
�
�

DOI: 10.2478/s12175-013-0126-1

Math. Slovaca 63 (2013), No. 4, 661–678

STRONG NMV-ALGEBRAS,

COMMUTATIVE BASIC ALGEBRAS

AND NABL-ALGEBRAS

Xiaohong Zhang

(Communicated by Jiř́ı Rach̊unek )

ABSTRACT. The aim of the paper is to investigate the relationship among
NMV-algebras, commutative basic algebras and naBL-algebras (i.e., non-associa-

tive BL-algebras). First, we introduce the notion of strong NMV-algebra and
prove that
(1) a strong NMV-algebra is a residuated l-groupoid (i.e., a bounded integral

commutative residuated lattice-ordered groupoid);
(2) a residuated l-groupoid is commutative basic algebra if and only if it is a

strong NMV-algebra.

Secondly, we introduce the notion of NMV-filter and prove that a residuated
l-groupoid is a strong NMV-algebra (commutative basic algebra) if and only
if its every filter is an NMV-filter. Finally, we introduce the notion of weak
naBL-algebra, and show that any strong NMV-algebra (commutative basic alge-
bra) is weak naBL-algebra and give some counterexamples.
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1. Introduction and preliminaries

Various ordered algebraic structures (for example, MV-algebras, BL-algebras,
MTL-algebras or general residuated lattices) play an important role in the re-
search of fuzzy logic, quantum logic and rough set theory (see [18–22,32–34,38,
39]). Recently, non-associative fuzzy logic structures have been studied in many
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papers (see ([1, 3–15, 25–27, 35–37]). In particular, Chajda and Kühr [14] intro-
duced the notions of non-associative MV-algebra and NMV-implication algebra
(which is a dual form of non-associative MV-algebra). As a non-associative gen-
eralization of the �Lukasiewicz logic, Botur and Halaš [4] establish fuzzy logic
LCBA, and its algebraic counterpart are commutative basic algebras. Moreover,
Botur and Halaš [5] investigate non-associative BL-logic and non-associative
BL-algebras (naBL-algebras).

In this paper we discuss the relationship among NMV-algebras, commutative
basic algebras and naBL-algebras.

Now, we recall some basic concepts and properties.

���������� 1.1� ([14]) An algebra (A;⊕,¬, 0) of type (2, 1, 0) is called a non-
associative MV -algebra or an NMV -algebra for short if it satisfies the identities

(1) x⊕ y = y ⊕ x;

(2) x⊕ 0 = x;

(3) ¬¬x = x;

(4) x⊕ 1 = 1 where 1 = ¬0;

(5) ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x;

(6) ¬x⊕ (¬(¬(¬(¬x⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1;

(7) ¬x⊕ (x⊕ y) = 1.

���������� 1.2� ([3, 12]) A basic algebra is an algebra (A;⊕,¬, 0) of type
(2, 1, 0) satisfying the identities

(A1) x⊕ 0 = x;

(A2) ¬¬x = x;

(A3) x⊕ 1 = 1 ⊕ x = 1 where 1 = ¬0;

(A4) ¬(¬(¬(x⊕ y) ⊕ y) ⊕ z) ⊕ (x⊕ z) = 1;

(A5) ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

A basic algebra A is commutative if it satisfies the commutativity identity

x⊕ y = y ⊕ x.

A basic algebra is an MV-algebra if it is commutative and associative.

Remark 1�

(1) Chajda and Kolarik [13] proved that (A3) is redundant.

(2) Let (A;⊕,¬, 0) be an NMV -algebra or a basic algebra. The relation ≤
defined by x ≤ y iff ¬x ⊕ y = 1 is a partial order such that 0 and 1 are the
least and the greatest element. In case of basic algebras the poset (A;≤) is a
bounded lattice where x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y) are the

662



STRONG NMV-ALGEBRAS, COMMUTATIVE BASIC ALGEBRAS AND NABL-ALGEBRAS

supremum and the infimum of x, y. In case of NMV -algebras, x ∨ y (x ∧ y) is a
common upper (lower) bound of x, y.

���������� 1.3� ([21,35,36]) A residuated l -groupoid (or non-associative resid-
uated lattice, i.e., bounded integral residuated lattice-ordered groupoid) is an
algebra (L;∧,∨,⊗,→, 0, 1) such that

(i) (L;∧,∨, 0, 1) is a bounded lattice with the top element 1 and the bottom
element 0;

(ii) (L;⊗, 1) is a commutative groupoid with unit 1;

(iii) x⊗ y ≤ z iff y ≤ x → z for all x, y, z ∈ L.

