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ABSTRACT. The aim of the paper is to investigate the relationship among
NM V-algebras, commutative basic algebras and naBL-algebras (i.e., non-associa-
tive BL-algebras). First, we introduce the notion of strong NM V-algebra and
prove that
(1) a strong NM V-algebra is a residuated l-groupoid (i.e., a bounded integral
commutative residuated lattice-ordered groupoid);
(2) a residuated I-groupoid is commutative basic algebra if and only if it is a
strong NM V-algebra.
Secondly, we introduce the notion of NM V-filter and prove that a residuated
l-groupoid is a strong NM V-algebra (commutative basic algebra) if and only
if its every filter is an NMV-filter. Finally, we introduce the notion of weak
naBL-algebra, and show that any strong NM V-algebra (commutative basic alge-
bra) is weak naBL-algebra and give some counterexamples.
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1. Introduction and preliminaries

Various ordered algebraic structures (for example, M V-algebras, BL-algebras,
MTL-algebras or general residuated lattices) play an important role in the re-
search of fuzzy logic, quantum logic and rough set theory (see [18-22,[32-341[38]
39]). Recently, non-associative fuzzy logic structures have been studied in many
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papers (see ([1LBHIB,25H27.B85H37]). In particular, Chajda and Kiihr [I4] intro-
duced the notions of non-associative M V-algebra and NM V-implication algebra
(which is a dual form of non-associative M V-algebra). As a non-associative gen-
eralization of the Lukasiewicz logic, Botur and Halas [4] establish fuzzy logic
Lepa, and its algebraic counterpart are commutative basic algebras. Moreover,

Botur and Halas [5] investigate non-associative BL-logic and non-associative
BL-algebras (naBL-algebras).

In this paper we discuss the relationship among NM V-algebras, commutative
basic algebras and naBL-algebras.

Now, we recall some basic concepts and properties.

DEFINITION 1.1. ([I4]) An algebra (A;®,—,0) of type (2,1,0) is called a non-
associative MV -algebra or an NMV -algebra for short if it satisfies the identities

(1) rey=yom;
(2) 20 = z;

(3)

(4) :vEBl—lwherel——'O

(5) ~(rz@y) By =-(y D) S

(6) & (((-(zay) ey &2)@2) =1
(7) z@® (zdy) =1.

DEeFINITION 1.2. ([3,[I2]) A basic algebra is an algebra (A;@,—,0) of type
(2,1,0) satisfying the identities

(Al) 20 =u;

(A2) =z = x;

(A3) 2@ 1=1®2 =1 where 1 = =0;
(Ad) ~(-(m(zoy) oy ©2)®(rd2) =1
(A5) ~(~z@y) @y =—~(yDr) D

A basic algebra A is commutative if it satisfies the commutativity identity
rdy=ydT.
A basic algebra is an M V-algebra if it is commutative and associative.
Remark 1.

(1) Chajda and Kolarik [13] proved that (A3) is redundant.

(2) Let (A;®,-,0) be an NMV-algebra or a basic algebra. The relation <
defined by = < y iff - ® y = 1 is a partial order such that 0 and 1 are the
least and the greatest element. In case of basic algebras the poset (4;<) is a
bounded lattice where x Vy = =(-z @ y) @y and x Ay = =(—x V —y) are the
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supremum and the infimum of z,y. In case of NMV-algebras, x Vy (z Ay) is a

common upper (lower) bound of z,y.

DEeFINITION 1.3. ([21)3536]) A residuated [-groupoid (or non-associative resid-
uated lattice, i.e., bounded integral residuated lattice-ordered groupoid) is an

algebra (L; A, V,®,—,0,1) such that

(i) (L;A,V,0,1) is a bounded lattice with the top element 1 and the bottom

element 0;
(ii) (L;®,1) is a commutative groupoid with unit 1;

(i) r@y <ziff y <z — z for all z,y,z € L.

