), defined by:
A 0 0717[ 1.1 B ‘thtini

Q =Q (2n,q) = 0 tA=1 0 0 1,1 0
0o 0 i 0 h 1o
AeGL(n—1,q),

i€ SO~ (2,9),

tB 4+ thd,h is alternating

In fact, in view of (29), we have:

P~ (2n,9) = Q (2n,q) [[ rQ™ (21, 9),

with
1p-1 0 0 0
0 1., 00 _
0 0 11

For each r, with 0 <r <n — 1, we define
- ={weQ (2n,9) | oy w(o )™ € P7(2n,9)}
— {weQ (2nq) | oy woy) " € Q™ (2n,q)},
which is a subgroup of index 2 in A .

The decompositions in (30) and (31) can be modified so as to give:

n—1

~(2n,9) = HPJQ’ (ﬁ@arQ)H(L_[anrQ), (32)

0~ (2n,q) = HPUB\Q)

(33)

n—1 n—1
= ( ICEataty NII(TIpQ or (B\Q)).
r=0
The order of the general linear group GL(n,q) is given by

n—1 n

g =[] (¢" - H ¢ —1). (34)
=0 =1

For integers n,r with 0 < r < n, the g-binomial coefficients are defined as:
[, =[] =1/ -1).
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Then, for integers n,r with 0 < r < n, we have
n r(n—r) [n
g =TT,
In [I3], it is shown that
A7 | = 2(g + 1)grgn—1-pg" "D HR2rEn=sr=a)/z,
[P~ (2n,9)| = 2(q + 1)gp—1g"" VD2,
So, from (35)—(37), we get:
|47\ P™(2n,9)| = [B,\Q™ (2n,9)| = [*7Y], ¢/,
and
Q™ (2n,q)o, Q™ (2n,¢)| = [pQ™ (21, q)o, Q™ (2n, )|
= 1P~ (20,0)0; @ (2n,4)]

_ ;,p—<zn,q>uB;\Q-<2n,q>r
— ;|p*(2n,q)||A;\P*(2n7q)|

1 - -
= P~ (20,47 !

=(¢+1)q H ¢ —1) [, g
(cf. (34), (37), (38)). Let
DC{ (n,q) = Q (2n,q)o, Q™ (2n,q), for n=2,4,6,...,
DCy (n,q) = Q™ (2n,q)o, _,Q (2n,q), for n=2,4,6,...,
DC (n,q) = pQ~ (2n,q)o, Q™ (2n,q), for n=2,4,6,...,
DCY (n,q) = pQ~ (2n,q)o, _3Q~ (2n,q), for n=4,6,8,...,
DCy (n,q) =Q (2n,q)o,,_1Q (2n,q), for n=1,3,5,...,
DC5 (n,q) = Q (2n,q)o,_,Q (2n,q), for n=3,5,7,...,
DC5 (n,q) = pQ~ (2n,q)0,,_,Q (2n,q), for n=3,5,7,...,
DCy (n,q) = pQ~ (2n,q)o, _sQ (2n,q), for n=3,5,7,....
Then, from (39), we have

Nt (n,q) =
(cf. (1)-(16)).
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Unless otherwise stated, from now on, we will agree that anything related to
DC (n,q), DCY (n,q) and DCy (n,q) are defined for n = 2,4,6, ..., anything
related to DC (n, q) is defined forn = 4,6,8, ..., anything related to DCy (n, q)
is defined forn =1,3,5,..., and anything related to DC5 (n,q), DC5 (n,q), and
DCy (n,q) are defined forn =3,5,7,....

3. Exponential sums over double cosets of O~ (2n,2")

The following notations will be used throughout this paper:
tr(z) =z +a22+---+a%  the trace function F, — Fy,
Mz) = (—1) @ the canonical additive character of F,.
Then any nontrivial additive character ¢ of F, is given by ¢ (z) = A(ax), for
a unique a € F7.