For a residuated l -groupoid (note that it is bounded integral commutative in
this paper), we will use the notation ¬x for x → 0.

��		
 1.1� ([35,36]) Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid. Then,
for all x, y, z ∈ L:

(1) x → y = max{z ∈ L | x⊗ z ≤ y};
(2) x ≤ y → y ⊗ x;

(3) x⊗ (x → y) ≤ y;

(4) 1 → x = x;

(5) if y ≤ z then x⊗ y ≤ x⊗ z;

(6) if y ≤ z then x → y ≤ x → z;

(7) x⊗ ¬x = 0;

(8) x ≤ y → z iff y ≤ x → z;

(9) x ≤ (x → y) → y;

(10) x ≤ ¬¬x;
(11) if x ≤ y then y → z ≤ x → z;

(12) if x ≤ y then ¬y ≤ ¬x;
(13) x ≤ y iff x → y = 1;

(14) x⊗ y ≤ x ∧ y;

(15) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z);

(16) (x ∨ y) → z = (x → z) ∧ (y → z),

(17) x → (y ∧ z) = (x → y) ∧ (x → z),

(18) ¬(x ∨ y) = ¬x ∧ ¬y.
���������� 1.4� ([36]) Let L be a residuated l -groupoid. A filter F is a
nonempty subset of L, which satisfies:
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(1) 1 ∈ F ;

(2) For any x, y ∈ L, if x, x → y ∈ F , then y ∈ F ;

(3) For any x, y ∈ L, (x⊗y)⊗F = x⊗ (y⊗F ), where a⊗F = {a⊗f | f ∈ F}
for any a ∈ L.

���
������� 1.1� ([36]) Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid and
∅ 	= F ⊆ L. Then F is a filter of L if and only if F satisfies:

(1) For any x, y ∈ F , x⊗ y ∈ F ;

(2) For any x ∈ F , if x ≤ y, then y ∈ F ;

(3) For any x, y ∈ L, (x⊗ y) ⊗ F = x⊗ (y ⊗ F ).

������	 1.2� ([36]) Let L be a residuated l-groupoid, F a filter of L. Then

(1) ∀x, y, z ∈ L, x → (y → z) ∈ F =⇒ x⊗ y → z ∈ F ;

(2) ∀x, y, z ∈ L, x⊗ y → z ∈ F =⇒ x → (y → z) ∈ F ;

(3) ∀x, y, z ∈ L, x → y ∈ F =⇒ (y → z) → (x → z) ∈ F ;

(4) ∀x, y, z ∈ L, x → y ∈ F =⇒ (z → x) → (z → y) ∈ F .

������	 1.3� ([36]) Let L be a residuated l-groupoid, F a filter of L. Define
the relation ∼F on L as follows:

x ∼F y ⇐⇒ (x → y ∈ F & y → x ∈ F ).

Then ∼F is a congruence relation on L and in the quotient residuated l-groupoid
L/ ∼F one has [x]F ≤ [y]F if and only if x → y ∈ F .

���������� 1.5� ([5]) Non-associative BL-algebras (more briefly naBL-alge-
bras) are the members of the subvariety of the variety of residuated l -groupoids
which is generated by its linearly ordered members and which satisfies divisibility
axiom

x⊗ (x → y) = x ∧ y.

We denote x⊥y if x ∨ y = 1. For any nonempty subset M of L, let M⊥ =
{x ∈ L | x⊥y for all y ∈ M}. Moreover,

αb
a(x) := (a⊗ b) → a⊗ (b⊗ x), βb

a(x) := b → (a → (a⊗ b) ⊗ x).

������	 1.4� ([5]) Let V be a subvariety of the variety of residuated l-groupoids.
Then the following conditions are equivalent:

(1) V is generated by its linearly ordered elements.

(2) Subdirectly irreducible algebras in V are linearly ordered.

(3) For any A ∈ V and any M ⊆ A the set M⊥ is filter.

(4) The quasi-identities x⊥y =⇒ x⊥αb
a(y), x⊥y =⇒ x⊥βb

a(y) hold in V .
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������	 1.5� ([5]) A residuated l-groupoid is an naBL-algebra if and only if
it satisfies divisibility and the following identities:

(x → y) ∨ αb
a(y → x) = 1 (α− prelinearity).

(x → y) ∨ βb
a(y → x) = 1 (β − prelinearity).

���������� 1.6� ([36]) Let L be a residuated l -groupoid. A filter F of L is
called a Boolean filter if x ∨ ¬x ∈ F for all x ∈ L.

