

DOI: 10.2478/s12175-012-0100-3 Math. Slovaca **63** (2013), No. 2, 321–330

ON (STRONG) α -FAVORABILITY OF THE VIETORIS HYPERSPACE

Leszek Piątkiewicz — László Zsilinszky

(Communicated by Ľubica Holá)

ABSTRACT. For a normal space X, α (i.e. the nonempty player) having a winning strategy (resp. winning tactic) in the strong Choquet game Ch(X) played on X is equivalent to α having a winning strategy (resp. winning tactic) in the strong Choquet game played on the hyperspace CL(X) of nonempty closed subsets endowed with the Vietoris topology τ_V . It is shown that for a non-normal X where α has a winning strategy (resp. winning tactic) in Ch(X), α may or may not have a winning strategy (resp. winning tactic) in the strong Choquet game played on the Vietoris hyperspace. If X is quasi-regular, then having a winning strategy (resp. winning tactic) for α in the Banach-Mazur game BM(X) played on X is sufficient for α having a winning strategy (resp. winning tactic) in $BM(CL(X), \tau_V)$, but not necessary, not even for a separable metric X. In the absence of quasi-regularity of a space X where α has a winning strategy in BM(X), α may or may not have a winning strategy in the Banach-Mazur game played on the Vietoris hyperspace.

©2013 Mathematical Institute Slovak Academy of Sciences

1. Introduction

Various completeness properties of the *Vietoris* topology τ_V on the hyperspace CL(X) of nonempty closed subsets of a T_1 space X are well-established. For example, the strongest completeness properties of compactness, resp. complete metrizability of CL(X) are characterized through compactness, resp. metrizable compactness of X [Mi]. On the other end, for the weakest completeness property of Baireness, it is known that Baireness of X is necessary, and in case, say, of 2nd countable X, also sufficient for Baireness of $(CL(X), \tau_V)$ (see [Mc],

2010 Mathematics Subject Classification: Primary 54B20; Secondary 54E52. Keywords: Vietoris topology, Banach-Mazur game, strong Choquet game, (strongly) (weakly) α -favorable space, Baire space, Tychonoff plank, Bernstein set.

and more recently [CT]). Motivated by the fact that these, and other completeness properties can be viewed through various topological games, in particular the so-called Banach-Mazur and strong Choquet game, respectively, we study the effect of these two games on the hyperspace from the nonempty player's (i.e. α 's) point of view (see section 3 for definitions, and basic results about these games). It is worth mentioning, that similar questions have been recently investigated for other hypertopologies, e.g. the so-called *Wijsman topology* in [CJ], [Zs], [PZ]

2. Preliminaries

Given a T_1 topological space X, denote by CL(X) the set of all nonempty closed subsets of X. For any $S \subseteq X$ put

$$S^- = \big\{ A \in CL(X): \ A \cap S \neq \emptyset \big\} \qquad \text{and} \qquad S^+ = \big\{ A \in CL(X): \ A \subseteq S \big\}.$$

The Vietoris topology [Mi] τ_V on CL(X) has subbase elements of the form U^- and U^+ , where $\emptyset \neq U \subseteq X$ is open; thus, a base \mathcal{B}_V for $(CL(X), \tau_V)$ consists of the sets

$$\langle U_0, \dots, U_n \rangle = \bigcap_{i \le n} U_i^- \cap \Big(\bigcup_{i \le n} U_i\Big)^+,$$

where U_0, \ldots, U_n are nonempty open subsets of X, $n < \omega$; we will also use the notation $\langle \mathcal{U} \rangle$ where $\mathcal{U} = \{U_0, \ldots, U_n\}$. If X is Hausdorff and we require the U_i 's to be pairwise disjoint, we get a π -base \mathcal{P}_V for τ_V .

The next result is well-known (cf. [Mi: Lemma 2.3.1]):

Lemma 2.1. The following are equivalent:

- (i) $\langle U_0, \dots, U_m \rangle \subseteq \langle V_0, \dots, V_n \rangle$;
- (ii) $\bigcup_{i \le m} U_i \subseteq \bigcup_{j \le n} V_j$ and $\forall j \le n \ \exists i \le m : U_i \subseteq V_j$.