For a residuated I-groupoid (note that it is bounded integral commutative in

this paper), we will use the notation -z for z — 0.

LeEmMA 1.1. ([35,36]) Let (L; A, V,®,—,0,1) be a residuated I-groupoid. Then,

forall x,y,z € L:

(1) z—oy=max{zeLl|z®z<y};
TSy yYT;

1l—-x=ux;
ify<zthenr®y<r® z;
ify<zthenx - y<x— 2z
r® x =0,

ife<ytheny = z2<x—2;
if v <y then -y < —x;
r<yiffc >y=1;

DEFINITION 1.4. ([36]) Let L be a residuated I-groupoid.

nonempty subset of L, which satisfies:

A filter F is a
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(1) 1€ F;

(2) For any z,y € L, if z,x — y € F, then y € F}

(3) Forany z,y € L, (2 ®y)®F =2 ® (y®F), where a@ F = {a® f | f € F'}

for any a € L.

ProrosiTION 1.1. ([36]) Let (L; A, V,®,—,0,1) be a residuated I-groupoid and
0 #£ F C L. Then F is a filter of L if and only if F satisfies:

(1) Foranyz,y€ F, z®y € F;

(2) Foranyx € F, ifx <y, theny € F;

(3) Foranyz,ye€ L, (zy)F =z (yo F).
THEOREM 1.2. ([36]) Let L be a residuated l-groupoid, F a filter of L. Then

(1) Ve,y,z€ L, z—(y—z2)elF — zQy—z€F;

(2) Ve,y,z€ L, zQy—2€F — z— (y—2)€F;

(3) Ve,y,z€ L, z—yel = (y—2z2)— (x—2)€F;

(4) Vx,y,z€ L, z—yelF = (z—2z)—>(z—y)eF.
THEOREM 1.3. ([36]) Let L be a residuated I-groupoid, F a filter of L. Define
the relation ~p on L as follows:

x~py <= (r—>yeF & y—axel).

Then ~p is a congruence relation on L and in the quotient residuated l-groupoid

L/ ~p one has [z]p < [y|r if and only if x — y € F.

DEFINITION 1.5. ([5]) Non-associative BL-algebras (more briefly naBL-alge-
bras) are the members of the subvariety of the variety of residuated l-groupoids
which is generated by its linearly ordered members and which satisfies divisibility
axiom

R (r =y =zANy.

We denote x Ly if zVy = 1. For any nonempty subset M of L, let M+ =
{z € L|xzLly for all y € M}. Moreover,

a2(z):=(a®b) »a® (b ), Bi(x):=b— (a — (a®b) @)
THEOREM 1.4. ([5]) Let V be a subvariety of the variety of residuated l-groupoids.
Then the following conditions are equivalent:
(1) V is generated by its linearly ordered elements.
(2) Subdirectly irreducible algebras in 'V are linearly ordered.
(3) For any A€V and any M C A the set M~ is filter.
(4) The quasi-identities v Ly = xlab(y), vly = x18%(y) hold in V.
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THEOREM 1.5. ([5]) A residuated I-groupoid is an naBL-algebra if and only if
it satisfies divisibility and the following identities:

(z—=y)vally—z)=1 (o — prelinearity).
(x—=y)VBiy > 2)=1 (B — prelinearity).

DEFINITION 1.6. ([36]) Let L be a residuated I-groupoid. A filter F' of L is
called a Boolean filter if x V -2 € F for all x € L.

Obviously, if F' C G are two filters of L and F' is Boolean, then G is a Boolean
filter. In [34], we prove that, for associative residuated lattice L, F' is a Boolean
filter of L if and only if quotient residuated lattice L/~p is a Boolean algebra.

THEOREM 1.6. ([30]) Let L be a residuated I-groupoid and F a filter of L. Then
the following statements are equivalent:

(1) F is a Boolean filter;
(2) forany z,y,z€ L,z — (-nz—y)EF,y— z€F impliesx — z € F;
(3) forany z,y € L, (x = y) = x € F implies x € F.