Obviously, if F ⊆ G are two filters of L and F is Boolean, then G is a Boolean
filter. In [34], we prove that, for associative residuated lattice L, F is a Boolean
filter of L if and only if quotient residuated lattice L/∼F is a Boolean algebra.

������	 1.6� ([36]) Let L be a residuated l-groupoid and F a filter of L. Then
the following statements are equivalent:

(1) F is a Boolean filter;

(2) for any x, y, z ∈ L, x → (¬z → y) ∈ F , y → z ∈ F implies x → z ∈ F ;

(3) for any x, y ∈ L, (x → y) → x ∈ F implies x ∈ F .

2. Strong NMV -algebras

���������� 2.1� An NMV-algebra is called strong NMV-algebra, if it satisfies:

(SNMV) x⊕ (y ⊕ z) = 1 if and only if (x⊕ y) ⊕ z = 1 for all x, y, z.

In an NMV-algebra (A;⊕,¬, 0), for any x, y ∈ A, denote x → y = ¬x ⊕ y.
Then, the condition (SNMV) can be written

(SNMV) ¬x → (¬y → z) = 1 if and only if ¬(¬x → y) → z = 1 for all x, y, z.

It is easy to prove that:

���
������� 2.1� A strong NMV-algebra is an MV-algebra if and only if it
satisfies the identity

(x → y) → ((z → x) → (z → y)) = 1.

Example 1. Let the operations ⊕ and ¬ on the set X = {0, a, b, c, d, 1} be defined
by Table 1 and Table 2. Then (X;⊕,¬, 0) is an NMV-algebra, but it is not a
strong NMV-algebra since a⊕ (d⊕ d) = 1 	= a = (a⊕ d) ⊕ d.

Example 2. Let the operations ⊕ and ¬ on the set X = {0, a, b, c, d, 1} be defined
by Table 3 and Table 4. Then (X;⊕,¬, 0) is a strong NMV-algebra.
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Table 1.

⊕ 0 a b c d 1

0 0 a b c d 1

a a 1 1 1 a 1

b b 1 1 b 1 1

c c 1 b a b 1

d d a 1 b a 1

1 1 1 1 1 1 1

Table 2.

x ¬x
0 1

a c

b d

c a

d b

1 0

Table 3.

⊕ 0 a b c d 1

0 0 a b c d 1

a a b c d 1 1

b b c d 1 1 1

c c d 1 1 1 1

d d 1 1 1 1 1

1 1 1 1 1 1 1

Table 4.

x ¬x
0 1

a d

b c

c b

d a

1 0

By [14: Theorem 14] and its proof we can get:

���
������� 2.2� Let (A;⊕,¬, 0) be an NMV -algebra. Define 1 := ¬0 and

x → y := ¬x⊕ y.Then, for any x, y, z ∈ A,

(1) x → x = 1.

(2) x → 0 = ¬x.
(3) x → 1 = 1, 1 → x = x and 0 → x = 1.

(4) (x → y) → y = (y → x) → x.

(5) x → (y → 0) = y → (x → 0).

(6) x → ((((x → y) → y) → z) → z) = 1.

(7) ((x → y) → y) → y = x → y.

(8) x → (y → x) = 1.

������	 2.3� Let (A;⊕,¬, 0) be an NMV -algebra. Define 1 := ¬0 and for
any x, y ∈ A,

x⊗ y := ¬(x → ¬y),

x ≤ y ⇐⇒ x → y = 1,

x ∨ y := (x → y) → y, x ∧ y := ¬((¬x → ¬y) → ¬y).
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Then (A;∧,∨,⊗,→, 0, 1) is a residuated l-groupoid if and only if (A;⊕,¬, 0) is
a strong NMV-algebra.

P r o o f. It is proved in [14] that in any NMV -algebra ≤ is a partial order such
that x∨ y = (x → y) → y is an upper bound of x, y and x∧ y is a lower bound.

Suppose that (A;⊕,¬, 0) is a strong NMV -algebra.

(i) Assume a is an upper bound of x and y, i.e., x ≤ a, y ≤ a. Then, by
Proposition 2.2 (4) we have

(x → y) → y ≤ (a → y) → y = (y → a) → a = 1 → a = a.

Thus, (x → y) → y is the supremum of x and y. That is, x ∨ y = (x → y) → y.

Similarly,
∀x, y ∈ A, x ∧ y = ¬((¬x → ¬y) → ¬y)

is the infimum of x and y.