3. Topological games

Let X be a topological space, and \mathcal{P} a fixed π -base for X. The Banach-Mazur game BM(X) is played as follows: players β , and α alternate in choosing elements of \mathcal{P} , with β choosing first, so that

$$B_0 \supset A_0 \supset B_1 \supset A_1 \supset \cdots \supset B_n \supset A_n \supset \cdots$$

Then $B_0, A_0, \ldots, B_n, A_n, \ldots$ is a play (or run) in BM(X), and α wins this play if

$$\bigcap_{n\in\omega}A_n\Big(=\bigcap_{n\in\omega}B_n\Big)\neq\emptyset,$$

otherwise, β wins. A strategy in BM(X) is a function $\sigma \colon \mathcal{P}^{<\omega} \to \mathcal{P}$ such that

$$\sigma(W_0,\ldots,W_n)\subseteq W_n$$

for all $n \in \omega$, and $(W_0, \ldots, W_n) \in \mathcal{P}^{n+1}$. A tactic in BM(X) is a function $\tau \colon \mathcal{P} \to \mathcal{P}$ such that $\tau(W) \subseteq W$ for all $W \in \mathcal{P}$. A winning strategy (resp. winning tactic) for α is a strategy (tactic) σ such that α wins every play of BM(X) compatible with σ , i.e. such that $\sigma(B_0, \ldots, B_n) = A_n$ (resp. $\sigma(B_n) = A_n$) for all $n \in \omega$. A winning strategy (resp. winning tactic) for β is defined analogously. The space X is called (weakly) α -favorable, if α has a winning tactic (resp. winning strategy) in BM(X) (these are distinct properties in general [De1, De2]). The space X is called β -favorable, if β has a winning strategy in BM(X) (this is equivalent to β having a winning tactic in BM(X) [GT]). It is known that a metrizable X is (weakly) α -favorable iff X contains a dense completely metrizable subspace (see [Wh, GT] for generalizations of this characterization); on the other side, a topological space X is not β -favorable iff X is a Baire space (i.e. each sequence of dense open subsets of X intersects in a dense subset of X [HMC, Ke]).

Let \mathcal{B} be a base for X. Denote

$$\mathcal{E} = \mathcal{E}(X) = \mathcal{E}(X, \mathcal{B}) = \{(x, U) \in X \times \mathcal{B} : x \in U\}.$$

The strong Choquet game Ch(X) is played similarly to the Banach-Mazur game, but in addition to the open B, β also chooses a point $x \in B$. More precisely, players β and α alternate in choosing $(x_n, B_n) \in \mathcal{E}$ and $A_n \in \mathcal{B}$, respectively, with β choosing first, so that for each $n \in \omega$, $x_n \in A_n \subseteq B_n$, and $B_{n+1} \subseteq A_n$. The play

$$(x_0,B_0),A_0,\ldots,(x_n,B_n),A_n,\ldots$$

is won by α , if $\bigcap_{n\in\omega} A_n (=\bigcap_{n\in\omega} B_n) \neq \emptyset$; otherwise, β wins.

A strategy in Ch(X) for α (resp. β) is a function $\sigma \colon \mathcal{E}^{<\omega} \to \mathcal{B}$ (resp. $\sigma \colon \mathcal{B}^{<\omega} \to \mathcal{E}$) such that $x_n \in \sigma((x_0, B_0), \dots, (x_n, B_n)) \subseteq B_n$ for all $((x_0, B_0), \dots, (x_n, B_n)) \in \mathcal{E}^{<\omega}$ (resp. $\sigma(\emptyset) = (x_0, B_0), B_n \subseteq A_{n-1}$, where $\sigma(A_0, \dots, A_{n-1}) = (x_n, B_n)$, for all $(A_0, \dots, A_{n-1}) \in \mathcal{B}^n$, $n \ge 1$). A strategy σ for α (resp. β) is a winning strategy, if α (resp. β) wins every run of Ch(X) compatible with σ , i.e. such that $\sigma((x_0, B_0), \dots, (x_n, B_n)) = A_n$ for all $n \in \omega$ (resp. $\sigma(\emptyset) = (x_0, B_0)$ and $\sigma(A_0, \dots, A_{n-1}) = (x_n, B_n)$ for all $n \ge 1$). A tactic in Ch(X) for α is a function $t \colon \mathcal{E} \to \mathcal{B}$ such that $x \in t(x, B) \subseteq B$ for all $(x, B) \in \mathcal{E}$; t is a winning tactic, if α wins every run of Ch(X) compatible with t, i.e. such that $t(x_n, B_n) = A_n$ for all $n \in \omega$. We could analogously define a winning tactic for β , however, it is known