2. Strong NMYV -algebras

DEFINITION 2.1. An NM V-algebra is called strong NM V-algebra, if it satisfies:
(SNMV) 2@ (y @ 2) = 1 if and only if (z ®y) @ 2z = 1 for all z, v, 2.

In an NMV-algebra (A;®,—,0), for any =,y € A, denote x — y = "z D y.
Then, the condition (SNMV) can be written

(SNMV) =z — (-y — z) = 1 if and only if =(-2x — y) — z =1 for all z,y, z.
It is easy to prove that:

PROPOSITION 2.1. A strong NMV-algebra is an MV-algebra if and only if it
satisfies the identity

(x—=y)—((z—=2x)—=(z—y) =1

Ezxample 1. Let the operations @ and — on the set X = {0, a, b, ¢, d, 1} be defined
by Table 1 and Table 2. Then (X;®,—,0) is an NMV-algebra, but it is not a
strong NMV-algebra since a @ (d®d) =1#a= (a®d) ® d.

Ezxample 2. Let the operations @ and — on the set X = {0, a, b, ¢, d, 1} be defined
by Table 3 and Table 4. Then (X;®, -, 0) is a strong NM V-algebra.
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TABLE 1. TABLE 2.
@ 0 a b ¢ d 1 r
0 0 a b ¢ d 1 0 1
a a 1 1 1 a 1 a ¢
b b1 1 b 1 1 b d
c ¢ 1 b a b 1 c a
d d a 1 b a 1 d b
1 11 1 1 1 1 1 0

TABLE 3. TABLE 4.
@ 0 a b ¢ d 1 r
0 0 a b ¢ d 1 0 1
a a b ¢ d 1 1 a d
b b ¢c d 1 1 1 b ¢
c ¢c d 1 1 1 1 c b
d d 1 1 1 1 1 d a
1 11 1 1 1 1 1 0

By [14: Theorem 14] and its proof we can get:

PROPOSITION 2.2. Let (A;®,,0) be an NMV -algebra. Define 1 := =0 and

Then, for any x,y,z € A, T=yi=Trdy.

(1) 2 —z=1.
(2)
B)r—1=1,1sz=zand0—z=1.
4) =y —2y=@H—az) >
B5)z—=(y—0)=y— (z—0).
(6) «
(7)

6) 2= ((z —y) =y = 2)=2)=1

N ((z—=y) =y —y=z—y.

8) z—(y—=x)=1.
THEOREM 2.3. Let (A;®,-,0) be an NMV -algebra. Define 1 := =0 and for
any x,y € A,

rTRY = ﬁ(x—>ﬁy),
r<y <= x—y=1,
zVyi=(x—y) =y zAy:=-((-z—=-y) = ).
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Then (A; A\, V,®,—,0,1) is a residuated l-groupoid if and only if (A;®,—,0) is
a strong NMV-algebra.

Proof. It is proved in [14] that in any NMV-algebra < is a partial order such
that Vy = (x — y) — y is an upper bound of x, y and = A y is a lower bound.
Suppose that (A;@,—,0) is a strong N MV-algebra.
(i) Assume a is an upper bound of = and y, i.e., z < a,y < a. Then, by
Proposition 2.2 (4) we have

(rt—=y) —y<(a—y) —sy=Hy—a)—sa=1—-a=a.
Thus, (x — y) — y is the supremum of z and y. That is, zVy = (z — y) — v.
Similarly,
Ve,ye A, zAy=-((-z— —y) — —y)
is the infimum of = and y.
Hence, (A4;A,V,0,1) is a bounded lattice.
(ii) By the definition of ® and Proposition 2.2 (5) we have

TRY=yYQ .