Hence, (A;∧,∨, 0, 1) is a bounded lattice.

(ii) By the definition of ⊗ and Proposition 2.2 (5) we have

x⊗ y = y ⊗ x.

Thus, (A;⊗, 1) is a commutative groupoid with unit 1.

(iii) By Definition 2.1 (SNMV) we have for all x, y, z ∈ A

x ≤ y → z ⇐⇒ x ≤ ¬y ⊕ z ⇐⇒ ¬x⊕ (¬y ⊕ z) = 1

⇐⇒ (¬x⊕ ¬y) ⊕ z = 1 ⇐⇒ ¬(¬(¬x⊕ ¬y)) ⊕ z = 1

⇐⇒ ¬(¬x⊕ ¬y) ≤ z ⇐⇒ x⊗ y ≤ z.

Therefore, by (i), (ii) and (iii), (A;∧,∨,⊗,→, 0, 1) is a residuated l -groupoid.

Conversely, suppose that (A;∧,∨,⊗,→, 0, 1) is a residuated l -groupoid. Then
the law of residuation holds in A, i.e.,

x⊗ y ≤ z ⇐⇒ y ≤ x → z for all x, y, z ∈ A.

Then, for any x, y, z ∈ A,

¬x → (¬y → z) = 1 ⇐⇒ ¬x ≤ ¬y → z ⇐⇒ (¬x⊗ ¬y) ≤ z

⇐⇒ ¬(¬x → y) ≤ z ⇐⇒ ¬(¬x → y) → z = 1.

By Definition 2.1, (A;⊕,¬, 0) is a strong NMV -algebra. �

By [4: Proposition 3] we can get:

���
������� 2.4� Let (A;⊕,¬, 0) be a commutative basic algebra. Define 1 :=
¬0 and for any x, y ∈ A,

x → y := ¬x⊕ y,

x⊗ y := ¬(¬x⊕ ¬y),

x ≤ y ⇐⇒ ¬x⊕ y = 1.
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Then, for any x, y ∈ A,

(1) ¬x = x → 0.

(2) x ∨ y = ¬(¬x⊕ y) ⊕ y, x ∧ y = ¬(¬x ∨ ¬y).

(3) x⊗ y = y ⊗ x.

(4) x⊗ 1 = 1 ⊗ x = x.

(5) x⊗ y ≤ z ⇐⇒ y ≤ x → z.

(6) x → ¬y = y → ¬x.
(7) (x → y) → y = (y → x) → x.

(8) x⊗ (x → y) = x ∧ y.

(9) (x → y) ∨ (y → x) = 1.

Therefore, (A;∧,∨,⊗,→, 0, 1) is a residuated l-groupoid with conditions (7), (8)
and (9).

������	 2.5� Let (A;⊕,¬, 0) be a commutative basic algebra. Then (A;⊕,¬, 0)
is a strong NMV-algebra.

P r o o f. For any x, y in A, define

x → y := ¬x⊕ y,

x⊗ y := ¬(¬x⊕ ¬y),

x ≤ y ⇐⇒ ¬x⊕ y = 1, where 1 := ¬0.

First, we prove that (A;⊕,¬, 0) is an NMV -algebra. Comparing Definition 1.1
and 1.2, it suffices to show that the identities (6) and (7) of Definition 1.1 are
satisfied. But by Propersition 2.4, (A;∧,∨,⊗,→, 0, 1) is a residuated l -groupoid,
hence x ≤ y → x, which is (7). Moreover, by Lemma 1.1 (9), x ≤ (x → y) → y
≤ (((x → y) → y) → z) → z, which is (6). Thus a commutative basic algebra is
an NMV -algebra.

Now, applying Theorem 2.3, (A;⊕,¬, 0) is a strong NMV -algebra. �
������	 2.6� Let (A;⊕,¬, 0) be a strong NMV-algebra. Then (A;⊕,¬, 0) is
a commutative basic algebra.

P r o o f.

(1) Obviously, the conditions (A1)–(A3) and (A5) in Definition 1.2 hold in A.

(2) Since (A;∧,∨,⊗,→, 0, 1) is a residuated l -groupoid by Theorem 2.3, we
have

((¬x → y) → y) → z ≤ ¬x → z, by Lemma 1.1(9) and (11).