*

7> the Kloosterman

For any nontrivial additive character ¢ of F, and a € F
sum Kqp,t,q)(¥;a) for GL(t, q) is defined as

Ker,g(¥;a) = Z w(Trw—FaTrw_l).
weGL(t,q)
Notice that, for t = 1, Kgp1,9)(%;a) denotes the Kloosterman sum K (¢; a).
For the Kloosterman sum K (v; a), we have the Weil bound (cf. [16])
|K(¥;a)| < 2V/q. (49)

In [11], it is shown that Kqp ¢ q)(¢; a) satisfies the following recursive relation:
for integers ¢ > 2, a € Fy,

Kar,g)(¥;a)
=" Kap-1,9 ;) K(;0) + ¢ 72" = DEKgr—2.q) (¢; ),

where we understand that Kgp,q)(%;a) = 1. From (51), in [TI] an explicit

(50)

expression of the Kloosterman sum for GL(¢, q) was derived.

PrOPOSITION 3. ([I2: Proposition 3.1]). Let ¢ be a nontrivial additive char-
acter of F,. Then

(a)
S w(Tri) = K(u:1), (51)

1€S0~(2,q)
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(b)
117,
> w(m«{o 1}2)26]4—1. (52)
€S0~ (2,q9)

PrOPOSITION 4. ([I3: Proposition 4.4]). Let ¢ be a nontrivial additive char-
acter of F,. For each positive integer r, let £, be the set of all r x r nonsingular

symmetric matrices over Fy. Then the b.(v) defined below is independent of 1),
and is equal to:

br=bp ()= > > 1(Trd,"hBh)

BeQ, peFy*?

r/2
qr(r+6)/4 IT (g%t —1), for r even, (53)
_ g=1
- . (r+1)/2
—q(r*Har=1)/4 [T (¢¥'-1), forr odd.
j=1

In Section 5 of [13], it is shown that the Gauss sum for O~ (2n, q), with ¢ a
nontrivial additive character of Fg, is given by:

Z Y(Trw) = i Z Y (Trw)

weO0~ (2n,q) =0 weP-0o; Q-

n—1 n—1
= Z Z P(Trw) +Z Z Y(Trw)  (cf.(32)),

=0 weQ-or Q- =0 wepQ-or Q-

with

> @(Trw) =[BA\QT| D ¥(Trwo,)
weQ oy Q- we™

_ q(n—l)(n+2)/2 Z 1/)<TI‘Z) (54)

1€S0~(2,q)
X |BAAQ ™ |q" ™ b, (V) Karn1—rg) (¥5 1),
Yo (Trw)=[BAQT| Y ¢(Trpuwo, )

wePQ-or Q7 weQ™
n—1)(n 1 1.
UL 1/;<Tr [ - ] z) (55)
1€S0~(2,q)
X |B;\Q7‘qr(nirig)bT(w)KGL(nflfr,q) (1/}7 1)
Here one uses (33) and the fact that p~lwp € Q= for all w € Q.
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Now, we see from (52)—(56) and (38) that, for each r with 0 <r <mn —1,

> (Trw) = ¢ DOFD2 (] K (43 1)K ne-rg) (V5 1)
weEQR "o, Q™

1.2 r/2 ;
—grar H <q2171 — 1), for r even, (56)
X =
. , (/2
qrnf4(7”+1) H (q2371 — 1), for r odd,
j=1

Z 1/)<TI‘U)) = (q + 1)q(n_1)(n+2)/2 [n;l]q KGL(n—l—T,q) (ﬂ’v 1)
weEPQ~ o Q7

R r/2 )
¢ ] (g% = 1), for r even,
X g=t
) R (r+1)/2 )
—q DT I (¢¥ 7 1), for 7 odd.
j=1
(57)

For our purposes, we need the following special cases of exponential sums in
(57) and (58). We state them separately as a theorem.