Thus, (A;®, 1) is a commutative groupoid with unit 1.
(iii) By Definition 2.1 (SNMV) we have for all z,y,z € A

r<y—z <= < Yhz <= P (ydz)=1
= (@) ®z=1 = ((z@w)Bz=1
= (2w <z <= zRy<=z
Therefore, by (i), (ii) and (iii), (4; A, V,®,—,0,1) is a residuated l-groupoid.

Conversely, suppose that (A4; A, V, ®,—,0,1) is a residuated I-groupoid. Then
the law of residuation holds in A, i.e.,

rQyY<z <= y<zr—z for all z,y,z € A.
Then, for any x,y,z € A,
= (y—=z)=1<= <y = (rRy) <z
= (x—oy <z <= (r—oy —>z=1
By Definition 2.1, (A4;®,—,0) is a strong NMV-algebra. O

By [4t Proposition 3] we can get:

PROPOSITION 2.4. Let (A;®,,0) be a commutative basic algebra. Define 1 :=
=0 and for any x,y € A,

rT—Yy: =Dy,
1@y = (7w ® ),
Ty <= zdy=1.
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Then, for any x,y € A,
(1) -z =2 — 0.

9) =y V=) =1
Therefore, (A; A\, V,®,—,0,1) is a residuated l-groupoid with conditions (7), (8)
and (9).
THEOREM 2.5. Let (A;®,—,0) be a commutative basic algebra. Then (A;®,—,0)
s a strong NMV-algebra.

Proof. For any x,y in A, define
r—y:="TDy,
7@y = (@ ),
r<y < axdy=1, where 1 := 0.

First, we prove that (A; @, —,0) is an NMV-algebra. Comparing Definition 1.1
and 1.2, it suffices to show that the identities (6) and (7) of Definition 1.1 are
satisfied. But by Propersition 2.4, (4; A, V,®, —, 0, 1) is a residuated l-groupoid,
hence x < y — x, which is (7). Moreover, by Lemma 1.1 (9), 2 < (z = y) = y
< (((x = y) = y) = z) — z, which is (6). Thus a commutative basic algebra is
an NMV -algebra.

Now, applying Theorem 2.3, (A; @, —,0) is a strong NMV -algebra. O
THEOREM 2.6. Let (A;®,—,0) be a strong NMV-algebra. Then (A;®,—,0) is
a commutative basic algebra.

Proof.
(1) Obviously, the conditions (A1)-(A3) and (A5) in Definition 1.2 hold in A.
(2) Since (4;A,V,®,—,0,1) is a residuated I-groupoid by Theorem 2.3, we
have
(rx—=y) >y = 2z< -z, by Lemma 1.1(9) and (11).

Thus, (mz —y) 2> y) =2 2) = (- — z) = 1. That is, =(=(~(z®y) Dy) ® 2)
@ (z @ z) = 1. This means that the condition (A4) in Definition 1.2 holds in A.
Hence, (A;®,—,0) is a commutative basic algebra. O
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Remark 2. From Theorem 2.5 and Theorem 2.6 we know that strong NMV-al-
gebra and commutative basic algebra are equivalent. Therefore, above results
obtain a characteristic property of commutative basic algebras.

3. NMYV -filters in non-associative residuated lattices

The notion of NMV-implication algebra is introduced in [14], which corre-
sponds to NMV -algebra.

DEFINITION 3.1. ([I4]) An NMV-implication algebra is an algebra (A;—,0,1)
of type (2,0,0) that satisfies the following identities:

(NI1) z—=1=1,1—w2=zand 0 >z =1.
NI2) (z—=y) —y=(y—2x)— =
(NI3) z—=(y—0)=y— (z—0).
(NH4) z— ((x—y) =y —2)—2z) =1
(NI5) ((z—=y) —y Dy=x—y.

THEOREM 3.1. ([14]) Let (A;®,-,0) be an NMV-algebra. If we define z — y
= —x @y, then (4;—,0,1) is an NMV-implication algebra, where 1 := —0.