that having a winning tactic or strategy for β in Ch(X) are equivalent [GT]. This is not the case for α though [De1, De2], so the following definitions make sense: X is strongly α -favorable [Te] (resp. strongly Choquet — see [Ke]), provided α has a winning tactic (resp. winning strategy) in Ch(X). A metrizable space is strongly α -favorable (strongly Choquet) iff it is completely metrizable [Ke]. Also note that Čech-complete (hence locally compact) spaces are strongly α -favorable [Po].

4. Strong α -favorability of the Vietoris topology

We will say that X is ω -normal, provided for any open $U\subseteq X$ and a nonempty closed $A\subseteq U$ there is an open V with $A\subseteq V\subseteq U$ such that for any countable $C\subseteq V$ we have $\overline{C}\subseteq U$. Using ω -normality instead of normality, we can generalize [Zs: Theorem 5.1] about strong α -favorability of the Vietoris hyperspace as follows:

THEOREM 4.1.

- (i) If X is an ω -normal strongly Choquet (strongly α -favorable) space, then $(CL(X), \tau_V)$ is strongly Choquet (strongly α -favorable).
- (ii) If $(CL(X), \tau_V)$ is strongly Choquet (strongly α -favorable), then X is strongly Choquet (strongly α -favorable).

Proof.

(i) We will provide the proof only for strong Choquetness, since strong α -favorability is analogous (cf. [Zs: Theorem 5.1]). Let σ be a winning strategy for α in Ch(X). We will inductively define a winning strategy σ_V for α in $Ch(CL(X), \mathcal{B}_V)$ as follows: if $(F_i, \mathbf{V}_i) \in \mathcal{E}(CL(X), \mathcal{B}_V)$ for all $i \leq k$, where $\mathbf{V}_i = \langle V_{i,0}, \dots, V_{i,n_i} \rangle$, and $\mathbf{V}_0 \supseteq \dots \supseteq \mathbf{V}_k$, then by Theorem 2.1, we can assume that (n_i) is strictly increasing and for all $i \leq k$ and $n_{i-1} < j \leq n_i$ (put $n_{-1} = -1$), $V_{i,j} \supseteq \dots \supseteq V_{k,j}$. Also, $F_i \in \mathbf{V}_i$, so for each $i \leq k$ and $j \leq n_i$ we can find $x_{i,j} \in F_i \cap V_{i,j}$, and since $F_k \subseteq \bigcup_{j \leq n_k} V_{k,j}$ and X is ω -normal, we can find

an open W_k with $F_k \subseteq W_k \subseteq \bigcup_{j \le n_k} V_{k,j}$ such that for any countable $C \subseteq W_k$,

$$\overline{C} \subseteq \bigcup_{j \le n_k} V_{k,j}$$
. Finally, define

$$\sigma_V((F_0, \mathbf{V}_0), \dots, (F_k, \mathbf{V}_k)) = W_k^+ \cap \bigcap_{i \le k} \bigcap_{n_{i-1} < j \le n_i} \sigma((x_{i,j}, V_{i,j}), \dots, (x_{k,j}, V_{k,j}))^-.$$

If $(F_0, \mathbf{V}_0), \sigma_V(F_0, \mathbf{V}_0), \ldots, (F_k, \mathbf{V}_k), \sigma_V((F_0, \mathbf{V}_0), \ldots, (F_k, \mathbf{V}_k)), \ldots$ is a run of the strong Choquet game in $(CL(X), \tau_V)$, then for each $i \in \omega$ and $n_{i-1} < j \le n_i$, there exists some $a_j \in \bigcap_{k \ge i} V_{k,j}$, and $A = \overline{\{a_i : i < \omega\}} \subseteq \bigcup_{j \le n_k} V_{k,j}$; thus, $A \in \bigcap_k \mathbf{V}_k$.