THEOREM 5. Let ¢ be any nontrivial additive character of Fq. Then, in the
notations of (1), (3), (5), (7), (9), (11), (13), and (15), we have

> (Trw) = +AF (n,q)K(y;1),  for i=1,3,
wGDCii(n,q)

. (Trw) = £(=1)A5 (n, @)K (1),

wEDC;t (n,q)

Y W(Trw) = +(=1)g A (n, ) Karz,q (1)
wGDCf(n,q)

= +(-1) A7 (n, q)(K(;1)* + ¢* — q)
(cf. (40)-(47), (51)).

PROPOSITION 6. ([9]) For n =2° (s € Z>o), and ¢ a nontrivial additive char-
acter of Fy,

K(¢;a") = K(1;a).
For the next corollary, we need a result of Carlitz.
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THEOREM 7. ([2]) For the canonical additive character A of Fy, and a € Fy,
Ky(Ma) = K(\a)? —q. (58)

The next corollary follows from Theorems 5 and 7, Proposition 6, and by
simple change of variables.

COROLLARY 8. Let A be the canonical additive character of Fy, and let a € F.
Then we have

Z AMaTrw) = £AE (n, q) K(\; a), for i=1,3, (59)
wGDCii(n,q)

Z MaTrw) = £(—1)AF (n, ) K (\; a)?
wEDCQi(n,q) (60)
= +(-1)A3 (n,9)(Ka2(X; a) + q),

Z AaTrw) = £(—1)A7 (n,q)(K(X\;a)* + ¢* — q)
weDCE (n,q) (61)
= £(-1)AT (n, q)(K2(\; @) + ¢%).

PRrROPOSITION 9. ([9]) Let X be the canonical additive character of Fy, m € Z~y,

B eF,. Then
m— >‘; -1 - m+1’ . )
5 Meai o) = { SR QD CUTE IR
(IE]F:; ) )

with the convention Ko(X\; 371) = X\(B71).
For any integer r with 0 <r <mn — 1, and each 8 € F,, we let
Ny v (B) = {w e Qo7 Q™ | Truw = B},
Noo-o-0-(B) = {w € pQ7 0, Q™ [ Trw = B}.

Then it is easy to see that

WNg-o7o-(B)=1Q7 07 Q71+ D_A-aB) D> AaTrw),  (63)

a€ly wEQ~ oy Q™
IN oo B)=1pQ 0, Q7|+ > A=aB) > MaTrw). (64)
a€lFy wEPQ o, Q~

Now, from (60)—(65) and (40)—(48), we have the following result.
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ProrosITION 10.

(a) Fori=1,3
Npos g (B) = a7 Af (n.0) B (n.q) £ 47 Af (n,q)
L p=0, (65)
x{q+l, (7)) =0,
—q+1, () =1,
(b)
NDC;(”’Q) (ﬁ) = q_lAQi(na Q)BQi(na Q) + (—1)q_1A2i(n,q)
y {qK(A;Bl) —q-1, B#0, (66)
¢ —q-1, B=0,
(c)
Npc (n,g)(B) = ¢ YAE(n,q)BE(n,q) £ (—1)¢ AL (n, q)
" {qK(A;Bl)—qZ—l, B#0, (67)
q3 - q2 - 15 5 =0.

COROLLARY 11.

(a) For all evenm > 2 and all g, Npct (n.a) (8) >0, for all 8 and i =1,2.
(b) For all even n > 4 and all g, NDC;’(n,q) (B) > 0, for all B; forn =2 and

all q,
¢ +q¢, =0,
Npet 2. (8) =9 2¢° +2¢°, tr(67") =0, (68)
0, tr (1) =1.

(c) For all even n > 4 and all q, NDCI(WI) (8) >0, for all B.
(d) For all odd n > 3 and all g, NDC;(n’q) (B) > 0, for all B; forn =1 and

all q,
L, 6 =0,
NDC;(Lq)(ﬁ) =<0, tr(871) =0, (69)
2, tr(B71)=1.