Conversely, if (A;—,0,1) is an NMV-implication algebra and if we put x @y
= (z —0) >y and -z :=x — 0, then (A;®,—,0) is an NMV-algebra.

Remark 3. In what follows, we will not distinguish NMYV-algebras and
NMV-implication algebras and we will say that (4; —,0, 1) is an NMV-algebra.

LEMMA 3.1. Let (L; A\, V,®,—,0,1) be a residuated l-groupoid. Then (L;—,0,1)
is a strong NMV-algebra if and only if it satisfies the identities

€1) =y —sy=Wy—z) —u

(C2) (x—0)—=y=(y—0) —x.

Proof. Suppose that L satisfies (C1) and (C2).

For any z,y € L, by (C1), (x - 0) - 0=z, (y —» 0) = 0 =y. Thus, by
(C2), we have

r—(y—0)=((x—0)—=0)— (y—0)
=((y—=0)—0)—=(x—0)=y— (z—0).
Also, by Lemma 1.1 we have
r<(z—=y)=2y<(((z—=y) =y —=2) =z
That is, z = ((((z = y) = y) = 2z) = z) = 1. And, by (C1),
(z=y) =y —my=W—-@@-y) > @2y =1=(—-y =2y
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Therefore, by Definition 2.1, (L; —,0, 1) is a strong NMV-algebra.
Conversely, if (L;—,0,1) is a strong NMV-algebra, then it is easy to verify
that (C1) and (C2) hold. O

LEMMA 3.2. Let (L; A, V,®,—,0,1) be a residuated I-groupoid. Then (L;—,0,1)

is a strong NMV-algebra if and only if it satisfies (C2) and the identity

(@) (z=y)=2y=((r=y) =y 2z) >

Proof. Suppose that (L;—,0,1) is a strong NMV-algebra. Obviously, condi-

tion (C2) holds. Also, by Definition 3.1 (NI2) and (NI5), for any x,y,z € L,
=(y—z)—z=(r—>y) —v.

That is, condition (C3) holds.

Conversely, suppose that L satisfies the identities (C3) and (C2). For any
x,y € L, by Lemma 1.1 (11),

y<z—-y -y = —oa)mz<(((z—=y) —y) —x) >

Using condition (C3), (z = y) -y = (((x - y) = y) = =) — z. It follows that
(y = z) >z <(x—y)—y. Similarly, (r - y) -y < (y — z) — z. Hence,
(r = y) >y = (y = ) = x. This means that L satisfies condition (C1) and
(C2). By Lemma 3.1, (L;—,0,1) is a strong NMV-algebra. O

DEFINITION 3.2. Let (L; A, V,®,—,0, 1) be a residuated I-groupoid. A filter F'
of L is called an NMV -filter if

(NMVF1) 2 »ye F = (y—=z) > x)—>yecl.

(NMVF2) 2 = (~y = 2) e F = = — (—mz—y) € F.

THEOREM 3.2. Let (L;A,V,®,—,0,1) be a residuated l-groupoid. Then the
following statements are equivalent:
(1) (L;—,0,1) is a strong NMV-algebra.
(2) Ewery filter of L is an NMV-filter.
(3) {1} is an NMV-filter of L.
(4) For any filter F of L, the quotient algebra L/F is a strong N MYV -algebra.

Proof.
(1) = (2). Let F be a filter of L. For any z, y € L,
r=y<(z—=y =2y 2y=((y—2)=2) >y
By Proposition 1.1 (2) we have z -y € FF = ((y > ) > x) -y € F. That
is, (NMVF1) holds.
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Also, since =y — z = =z — y holds for any NMV-algebra, so z — (—y — z)
€F = z— (-z—y) € F. That is, (NMVF2) holds. By Definition 3.2, F' is
an NMV-filter.

(2) = (3). Obviously.