ON (STRONG) lpha-FAVORABILITY OF THE VIETORIS HYPERSPACE

(ii) Let σ_V be a winning strategy for α in $Ch(CL(X), \mathcal{B}_V)$. Given $k < \omega$ and $(x_i, V_i) \in \mathcal{E}(X)$ for all $i \leq k$, let

$$\sigma_V((\{x_0\}, V_0^+), \dots, (\{x_k\}, V_k^+)) = \langle W_{k,0}, \dots, W_{k,n_k} \rangle.$$

Then a winning strategy σ for α in Ch(X) can be defined via

$$\sigma((x_0, V_0), \dots, (x_k, V_k)) = \bigcap_{i \le n_k} W_{k,i}.$$

Indeed, if $(x_0, V_0), U_0, \ldots, (x_k, V_k), U_k, \ldots$ is a run of Ch(X) compatible with σ , then $x_{k+1} \in V_{k+1} \subseteq U_k = \bigcap_{i \leq n_k} W_{k,i}$, and clearly $\{x_{k+1}\} \in V_{k+1}^+ \subseteq \langle W_{k,0}, \ldots, W_{k,n_k} \rangle$; thus,

$$(\{x_0\}, V_0^+), \sigma_V(\{x_0\}, V_0^+), \dots, (\{x_k\}, V_k^+), \sigma_V((\{x_0\}, V_0^+), \dots, (\{x_k\}, V_k^+)), \dots$$

is a run of $Ch(CL(X), \mathcal{B}_V)$ compatible with σ_V , so there is some $F \in \bigcap_{k < \omega} V_k^+$, whence, $\bigcap_{k < \omega} V_k \neq \emptyset$. The proof for strong α -favorability is similar.

The next example will show that the previous theorem is truly a generalization of [Zs: Theorem 5.1], since there are non-normal, ω -normal, strongly Choquet (strongly α -favorable) spaces:

Example 4.2. There exists a Hausdorff, ω -normal, non-quasi-regular, strongly Choquet space.

Proof. Let $X = \mathbb{R}$ be endowed with the topology having

$$\mathcal{B} = \{ I \setminus C : I \subseteq \mathbb{R} \text{ bounded open interval, } C \subset \mathbb{R} \text{ countable} \}$$

as its base. Then X is clearly $\underline{T_2}$, but not quasi-regular, since if $I \setminus C \in \mathcal{B}$ is such that $I \setminus C \subseteq \mathbb{R} \setminus \mathbb{Q}$, then $\overline{I \setminus C} = \overline{I} \nsubseteq \mathbb{R} \setminus \mathbb{Q}$. Also, by [HZ: Example 2.7], X is strongly Choquet, and, since the countable subsets of X are closed, X is ω -normal.

It is known that the above example is not strongly α -favorable (not even α -favorable — cf. [De1]), however, we have the following:

Example 4.3. There exists a Tychonoff, ω -normal, non-normal, strongly α -favorable space.

Proof. Consider $X_0 = \omega_2 + 1 \setminus \{x < \omega_2 : \operatorname{cf}(x) = \omega\}$ and $X_1 = \omega_2 \setminus \{x < \omega_2 : \operatorname{cf}(x) = \omega\}$, both with the order topology, and define $X = X_0 \times X_1$. It is not hard to adjust the proof of non-normality of the Tychonoff square to our case.

Notice that X_0 is strongly α -favorable, since putting t(x,U) = U for all $(x,U) \in \mathcal{E}(X_0)$ where $U = X_0 \cap (a,x]$, we get a winning tactic for α in $Ch(X_0)$. Analogously, X_1 is strongly α -favorable, and so is X, since strong α -favorability is productive. As countable subsets of X do not cluster in X, they are closed, and hence, X is ω -normal.