(e) For all oddn > 3 and all g, Npc=n q)(ﬁ) >0, for all B andi=2,3.
(f) For all oddn >5 and all q, orn =3 and all ¢ > 4, NDC;(n,q)<5> >0, for
all B; forn =3 and g =2,

(ﬁ) _ {(5)’76 = |pQ7(6,2)|,

p=0,
Npers2) =1 (70)
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Proof. All assertions except (f) are left to the reader.

(f) Let 8 = 0. Then NDO;(n,q)(O) > 0, for all odd n > 3 and all ¢, as one
can see from (68). Now, let 8 # 0. Then, by invoking the Weil bound in (50),
we have

Npc; (na(B)

(n—1)/2
>q AL (n, q){q4("_3)2(qn_2 -1 I @ -1)-(@+2¢° + 1)} (71)

j=1

Let n > 5. Then we see from (72) that, for all g,
Npe= g B = 0 A7 (0, 9){a(d® = 1) — (¢ +2¢* + 1)} > 0.
If n =3 and ¢ > 4, then, from (72), we have
Npo- 3.9(8) = ¢ A7 (3, ){(a = 1)(¢* = 1) = (¢ +2¢* + 1)} > 0.

On the other hand, if n = 3 and ¢ = 2, then we get the values in (71) directly
from (68). O

4. Construction of codes

Here we will construct eight infinite families of binary linear codes

C(DCY (n,q)) of length Ny (n,q),

C(DCY (n,q)) of length NF(n,q),

C(DCy (n,q)) of length N+(n, q) forn=2,4,6,... and all g;
C(DC (n,q)) of length N (n, q) for n = 4,6,8,... and all g;
C(DCy (n,q)) of length Ny (n,q) for n =1,3,5,... and all ¢;
C(DCy (n,q)) of length Ny (n,q),

C(DC5 (n,q)) of length Ny (n,q), C(DCy (n,q)) of length N, (n,q)

for n = 3,5,7,... and all ¢, respectively, associated with the double cosets
DCY (n,q), DC5(n.q), DCj(n.q), DC{(n,q), DCy(n,q), DCy(n,q),
DC5 (n,q), DCy (n,q) (cf. (40)—(48)).

Let g1, go, .. S INE () be fixed orderings of the elements in DC’ijE (n,q), for
i =1,2,3,4, by abuse of notations. Then we put

'Uii(n,q):(Trgl,TI'gQ,...,TI‘gNii(n’q)) G]FN (n7q), for 221,2
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The binary codes C(DCY (n,q)), C(DCy (n,q)), C(DCy (n,q)), C(DCF (n,q)),
C(DCy (n,q)),C(DCy (n,q)), C(DCy (n,q)),and C(DCy (n,q)) are defined as:
+
C(DCE(n,q)) = {ue ]Févi () | u-vF(n,q) = 0}, for i=1,2,3,4, (72)
+
where the dot denotes respectively the usual inner product in Fév i (ma)
fori=1,2,3,4.

The following theorem of Delsarte is well-known.
THEOREM 12. ([I8]) Let B be a linear code over F,. Then
(Blr,)™ = tr (BY).
In view of this theorem, the respective duals of the codes in (73) are given
by:
C(DCF (n,q))*
= {c(a) = cf(a;n,q) = (tr(aTrgr), ..., tr (aTrgNii(nyq))) |a€F,},

fori=1,2,3,4.
Let ]F2+, IF;; denote the additive groups of the fields 3, I, respectively. Then
we have the following exact sequence of groups:

(73)

0—Fy = F; — O(F,) =0,

where the first map is the inclusion and the second one is the Artin-Schreier
operator in characteristic two given by ©(z) = 2% + x. So

OF,) ={a’+a|acF}, and [F}:0(F,)] =2 (74)
THEOREM 13. ([9]) Let A be the canonical additive character of Fq, and let
B €F;,. Then

(a)
)DRPY ORI B R (75)
acF,—{0,1} a*ta
(b)
Z/\< ) p )z—K()\;B)—l, (76)
acF, a’+a+bd

if x> +x + b(b € F,) is irreducible over Fy, or equivalently if b € F, \ O(F,)
(cf. (75)).
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THEOREM 14.