Thus, (((¬x → y) → y) → z) → (¬x → z) = 1. That is, ¬(¬(¬(x⊕ y) ⊕ y) ⊕ z)
⊕ (x⊕ z) = 1. This means that the condition (A4) in Definition 1.2 holds in A.
Hence, (A;⊕,¬, 0) is a commutative basic algebra. �
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Remark 2� From Theorem 2.5 and Theorem 2.6 we know that strong NMV-al-
gebra and commutative basic algebra are equivalent. Therefore, above results
obtain a characteristic property of commutative basic algebras.

3. NMV -filters in non-associative residuated lattices

The notion of NMV -implication algebra is introduced in [14], which corre-
sponds to NMV -algebra.

���������� 3.1� ([14]) An NMV-implication algebra is an algebra (A;→, 0, 1)
of type (2, 0, 0) that satisfies the following identities:

(NI1) x → 1 = 1, 1 → x = x and 0 → x = 1.

(NI2) (x → y) → y = (y → x) → x.

(NI3) x → (y → 0) = y → (x → 0).

(NI4) x → ((((x → y) → y) → z) → z) = 1.

(NI5) ((x → y) → y) → y = x → y.

������	 3.1� ([14]) Let (A;⊕,¬, 0) be an NMV-algebra. If we define x → y
:= ¬x⊕ y, then (A;→, 0, 1) is an NMV-implication algebra, where 1 := ¬0.

Conversely, if (A;→, 0, 1) is an NMV-implication algebra and if we put x⊕ y
:= (x → 0) → y and ¬x := x → 0, then (A;⊕,¬, 0) is an NMV-algebra.

Remark 3� In what follows, we will not distinguish NMV -algebras and
NMV -implication algebras and we will say that (A;→, 0, 1) is an NMV -algebra.

��		
 3.1� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid. Then (L;→, 0, 1)
is a strong NMV-algebra if and only if it satisfies the identities

(C1) (x → y) → y = (y → x) → x,

(C2) (x → 0) → y = (y → 0) → x.

P r o o f. Suppose that L satisfies (C1) and (C2).

For any x, y ∈ L, by (C1), (x → 0) → 0 = x, (y → 0) → 0 = y. Thus, by
(C2), we have

x → (y → 0) = ((x → 0) → 0) → (y → 0)

= ((y → 0) → 0) → (x → 0) = y → (x → 0).

Also, by Lemma 1.1 we have

x ≤ (x → y) → y ≤ (((x → y) → y) → z) → z,

That is, x → ((((x → y) → y) → z) → z) = 1. And, by (C1),

((x → y) → y) → y = (y → (x → y)) → (x → y) = 1 → (x → y) = x → y.
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Therefore, by Definition 2.1, (L;→, 0, 1) is a strong NMV -algebra.

Conversely, if (L;→, 0, 1) is a strong NMV -algebra, then it is easy to verify
that (C1) and (C2) hold. �

��		
 3.2� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid. Then (L;→, 0, 1)
is a strong NMV-algebra if and only if it satisfies (C2) and the identity

(C3) (x → y) → y = (((x → y) → y) → x) → x.

P r o o f. Suppose that (L;→, 0, 1) is a strong NMV -algebra. Obviously, condi-
tion (C2) holds. Also, by Definition 3.1 (NI2) and (NI5), for any x, y, z ∈ L,

(((x → y) → y) → x) → x = (((y → x) → x) → x) → x

= (y → x) → x = (x → y) → y.

That is, condition (C3) holds.

Conversely, suppose that L satisfies the identities (C3) and (C2). For any
x, y ∈ L, by Lemma 1.1 (11),

y ≤ (x → y) → y =⇒ (y → x) → x ≤ (((x → y) → y) → x) → x.

Using condition (C3), (x → y) → y = (((x → y) → y) → x) → x. It follows that
(y → x) → x ≤ (x → y) → y. Similarly, (x → y) → y ≤ (y → x) → x. Hence,
(x → y) → y = (y → x) → x. This means that L satisfies condition (C1) and
(C2). By Lemma 3.1, (L;→, 0, 1) is a strong NMV -algebra. �

���������� 3.2� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l -groupoid. A filter F
of L is called an NMV -filter if

(NMVF1) x → y ∈ F =⇒ ((y → x) → x) → y ∈ F .

(NMVF2) x → (¬y → z) ∈ F =⇒ x → (¬z → y) ∈ F .

������	 3.2� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid. Then the
following statements are equivalent:

(1) (L;→, 0, 1) is a strong NMV-algebra.

(2) Every filter of L is an NMV-filter.

(3) {1} is an NMV-filter of L.

(4) For any filter F of L, the quotient algebra L/F is a strong NMV -algebra.

P r o o f.