In the next example we will show that in Theorem 4.1(i) ω -normality is essential:

Example 4.4. There exists a non- ω -normal locally compact space X such that $Ch(CL(X), \tau_V)$ is β -favorable.

Proof. If $X = (\omega_1 + 1) \times (\omega + 1) \setminus \{(\omega_1, \omega)\}$ is the Tychonoff plank, then X is locally compact; but X is not ω -normal: indeed, let $U = (\omega_1 + 1) \times \omega$ and $A = \{\omega_1\} \times \omega$. Then for any X-open subset V of U containing A there is a $\lambda < \omega_1$ with $[\lambda, \omega_1] \times \omega \subseteq V$, and for the countable set $C = \{\lambda\} \times \omega \subseteq V$ we have $(\lambda, \omega) \in \overline{C} \setminus U$.

Inductively define a winning strategy σ_V for β in $Ch(CL(X), \tau_V)$ as follows: let β 's initial choice be $\sigma_V(\emptyset) = (F_0, \mathbf{V}_0)$, where

$$F_0 = \{(\delta_0, 0)\} \cup \{(\omega_1, \lambda) : 1 \le \lambda < \omega\}$$
 and $\mathbf{V}_0 = ((\omega_1 + 1) \times \omega)^+ \cap \{(\delta_0, 0)\}^-$ for a fixed successor $\delta_0 < \omega_1$. Assume that σ_V has been defined for initial plays

of length k-1 so that $\sigma_V(\mathbf{U}_0,\ldots,\mathbf{U}_{k-1})=(F_k,\mathbf{V}_k)$, where $F_k=\{(\delta_i,i):\ i\leq k\}\cup\{(\omega_1,\lambda):\ k+1\leq \lambda<\omega\}$

 $F_k = \{(o_i, i): i \le \kappa\} \cup \{(\omega_1, \lambda):$ and

$$\mathbf{V}_k = \mathbf{U}_{k-1} \cap \bigcap_{i \le k} \{ (\delta_i, i) \}^-$$

for some successors $\delta_0, \ldots, \delta_k < \omega_1$. Consider $\mathbf{U}_k = \langle \mathcal{U}_k \rangle$ such that $F_k \in \mathbf{U}_k \subseteq \mathbf{V}_k$. Then $(\omega_1, k+1) \in F_k \subseteq \bigcup \mathcal{U}_k$, so there is some $\gamma < \omega_1$ with $(\gamma, \omega_1] \times \{k+1\} \subseteq \bigcup \mathcal{U}_k$ and we can choose a successor $\delta_{k+1} \in (\gamma, \omega_1]$. Then $(\delta_{k+1}, k+1)$ is an isolated point in X and we can define $F_{k+1} = \{(\delta_i, i) : i \leq k+1\} \cup \{(\omega_1, \lambda) : k+2 \leq \lambda < \omega\}$, $\mathbf{V}_{k+1} = \mathbf{U}_k \cap \{(\delta_{k+1}, k+1)\}^-$ and put $\sigma(\mathbf{U}_0, \ldots, \mathbf{U}_k) = (F_{k+1}, \mathbf{V}_{k+1})$.

Now, if $(F_0, \mathbf{V}_0), \dots, \mathbf{U}_k, (F_{k+1}, \mathbf{V}_{k+1}), \dots$ is a play of the strong Choquet game on $(CL(X), \tau_V)$ compatible with σ_V , assume there exists $A \in \bigcap_{k \in C} \mathbf{V}_k$.

Then $A \supseteq \{(\delta_k, k) : k < \omega\}$, which is not closed in X (since $\delta = \sup\{\delta_k : k < \omega\}$ $< \omega_1$, and $(\delta, \omega) \in \omega_1 \times \{\omega\} \setminus A$ is a limit point of A), and $\overline{A} \notin \mathbf{V}_0$. This implies that $\bigcap_{k < \omega} \mathbf{V}_k$ is empty; hence, β wins in $Ch(CL(X), \tau_V)$.