(a) The map F, — C(DC; (n,q))* (a w ¢f(a)) (i = 1,2) is an Fa-linear
isomorphism for n > 2 even and all q.

(b) The map F, — C(DCy (n,q))* (a+ ¢ (a)) is an Fa-linear isomorphism
forn >4 even and all q, orn =2 and g > 8.

(c) The map F, — C(DC] (n,q))* (a = cf(a)) is an Fy-linear isomorphism
forn >4 even and all q.

(d) The map F, — C(DCy (n,q))* (a > ci (a)) is an Fa-linear isomorphism
forn >1 odd and all q.

(e) The map F, — C(DC; (n,q))* (a — c; (a)) (i = 2,3) is an Fy-linear
isomorphism for n > 3 odd and all q.

(f) The map Fy — C(DCy (n,q))* (a + ¢y (a)) is an Fo-linear isomorphism
forn >5 odd and all ¢, orn =3 and q > 4.

Proof. All maps are clearly Fs-linear and surjective. Let a be in the ker-
nel of map F, — C(DCy (n,q))* (a — ¢ (a)). Then tr(aTrg) = 0, for all
g € DC{(n,q). Since, by Corollary 12(a), Tr: DC} (n,q) — F, is surjec-
tive, tr (ac) = 0, for all &« € F,. This implies that a = 0, since otherwise
tr : F, — 3 would be the zero map. This shows (a). All the other assertions
can be handled in the same way, except for n = 2 and ¢ > 8 case of (b) and
n = 1 case of (d). Assume first that we are in the n = 2 and ¢ > 8 case
of (b). Let a be in the kernel of the map F, — C(DCj (2,9))* (a — ci (a)).
Then, by (69), tr(af) = 0, for all 3 € F};, with tr (57") = 0. Hilbert’s theo-
rem 90 says that tr(y) = 0 <= v = a? + a, for some a € F,, and hence

> Maeta) =q—2. If a#0, then, using (76) and the Weil bound (50),
acF,—{0,1}
we would have

-2= Y )\( “ )zK()\;a)—1§2\/q—1.

2
a4+«
a€F,—{0,1}

But this is impossible, since x > 21/z + 1, for > 8.

Assume next that we are in the n = 1 case of (d). Let a be in the kernel of the
map F, — C(DCy (1,9))*(a — ¢i (a)). Then, by (70), tr (af) = 0, for all 5 € F};
with tr (371) = 1. Let b € F,\O(F,). Then tr (y) =1 <= y=a%?+a+b, for
some a € Fy. As 22+ z + b is irreducible over Fy, a? +a+b # 0, for all a € Fy,

and hence tr ( =0, foralla e Fy. So > X(
ack,

a a .
a24atb) a24niy) = - Assume now
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that a # 0. Then, from (77) and (50),
g=-K(\a)—1<2/qg—1.

But this is impossible, since, > 2y/z — 1, for z > 2. O
Remark. One can show that the kernel of the maps F, — C(DCy (2,q))*
(a = c5 (a)), for ¢ = 2,4, and of the map Fy — C(DC; (3,2))* (a +— c; (a)) are

all equal to Fs.

5. Recursive formulas for power moments
of Kloosterman sums

Here we will be able to find, via Pless power moment identity, infinite families
of recursive formulas generating power moments of Kloosterman and 2-dimen-
sional Kloosterman sums over all F, (with three exceptions) in terms of the
frequencies of weights in C(DC?(n,q)), for + = 1,3 and C(DCZ-i (n,q)), for
i = 2,4, respectively.