(1) =⇒ (2). Let F be a filter of L. For any x, y ∈ L,

x → y ≤ ((x → y) → y) → y = ((y → x) → x) → y.

By Proposition 1.1 (2) we have x → y ∈ F =⇒ ((y → x) → x) → y ∈ F . That
is, (NMVF1) holds.
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Also, since ¬y → z = ¬z → y holds for any NMV -algebra, so x → (¬y → z)
∈ F =⇒ x → (¬z → y) ∈ F . That is, (NMVF2) holds. By Definition 3.2, F is
an NMV -filter.

(2) =⇒ (3). Obviously.

(3) =⇒ (1). Since {1} is a filter of L, then

∀x, y ∈ L, x → ((x → y) → y) = 1 ∈ {1}
=⇒ ((((x → y) → y) → x) → x) → ((x → y) → y) ∈ {1}.

That is,

(((x → y) → y) → x) → x ≤ (x → y) → y.

On the other hand, (x → y) → y ≤ (((x → y) → y) → x) → x. Thus,

(x → y) → y = (((x → y) → y) → x) → x.

This means that the condition (C3) in Lemma 3.2 holds for L.

Moreover, (¬y → z) → (¬y → z) = 1 ∈ {1}, applying (NMVF2) we have
(¬y → z) → (¬z → y) ∈ {1}, that is, (¬y → z) → (¬z → y) = 1. Similarly, we
have (¬z → y) → (¬y → z) = 1. Hence, ¬y → z = ¬z → y. This means that
the condition (C2) in Lemma 3.2 holds for L.

Therefore, by Lemma 3.2, (L;→, 0, 1) is a strong NMV -algebra.

(2) =⇒ (4). We prove that the quotient algebra L/F is an strong NMV -al-
gebra for any NMV -filter F of L.

Let F be an NMV -filter of L, then the quotient algebra L/F is an NMV -al-
gebra. Now, we prove that L/F is strong.

For any x, y ∈ L, since ((x → y) → y) → ((x → y) → y) = 1 ∈ F , by
(NMVF1) of Definition 3.2 we get

((((x → y) → y) → x) → x) → ((x → y) → y) ∈ F.

And, obviously,

((x → y) → y) → ((((x → y) → y) → x) → x) = 1 ∈ F.

Thus, ([x] → [y]) → [y] = ((([x] → [y]) → [y]) → [x]) → [x], that is, the identity
(C3) holds in L/F .

Moreover, for any x, y ∈ L, since (¬x → y) → (¬x → y) = 1 ∈ F , by
(NMVF2) of Definition 3.2 we get (¬x → y) → (¬y → x) ∈ F . By the same way,
we have (¬y → x) → (¬x → y) ∈ F . Thus, ([x] → [0]) → [y] = ([y] → [0]) → [x],
that is, the identity (C2) holds in L/F .

Therefore, by Lemma 3.2, L/F is a strong NMV -algebra.

(4) =⇒ (2). We prove that the filter F is an NMV -filter for any strong
NMV -algebra L/F .
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Let L/F be a strong NMV -algebra, then for any x, y ∈ L,

([x] → [y]) → [y] = ([y] → [x]) → [x],

([x] → [0]) → [y] = ([y] → [0]) → [x].

That is, for any x, y ∈ L,

(P1) ((x → y) → y) → ((y → x) → x) ∈ F ,

(P2) (¬x → y) → (¬y → x) ∈ F .

Now, let y → x ∈ F , then by Lemma 1.1(9) and Proposition 1.1(2),
((y → x) → x) → x ∈ F . And, by (P1) and Theorem 1.2(3), (((y → x)
→ x) → x) → (((x → y) → y) → x) ∈ F . Thus, ((x → y) → y) → x ∈ F . This
means that (NMVF1) holds for F .

Moreover, let z → (¬x → y) ∈ F , then by (P2) and Theorem 1.2(4), (z →
(¬x → y)) → (z → (¬y → x)) ∈ F . Thus, z → (¬y → x) ∈ F .This means that
(NMVF2) holds for F .

Therefore, by Definition 3.2, F is an NMV -filter of L. �

���������� 3.3� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l -groupoid. A Boolean
filter F of L is called to be strong, if it satisfies

(NMVF2) x → (¬y → z) ∈ F =⇒ x → (¬z → y) ∈ F .

By Theorem 1.2 and 1.6 we have (The proof is similar to that in [32: Propo-
sition 3.9(4)] and it is omitted.)