PROBLEM 4.5. Is ω -normality of X necessary for strong Choquetness (strong α -favorability) of the Vietoris hyperspace $(CL(X), \tau_V)$?

5. α -favorability of the Vietoris topology

We will say that X is ω -quasi-regular, provided for any nonempty open $U \subseteq X$ there is a nonempty open $V \subseteq U$ such that $\overline{C} \subseteq U$ for any countable $C \subseteq V$. We now turn to investigating (weak) α -favorability of the hyperspace:

THEOREM 5.1. If X is an ω -quasi-regular, (weakly) α -favorable space, then $(CL(X), \tau_V)$ is (weakly) α -favorable.

Proof. We prove the theorem only for α -favorability, weak α -favorability is analogous. Let t be a winning tactic for α in BM(X). For each nonempty open $U\subseteq X$ fix a nonempty open \widetilde{U} such that $\overline{C}\subseteq U$ for any countable $C\subseteq \widetilde{U}$. Whenever $\langle U_0,\ldots,U_n\rangle\in\mathcal{B}_V$, define the tactic t_V for α in $BM(CL(X),\tau_V)$ via $t_V(\langle U_0,\ldots,U_n\rangle)=\langle t(\widetilde{U}_0),\ldots,t(\widetilde{U}_n)\rangle$. Then t_V is a winning tactic for α , since if $\mathbf{V}_0,t_V(\mathbf{V}_0),\ldots,\mathbf{V}_k,t_V(\mathbf{V}_k),\ldots$ is a run of $BM(CL(X),\tau_V)$ compatible with t_V , where $\mathbf{V}_k=\langle V_{k,0},\ldots,V_{k,n_k}\rangle$, by Theorem 2.1 we can assume the (n_k) is an increasing sequence of positive integers, and given a $k<\omega$, $V_{k+1,i}\subseteq t(\widetilde{V}_{k,i})$ for all $i\leq n_k$ and $\bigcup_{i\leq n_{k+1}}V_{k+1,i}\subseteq\bigcup_{i\leq n_k}V_{k,i}$; moreover, $\overline{C}\subseteq\bigcup_{i\leq n_k}V_{k,i}$ for each countable $C\subseteq\bigcup_{i\leq n_{k+1}}V_{k+1,i}$. Since t is a winning tactic for α , for every $k<\omega$ and $n_{k-1}< i\leq n_k$ (where $n_{-1}=-1$), there exists some $a_i\in\bigcap_{k\geq i}V_{k,i}$. Also, $A=\overline{\{a_i:\ i\leq\omega\}}\subseteq\bigcup_{i\leq n_k}V_{k,i}$ for any $k<\omega$, so $A\in\bigcap_k V_k$.

Note that the above theorem has been established for quasi-regular base spaces in [Zs: Theorem 4.3]; our result is more general however, since the space from Example 4.2 is non-quasi-regular, but clearly ω -quasi-regular and weakly α -favorable.

We will now give an example to show that in the absence of ω -quasi-regularity, (weak) α -favorability of X does not always guarantee (weak) α -favorability of $(CL(X), \tau_V)$:

Example 5.2. There exists a non- ω -quasi-regular, strongly α -favorable space X such that BM(X) is β -favorable.

Proof. The space X is the closed unit interval I=[0,1] with an extra point ∞ . The topology on I is as usual, and the open base at ∞ consists of the union of $\{\infty\}$ and the co-finite subsets of I. Then X is not ω -quasi-regular, because the X-closure of any infinite subset of I contains ∞ ; moreover, it is strongly α -favorable, since the following tactic is winning for α in Ch(X): given $(x,V)\in\mathcal{E}(X)$ with $x\neq\infty$, let α choose an open $U\subseteq I$ containing x such that $\overline{U}^I\subseteq V$, and, if $x=\infty$, let α choose U.