THEOREM 15 (Pless power moment identity). ([I8]) Let B be an g-ary [n, k]

code, and let B; (resp. Bf) denote the number of codewords of weight © in B
(resp. in BL). Then, for h=0,1,2,...,

n min{n,h} h X
. ; _ _(n—
Sim = Y sty eshod @0 (001
=0 i=0 t=j

where S(h,t) is the Stirling number of the second kind defined in (19).

LEMMA 16. Let c(a) = (tr(Trgy),...,tr (Tr INE () € C(DCE(n, q))*L, for
a € ¥ andi=1,2,3,4. Then their Hamming weights are expressed as follows:

(a)

w(ei (a)) = AT (n,@){Bf (n.q) £ (-1)K(N\a)},  for i=13, (78)

A3 (n,q)(By (n,q) + K(X\;a)?)
(79)
A3 (n,@){B3 (n,q) + (¢ + Ka2(\;a))},

N =N =
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(c)
1
w(ci (@) = AT (m ){Bi (n,0) £ (¢* — ¢+ K(X0)*)} )
80
1
= 2A4i(na Q){Bt (n,9) £ (¢ + K2(X;a))}
(cf. (1)-(16))
Proof
| Vi)
w(ef (a)) = 5 Y. (= (=1l
j=1
1
= 2(J\Qi(n,q) - > MaTrw)) for i=1,2,34.
wGDCii(n,q)
Our results now follow from (48) and (59)—(62). O
N'i(nvq) N ] Q3
Let u = (ul,...,uNi(n’q)) e Fy' , for i = 1,2,3,4, with vg 1’s in the

coordinate places where Tr (g;) = /3, for each § € Fy. Then from the definition
of the codes C(DCE(n,q)) (cf. (73)) we see that u is a codeword with weight

jif and only if > wvg =jand ) wvgf =0 (an identity in F,;). As there are
BEF BEF,

11 (NDCi,i J”m(ﬂ)) many such codewords with weight j, we obtain the following
BEF, B
result.

PROPOSITION 17. Let {C’jE (n, Q)}N (1)

C(DCE(n,q)), fori=1,2,3,4. Then we have

e =3 IT (Yeerina™),

BEF,
for 0<j<NE(n,q), and i=1,2,3,4,

be the weight distribution of

(81)

where the sum is over all the sets of integers {vg}ger, (0 < v < Npo(, 1 (8)),
satisfying

Z vg = j, and Z v = 0. (82)

BEF, BEF,

CoROLLARY 18. Let {C;5(n, q)}N (m.9)

C’(DC’ii(n, q)), fori=1,2,3,4. Then we have

Cz:,t](na q) = Cii’N;t(n’q)_j(na q)7 fO'f' all j; with 0 S j S Nzi(nvq)

be the weight distribution of
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Proof. Under the replacements vg — N DCE (nyg) (B) — v, for each B € Fy, the

first equation in (82) is changed to N:*(n,q) — j, while the second one in there

and the summands in (81) are left unchanged. The second sum in (82) is left

unchanged, since Z Npet(n.q) (B)B = 0, as one can see by using the explicit
BEF o

expressions of N Ci; 2 (8) in (66)—(68). O
THEOREM 19. ([15]) Let ¢ = 2", with r > 2. Then the range R of K(\;a), as
a varies over 7, is given by:

R={reZ||r| <2yq 7=-1(mod4)}.
In addition, each value T € R is attained evactly H(1? — q) times, where H(d)

is the Kronecker class number of d.

The formulas appearing in the next theorem and stated in (18), (22), and (25)
follow by applying the formula in (81) to each C(DCii(n, q)), using the explicit
values of Npct(,, o (8) in (66)—(68), and taking Theorem 19 into consideration.