��		
 3.3� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid, F Boolean filter
of L. Then

(NMVF1) x → y ∈ F =⇒ ((y → x) → x) → y ∈ F .

������	 3.3� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid, F strong
Boolean filter of L. Then F is an NMV-filter.

The inverse of Theorem 3.3 is not true. For example, in Example 2, {1} is an
NMV -filter but not a Boolean filter.

������	 3.4� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l-groupoid. Then the
following statements are equivalent:

(1) (L;∧,∨,¬, 0, 1) is a Boolean algebra.

(2) Every filter of L is a strong Boolean filter of L.

(3) {1} is a strong Boolean filter of L.

(4) For any filter F of L, the quotient algebra L/F is a Boolean algebra.

P r o o f.

(1) =⇒ (2) and (2) =⇒ (3). Obviously.
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(3) =⇒ (1). By Theorem 3.3 and Theorem 3.2, (L;→, 0, 1) is a strong
NMV -algebra. Applying Theorem 2.6, (L;⊕,¬, 0) is a commutative basic alge-
bra. By [9: Theorem 3.14], we know that (L;∧,∨, 0, 1) is a bounded distributive
lattice.

By Definition 1.6 and {1} is a Boolean filter of L, x ∨ ¬x = 1 for any x ∈ L.
Thus, x ∧ ¬x = 0 (applying Lemma 1.1(18) and ¬¬x = x).

Therefore, (L;∧,∨,¬, 0, 1) is a bounded complemented distributive lattice,
that is, it is a Boolean algebra.

(2) =⇒ (4) and (4) =⇒ (2). It is similar to the proof of Theorem 3.2. �

Remark 4�

(1) The above results show that a quotient algebra L/F is Boolean algebra
iff F is a strong Boolean filter for any residuated l -groupoid L.

(2) Obviously, if a residuated l -groupoid (L;∧,∨,⊗,→, 0, 1) satisfy the iden-
tity ¬x → y = ¬y → x (for examples, all strong NMV -algebras), then its any
Boolean filter is strong. By Theorem 3.4, in this kind of residuated l -groupoid,
a quotient algebra L/F is Boolean algebra iff F is a Boolean filter. Is it true for
all residuated l -groupoid? This is an open problem.

4. Weak non-associative BL-algebras

���������� 4.1� Let (L;∧,∨,⊗,→, 0, 1) be a residuated l -groupoid. L is called
to be a weak non-associative BL-algebra (for short, weak naBL-algebra), if it
satisfies

(W1) x⊗ (x → y) = x ∧ y (divisibility).

(W2) (x → y) ∨ (y → x) = 1 (prelinearity).

Obviously, every naBL-algebra is a weak naBL-algebra. The following exam-
ple shows that there is weak naBL-algebra which is not an naBL-algebra.

Example 3. Let X be the set {0, a, b, c, d, e, 1} with operations defined by Table 5
and Table 6 and order ≤ by Figure 1. Then (X;∧,∨,→,⊗, 0, 1) is a weak
naBL-algebra. But (X;∧,∨,→,⊗, 0, 1) is not an naBL-algebra, since

(b → a) ∨ αa
a(a → b) = (b → a) ∨ ((a⊗ a) → a⊗ (a⊗ (a → b))) = a 	= 1.

(a → b) ∨ βa
b (b → a) = (a → b) ∨ (a → (b → (b⊗ a) ⊗ (b → a))) = b 	= 1.

Example 4. Let X be the set {0, a, b, c, d, e, 1} with the order as in Figure 1 and
operations defined by Table 7 and Table 8. Then (X;∧,∨,→,⊗, 0, 1) is a weak
naBL-algebra such that (x → y) ∨ βb

a(y → x) = 1. But (X;∧,∨,→,⊗, 0, 1) is
not an naBL-algebra, since (b → a) ∨ αa

c (a → b) = a 	= 1.
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Table 5.

→ 0 a b c d e 1

0 1 1 1 1 1 1 1

a 0 1 b b c e 1

b 0 a 1 a d e 1

c 0 1 1 1 a e 1

d 0 1 1 1 1 e 1

e e 1 1 1 1 1 1

1 0 a b c d e 1

Table 6.

⊗ 0 a b c d e 1

0 0 0 0 0 0 0 0

a 0 a c d d e a

b 0 c b c d e b

c 0 d c d d e c

d 0 d d d d e d

e 0 e e e e 0 e

1 0 a b c d e 1

Figure 1.

Table 7.