Define a winning tactic t_V for β in BM(CL(X)) as follows: put $t_V(\emptyset) = I^+$, and for $\langle V_0, \ldots, V_n \rangle \in \mathcal{P}_V$, put $t_V(\langle V_0, \ldots, V_n \rangle) = \langle U_{0,0}, U_{0,1}, \ldots, U_{n,0}, U_{n,1} \rangle$, where $U_{i,0}, U_{i,1}$ are disjoint open intervals such that $\overline{U_{i,0} \cup U_{i,1}}^I \subseteq V_i$ for each i < n. Now assume that there is a run of BM(CL(X)) compatible with t_V which is not won by β , i.e. there is some X-closed set A in the final intersection of this run. Then A must have cardinality continuum; thus, $\infty \in A$, which cannot be, since $A \subset I$.

Remark 5.3. Note that the previous example, in a sense, is stronger than Example 4.4, since if BM(CL(X)) is β -favorable, so is Ch(CL(X)); however, the Tychonoff plank in Example 4.4 is $T_{3\frac{1}{2}}$, while the previous example is only T_1 .

Recall that $X \subset \mathbb{R}$ is a *Bernstein set*, provided both X and $\mathbb{R} \setminus X$ intersect each dense-in-itself G_{δ} -subset of \mathbb{R} [HMC]. It is well-known, that a Bernstein set is neither α -favorable, nor β -favorable [HMC].

Remark 5.4. The following argument gives a direct proof of this undecidedness of BM(X) for the Bernstein set X: assume first, that α has a winning strategy σ on X. For each nonempty bounded open interval U choose two disjoint open intervals V_U^0 and V_U^1 such that $\overline{V_U^j} \subset U$ for all j = 0, 1. Each $\gamma \in 2^\omega$ defines a strategy σ_{γ} for β on X as follows: let $\sigma_{\gamma}(\emptyset) = X \cap (0, 1)$ and

$$\sigma_{\gamma}(U_0,\ldots,U_n)=X\cap V_{U_n}^{\gamma(n)},$$

where for an X-open U, U' denotes the \mathbb{R} -open set for which $U' \cap X = U$. Consider all σ -compatible runs, where β follows one of these 2^{ω} -many strategies σ_{γ} . Since σ is a winning strategy for α , α wins all these runs; thus, X contains a closed dense-in-itself subset, a contradiction.

If we interchange α with β in the above argument, then the σ -compatible runs as viewed from \mathbb{R} still have a nonempty intersection for each α -strategy σ_{γ} , but they are empty in X, since now σ is a winning strategy for β in BM(X). This implies that $\mathbb{R} \setminus X$ contains a closed dense-in-itself subset, a contradiction. \square

In our last result, we will show that, unlike strong α -favorability or strong Choquetness (see Theorem 4.1(ii)), (weak) α -favorability of X is not necessary for (weak) α -favorability of $(CL(X), \tau_V)$:

Example 5.5. There exists a metrizable non-weakly α -favorable space X with an α -favorable hyperspace $(CL(X), \tau_V)$.

Proof. Let $X \subset \mathbb{R}$ be a Bernstein set. In what follows, \overline{A} will stand for the closure of $A \subseteq \mathbb{R}$ in \mathbb{R} . To define a winning tactic t_V for α on $(CL(X), \tau_V)$, first let \mathcal{B}' be the collection of bounded open intervals in \mathbb{R} , and $\mathcal{B} = \{V' \cap X : V' \in \mathcal{B}'\}$. Then for any $V = V' \cap X \in \mathcal{B}$, $V' = \operatorname{int}(\overline{V})$ and for $U, V \in \mathcal{B}$, $U \subseteq V$ iff $U' \subseteq V'$.

ON (STRONG) lpha-FAVORABILITY OF THE VIETORIS HYPERSPACE

If $\{V_0, \ldots, V_n\}$ is a pairwise disjoint collection of elements of \mathcal{B} , then $\langle V_0, \ldots, V_n \rangle \in \mathcal{P}_V$. For each $i \leq n$, define disjoint $U'_{i,0}, U'_{i,1} \in \mathcal{B}'$ such that

$$\overline{U'_{i,0} \cup U'_{i,1}} \subseteq V'_{i}. \tag{*}$$

Put $t_V(\langle V_0, \dots, V_n \rangle) = \langle U_{0,0}, U_{0,1}, \dots, U_{n,0}, U_{n,1} \rangle$.