(3) = (1). Since {1} is a filter of L, then

Ve,ye L, z—=((x—y) —y =1€{l}
= ((z—=y) 2y —z)—=2) > (r—y) —y) {1}

That is,
(z—=y)—=y) wz) =< (z—y) =y

On the other hand, (x — y) -y < (((x = y) = y) — x) — x. Thus,
(z—=y)2y=((z—=y) =y —2z) >

This means that the condition (C3) in Lemma 3.2 holds for L.

Moreover, (—y — 2z) — (-y — z) = 1 € {1}, applying (NMVF2) we have
(-y = z) = (—z = y) € {1}, that is, (-y — 2) = (-z — y) = 1. Similarly, we
have (-2 — y) — (-y — z) = 1. Hence, -y — z = -z — y. This means that
the condition (C2) in Lemma 3.2 holds for L.

Therefore, by Lemma 3.2, (L; —,0, 1) is a strong NMV-algebra.

(2) = (4). We prove that the quotient algebra L/F is an strong NMV-al-
gebra for any NMV-filter F of L.

Let F be an N MV-filter of L, then the quotient algebra L/F is an N MV-al-
gebra. Now, we prove that L/F is strong.

For any z,y € L, since ((zx - y) - y) = ((x - y) - y) =1¢€ F, by
(NMVF1) of Definition 3.2 we get

((z—=y)—=y)—x)—>2)—> ((r—y) >y €F
And, obviously,
(z=y)—=y)—((x—>y) =y —2)—z)=1cF

Thus, ([z] — [y]) — [y] = ((([z] = [y]) = [y]) — [z]) = [z], that is, the identity
(C3) holds in L/F.

Moreover, for any z,y € L, since (- — y) — (- = y) =1 € F, by
(NMVEF2) of Definition 3.2 we get (-2 — y) — (-y — x) € F. By the same way,
we have (—y — z) = (-z — y) € F. Thus, ([z] — [0]) — [y] = ([y] — [0]) — [=],
that is, the identity (C2) holds in L/F.

Therefore, by Lemma 3.2, L/F is a strong N M V-algebra.

(4) = (2). We prove that the filter F' is an N M V-filter for any strong
NMV-algebra L/F.
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Let L/F be a strong N MV-algebra, then for any z,y € L,

([z] = ly]) = ly] = ([y] = [2) = [2],
([z] = [0)) = [y] = (ly] = [0) = [2].
That is, for any =,y € L,
(P ((z =y) = y) = ((y > 2) > 2) € F,
(PQ) (—\:c—>y) — (—|y—>x) eF.

Now, let y — x € F, then by Lemma 1.1(9) and Proposition 1.1(2),
((y - ) - ) - = € F. And, by (P1) and Theorem 1.2(3), (((y — =z)
—x)—z) = (((rt =y) = y) —z) € F. Thus, ((x - y) - y) - x € F. This
means that (NMVF1) holds for F.

Moreover, let z — (-x — y) € F, then by (P2) and Theorem 1.2(4), (z —

(—x = y)) = (2 = (-y = x)) € F. Thus, 2 — (—y — z) € F.This means that
(NMVEF2) holds for F.

Therefore, by Definition 3.2, F' is an N M V-filter of L. (]
DEeFINITION 3.3. Let (L; A, V,®,—,0,1) be a residuated I-groupoid. A Boolean
filter F' of L is called to be strong, if it satisfies
(NMVF2) 2 = (~y > 2) e F = = — (—mz—y) € F.

By Theorem 1.2 and 1.6 we have (The proof is similar to that in [32t Propo-
sition 3.9(4)] and it is omitted.)

LEMMA 3.3. Let (L; A, V,®,—,0,1) be a residuated I-groupoid, F' Boolean filter
of L. Then
(NMVF1) 2 wye F = ((y—>x)—z)—>yerF.

THEOREM 3.3. Let (L;A,V,®,—,0,1) be a residuated l-groupoid, F strong
Boolean filter of L. Then F is an NMV-filter.