→ 0 a b c d e 1

0 1 1 1 1 1 1 1

a 0 1 b b d e 1

b 0 a 1 a d e 1

c 0 1 1 1 c e 1

d 0 1 1 1 1 e 1

e e 1 1 1 1 1 1

1 0 a b c d e 1

Table 8.

⊗ 0 a b c d e 1

0 0 0 0 0 0 0 0

a 0 a c c d e a

b 0 c b c d e b

c 0 c c d d e c

d 0 d d d d e d

e 0 e e e e 0 e

1 0 a b c d e 1

Example 5. Let X be the set {0, a, b, c, d, e, 1} with the order as in Figure 1
and operations defined by Table 9 and Table 10. Then (X;∧,∨,→,⊗, 0, 1) is an
naBL-algebra.
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Table 9.

→ 0 a b c d e 1

0 1 1 1 1 1 1 1

a 0 1 b b d e 1

b 0 a 1 a d e 1

c 0 1 1 1 d e 1

d 0 1 1 1 1 d 1

e e 1 1 1 1 1 1

1 0 a b c d e 1

Table 10.

⊗ 0 a b c d e 1

0 0 0 0 0 0 0 0

a 0 a c c d e a

b 0 c b c d e b

c 0 c c c d e c

d 0 d d d e e d

e 0 e e e e 0 e

1 0 a b c d e 1

By Proposition 2.4, Theorem 2.5 and Theorem 2.6 we have:

������	 4.1� Every commutative basic algebra (strong NMV-algebra) is a weak
naBL-algebra.

In Example 5, (c → e) → e = 1 	= c = (e → c) → c, X is not a com-
mutative basic algebra (strong NMV -algebra). This means that the inverse of
Theorem 4.1 is not true. Moreover, an naBL-algebra with linear order need not
be a commutative basic algebra (strong NMV -algebra), for example,

Example 6. Let X be the set {0, a, b, c, d, 1} with operations defined by Table 11
and Table 12, and the order 0 < a < b < c < d < 1: Then (X;∧,∨,→,⊗, 0, 1)
is an naBL-algebra, but it is not an NMV -algebra since (b → a) → a 	=
(a → b) → b.

Table 11.

→ 0 a b c d 1

0 1 1 1 1 1 1

a 0 1 1 1 1 1

b 0 a 1 1 1 1

c 0 a c 1 1 1

d 0 a b d 1 1

1 0 a b c d 1

Table 12.

⊗ 0 a b c d 1

0 0 0 0 0 0 0

a 0 a a a a a

b 0 a b b b b

c 0 a b b c c

d 0 a b c c d

1 0 a b c d 1

The connections between NMV -algebras, commutative basic algebras and
weak naBL-algebras can be illustrated by Figure 2.

Remark 5� By [4: Proposition 5] and Theorem 1.4 (or [7: Lemma 5]) we know
that α-prelinearity and β-prelinearity conditions are hold in every commutative
basic algebra. Therefore, every commutative basic algebra (strong NMV -alge-
bra) is a naBL-algebra.
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Figure 2.

5. Conclusions

In this paper, we investigate the relationship among NMV -algebras, commu-
tative basic algebras and non-associative BL-algebras, some new notions (strong
NMV -algebra, NMV -filter and weakly naBL-algebra) are introduced, and some
important results are obtained, for examples, we present that:

(1) there exists an NMV -algebra which is not a commutative basic algebra
(see Example 1 and Theorem 2.6);

(2) an NMV -algebra is a residuated l -groupoid if and only if it is strong (see
Theorem 2.3); an NMV -algebra is a commutative basic algebra if and only
if it is strong (see Theorem 2.5 and 2.6);

(3) a residuated l -groupoid is a strong NMV -algebra (or commutative basic
algebra) if and only if its every filter is an NMV -filter if and only if its
every quotient algebra is strong (see Theorem 3.2);

(4) a residuated l -groupoid to be a Boolean algebra if and only if its every
filter is a strong Boolean filter if and only if its every quotient algebra is
Boolean (see Theorem 3.4);

(5) for residuated l -groupoids, the α-prelinearity and β-prelinearity are inde-
pendent axioms (see Example 4);

(6) every strong NMV -algebra (or commutative basic algebra) is weak
naBL-algebra, but the inverse is not true (see Theorem 4.1 and
Example 5).
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[9] CHAJDA, I.—HALAŠ, R.: An example of commutative basic algebra which is not an
MV-algebra, Math. Slovaca 60 (2010), 171–178.

[10] CHAJDA, I.: A characterization of commutative basic algebras, Math. Bohem. 134
(2009), 113–120.
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