Let $\mathbf{V}_0, t_V(\mathbf{V}_0), \dots, \mathbf{V}_k, t_V(\mathbf{V}_k), \dots$ be a run of $BM(CL(X), \tau_V)$ compatible with t_V . If $\mathbf{V}_k = \langle V_0^k, \dots, V_{n_k}^k \rangle$, then $t_V(\mathbf{V}_k) = \langle U_{0,0}^k, U_{0,1}^k, \dots, U_{n_k,0}^k, U_{n_k,1}^k \rangle$ for some strictly increasing sequence (n_k) of positive integers $(n_{k+1} \geq 2n_k)$.

Then $F' = \bigcap_{k < \omega} \overline{\bigcup_{i \le n_k}} (V_i^k)'$ is a nonempty compact subset of \mathbb{R} ; moreover, in view of (*), F' is dense-in-itself, and consequently $F = F' \cap X \in CL(X)$. Furthermore by (*), $\overline{(V_i^k)'}$ is dense-in-itself for each k, i, so $F \cap V_i^k = F' \cap (V_i^k)' \cap X \neq \emptyset$, and clearly, $F' \subset \bigcup_{i \le n_k} V_i^k$; thus, $F' \in \mathbf{V}_k$ for each k, and α wins the run.

REFERENCES

- [CJ] CAO, J.—JUNNILA, H. J. K.: Amsterdam properties of Wijsman hyperspaces, Proc. Amer. Math. Soc. 138 (2010), 769–776.
- [CT] CAO, J.—TOMITA, A. H.: Baire spaces, Tychonoff powers and the Vietoris topology, Proc. Amer. Math. Soc. 135 (2007), 1565–1573.
- [De1] DEBS, G.: Stratégies et tactiques dans le jeu de Choquet, Publ. Math. Univ. Pierre Marie Curie 66 (1984)
- [De2] DEBS, G.: Stratgies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93–105.
- [HZ] HOLÁ, E.—ZSILINSZKY, L.: Vietoris topology on partial maps with compact domains, Topology Appl. 157 (2010), 1439–1447.
- [HMC] HAWORTH, R. C.—MCCOY, R. A.: Baire spaces, Dissertationes Math. (Rozprawy Mat.) 141 (1977), 1–77.
- [GT] GALVIN, F.—TELGÁRSKY, R.: Stationary strategies in topological games, Topology Appl. 22 (1986), 51–69.
- [Ke] KECHRIS, A. S.: Classical Descriptive Set Theory, Springer, New York, 1994.
- [Mc] MCCOY, R. A.: Baire spaces and hyperspaces, Pacific J. Math. 58 (1975), 133–142.
- [Mi] MICHAEL, E.: Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- [PZ] PIĄTKIEWICZ, L.—ZSILINSZKY, L.: On (strong) α-favorability of the Wijsman hyperspace, Topology Appl. 157 (2010), 2555–2561.
- [Po] PORADA, E.: Jeu de Choquet, Colloq. Math. 42 (1979), 345–353.
- [Te] TELGÁRSKY, R.: Topological games: On the 50th anniversary of the Banach-Mazur game, Rocky Mountain J. Math. 17 (1987), 227–276.
- [To] TODD, A. R.: Quasiregular, pseudocomplete, and Baire spaces, Pacific J. Math. 95 (1981), 233–250.
- [Wh] WHITE, H. E.: Topological spaces that are a-favorable for a player with perfect information, Proc. Amer. Math. Soc. 50 (1975), 477–482.

[Zs] ZSILINSZKY, L.: Topological games and hyperspace topologies, Set-Valued Anal. 6 (1998), 187–207.

Received 29. 9. 2010 Accepted 7. 3. 2011 Department of Mathematics and Computer Science University of North Carolina at Pembroke Pembroke, NC 28372 USA

 $E\text{-}mail\text{: leszek@uncp.edu} \\ laszlo@uncp.edu$