The inverse of Theorem 3.3 is not true. For example, in Example 2, {1} is an
NMYV -filter but not a Boolean filter.

THEOREM 3.4. Let (L;A,V,®,—,0,1) be a residuated l-groupoid. Then the
following statements are equivalent:

(1) (LyA,V,—,0,1) is a Boolean algebra.

(2) FEvery filter of L is a strong Boolean filter of L.

(3) {1} is a strong Boolean filter of L.

(4) For any filter F' of L, the quotient algebra L/F is a Boolean algebra.

Proof.
(1) = (2) and (2) = (3). Obviously.
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(3) = (1). By Theorem 3.3 and Theorem 3.2, (L;—,0,1) is a strong
NMYV-algebra. Applying Theorem 2.6, (L; P, —,0) is a commutative basic alge-
bra. By [0: Theorem 3.14], we know that (L; A, V,0, 1) is a bounded distributive
lattice.

By Definition 1.6 and {1} is a Boolean filter of L, x V =z =1 for any = € L.
Thus, x A -z = 0 (applying Lemma 1.1(18) and ——x = z).

Therefore, (L;A,V,—,0,1) is a bounded complemented distributive lattice,
that is, it is a Boolean algebra.

(2) = (4) and (4) = (2). It is similar to the proof of Theorem 3.2. [

Remark 4.

(1) The above results show that a quotient algebra L/F' is Boolean algebra
iff F'is a strong Boolean filter for any residuated [-groupoid L.

(2) Obviously, if a residuated [-groupoid (L; A, V, ®,—,0, 1) satisfy the iden-
tity —x — y = -y — « (for examples, all strong N M V-algebras), then its any
Boolean filter is strong. By Theorem 3.4, in this kind of residuated [-groupoid,
a quotient algebra L/F is Boolean algebra iff F' is a Boolean filter. Is it true for
all residuated [-groupoid? This is an open problem.

4. Weak non-associative BL-algebras

DEFINITION 4.1. Let (L; A, V,®, —,0,1) be a residuated [-groupoid. L is called
to be a weak non-associative BL-algebra (for short, weak naBL-algebra), if it
satisfies

(W1) 2 ® (z — y) = Ay (divisibility).
(W2) (x = y)V (y = x) =1 (prelinearity).

Obviously, every naBL-algebra is a weak naBL-algebra. The following exam-
ple shows that there is weak naBL-algebra which is not an naBL-algebra.

Ezample 3. Let X be the set {0, a,b,c,d, e, 1} with operations defined by Table[H]
and Table [6] and order < by Figure [l Then (X;A,V,—,®,0,1) is a weak
naBL-algebra. But (X;A,V,—,®,0,1) is not an naBL-algebra, since

(b—=a)Vaia—=b=0b—=a)V(a®a) »a®(a®(a—0b))) =a#1.
(a—=b)Vpb—a)=(a—=bVe—=(b—(b®a)®(b—a))=>0#1.

Ezample 4. Let X be the set {0,a,b, ¢, d, e, 1} with the order as in Figure 1 and
operations defined by Table [7l and Table 8 Then (X;A,V,—,®,0,1) is a weak
naBL-algebra such that (z — y) vV 82(y — z) = 1. But (X;A,V,—,®,0,1) is
not an naBL-algebra, since (b — a) V al(a — b) = a # 1.
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TABLE 6.

TABLE 5.

0
0 000 0 O0O0O

@

c

— 0 a b

a

c d d e

a

0

€

01 b b ¢

a

c
d

c d d e

0 d
d 0 d d d d

c

€

0 a b c

1

d

FIGURE 1.

TABLE 8.

TABLE 7.

0
0 0000 0 OO

@

c

— 0 a b

1

1 b b d e

0

c
d

c d d e
d 0 d d d d

c

e

Ezample 5. Let X be the set {0,a,b,¢c,d,e,1} with the order as in Figure 1

and operations defined by Table @ and Table[I0l Then (X;A,V,—,®,0,1) is an

naBL-algebra.
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TABLE 9. TABLE 10.