+
THEOREM 20. Let {C’ii’j(n, q)};.\[:"’o(n’Q) be the weight distribution of C(DCE(n, q)),
fori=1,2,3,4, and assume that q > 4, for C’(DC’ii (n,q)) (i =2,4). Then we
have
(a) Fori=1,3, and j=0,...,NX(n,q),
—1 A=E +
+ B q A7 (n,q)(B; (n,q) £1)
Ci,j(na q) = Z < Yo

1A% (n, B;—L n,q) £ 1
I <q i (n,q)(Bi"(n,q) £ (¢ + ))>

Vg

X
tr (B 1)=0
1 <q‘1A2t(n7 Q)(BE(n,q) £ (—q + 1))>

Vg

X
tr(8=1)=1
where the sum is over all the sets of nonnegative integers {vg}ger, satis-

fying > vg=j, and ) vgf =0.
BEF BEF,

(b) Forj=0,...,Nf(n,q),
Czi'(ny(J)_ Z< 1Ai n q)(B (n q)i(q+1_q2))>

o
—1 4% +
q Ay (n,q)(By (n,q) £ (¢ +1—q7))
< 1 11 ( v
ITI<2y/a  K\B~1)=1
7=—1 (mod 4)

)
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where the sum is over all the sets of nonnegative integers {vg}ger, satis-

fying > vg=j, and ) vgf =0.
BEF BEF,

(c) Forj=0,..., NE(n,q),

Cf,j(”vQ) = Z <q_1Ath(n7q)(Bit(nV,OQ) + (q2 +1— qS))>
“1AF(n,q)(BE(n,q) £ (> + 1 —qr
X H H <q ( Q)( ( VBQ) (q + q ))))

IT1<2y/q  K(XB71)=T
7=—1 (mod 4)

where the sum is over all the sets of nonnegative integers {vg}gcr, satis-

fying > vg=j, and Y vz =0.
BeF, feF,

From now on, we will assume that, for C(DC (n,q))*, n > 2 even and all
q; for C(DCY (n,q))*, n > 2 even and q > 4; for C(DC5 (n,q))*, either n > 4
even and all ¢, or n = 2,q > 8; for C(DC} (n,q))*, n > 4 even and q > 4;
for C(DCy (n,q))*, n > 1 odd and all g; for C(DCy (n,q))*, n > 3 odd and
q > 4; for C(DC5 (n,q))*, n > 3 odd and all g; for C(DCy (n,q))*, n > 3 odd
and ¢ > 4. Under these assumptions, each codeword in C(DC(n, q))* can be
written as cf(a), for i =1,2,3,4, and a unique a € F, (cf. Theorem 14, (74)).

Now, we apply the Pless power moment identity in (78) to C’(DC’ii(n, Q)"+,
for those values of n and ¢, in order to get the results in Theorem 1 (cf. (17),
(18), (20)—(25)) about recursive formulas.

The left hand side of that identity in (78) is equal to

aeIF(*I

with w(cE (a)) given by (78)(80). We have, for i = 1,3,

S wle @) = , AF(na)" 3 (BE(noq) £ (~DEKva)}

a€Fy a€lFy
. N . (83)
= Ao S0 () B0k
1=0
Similarly, we have
+ h __ 1Ai h i ill h Bi h*lMKQZ ]4
> wics (a) = oAz (n,9) pBIEY) ;| B2 (n,0) (84)

aEIF; =0
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M=

A0 S () (B0 £ 0 ML (85)

N
I
o

M=

() B )+ 2 - 0y

(86)

N
Il
<)

W

= A Y () (B o) )KL (8T

l

Il
<)

Note here that, in view of (59), obtaining power moments of 2-dimensional

Kloosterman sums is equivalent to getting even power moments of Kloosterman

sums. Also, one has to separate the term corresponding to [ = h in (83)—(87),
and notes dimg, C(DCE(n, q))*~ = r.
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