- 0 a b ¢c d e 1 ® 0 a b ¢ d e 1
0o 11 1 1 1 11 0 0 00 0 0 0 O
a 0 1 b b d e 1 a 0 a ¢ ¢ d e a
b 0 a 1 a d e 1 b 0 ¢c b ¢ d e b
c 01 1 1 d e 1 c 0 ¢c ¢c ¢ d e c
d 01 1 1 1 d 1 d 0 d d d e e d

e 1 1 1 1 1 1 0 e e e 0 e
00 a b c d e 1 00 a b c d e 1

By Proposition 2.4, Theorem 2.5 and Theorem 2.6 we have:

THEOREM 4.1. Every commutative basic algebra (strong NMV-algebra) is a weak
naBL-algebra.

In Example 5, (¢ »e) = e=1%#c= (e - ¢) - ¢, X is not a com-
mutative basic algebra (strong NMV-algebra). This means that the inverse of
Theorem 4.1 is not true. Moreover, an naBL-algebra with linear order need not
be a commutative basic algebra (strong NMV-algebra), for example,

Ezample 6. Let X be the set {0, a, b, c,d, 1} with operations defined by Table [TT]
and Table [2] and the order 0 < a < b < ¢ < d < 1: Then (X;A,V,—,®,0,1)
is an naBL-algebra, but it is not an NMV-algebra since (b — a) — a #
(a —b) —b.

TABLE 11. TABLE 12.
— 0 a b ¢ d 1 ® 0 a b ¢ d 1
0 11 1 1 1 1 0 0 00O 0O
a 0 1 1 1 1 1 a 0 a a a a a
b 0 a 1 1 1 1 b 0 a b b b b
c 0 a ¢ 1 1 1 c 0 a b b ¢ ¢
d 0 a b d 1 1 d 0 a b ¢ ¢ d
1 0 a b ¢ d 1 1 0 a b c 1

The connections between NMV -algebras, commutative basic algebras and
weak naBL-algebras can be illustrated by Figure 2l

Remark 5. By [4 Proposition 5] and Theorem 1.4 (or [7: Lemma 5]) we know
that a-prelinearity and [S-prelinearity conditions are hold in every commutative
basic algebra. Therefore, every commutative basic algebra (strong NMV-alge-
bra) is a naBL-algebra.
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naBl-algebra

NMTVdalgebra

Strong NA/I-algebra

( Commutative
Basic Algebra)

Weak naBl-algebra

Non-associative Residuated Lattices

FIGURE 2.

5. Conclusions

In this paper, we investigate the relationship among NMV -algebras, commu-
tative basic algebras and non-associative BL-algebras, some new notions (strong
NMYV-algebra, NMV-filter and weakly naBL-algebra) are introduced, and some
important results are obtained, for examples, we present that:

(1)
(2)

3)
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there exists an NMV-algebra which is not a commutative basic algebra
(see Example 1 and Theorem 2.6);

an NMV -algebra is a residuated I-groupoid if and only if it is strong (see
Theorem 2.3); an NMV-algebra is a commutative basic algebra if and only
if it is strong (see Theorem 2.5 and 2.6);

a residuated [l-groupoid is a strong NMV-algebra (or commutative basic
algebra) if and only if its every filter is an NMV -filter if and only if its
every quotient algebra is strong (see Theorem 3.2);

a residuated [-groupoid to be a Boolean algebra if and only if its every
filter is a strong Boolean filter if and only if its every quotient algebra is
Boolean (see Theorem 3.4);

for residuated [-groupoids, the a-prelinearity and (S-prelinearity are inde-
pendent axioms (see Example 4);

every strong NMV-algebra (or commutative basic algebra) is weak
naBL-algebra, but the inverse is not true (see Theorem 4.1 and
Example 5).
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