

DOI: 10.2478/s12175-012-0093-y Math. Slovaca **63** (2013), No. 2, 201–214

ON COMPLETION IN THE CATEGORY SSN σ FRM

Inderasan Naidoo

(Communicated by Ľubica Holá)

ABSTRACT. We introduce the category $SSN\sigma Frm$ of super strong nearness σ -frames and show the existence of a completion for a super strong nearness σ -frame unique up to isomorphism by the similar construction presented in [WALTERS-WAYLAND, J. L.: Completeness and Nearly Fine Uniform Frames. PhD Thesis, Univ. Catholique de Louvain, 1996] and [WALTERS-WAYLAND, J. L.: A Shirota Theorem for frames, Appl. Categ. Structures 7 (1999), 271–277]. Completion is also shown to be a coreflection in $SSN\sigma Frm$. We also engage with the notion of total boundedness for nearness σ -frames and provide a characterization of the Samuel compactification of a nearness σ -frame alternative to the description in [NAIDOO, I.: Samuel compactification and uniform coreflection of nearness σ -frames, Czechoslovak Math. J. 56(131) (2006), 1229–1241].

©2013 Mathematical Institute Slovak Academy of Sciences

1. Introduction

In [16,17] the category of uniform σ -frames and uniform σ -frame homomorphism $\mathbf{U}\sigma\mathbf{Frm}$ was introduced. Further, Walters-Wayland in [18,19] provided an external construction of the completion of a uniform σ -frame via the corresponding construction of the completion of a uniform frame (e.g. [3,6]). For a uniform σ -frame (L,μ) one passes over to the uniform frame $(\mathcal{H}L,\mathcal{H}\mu)$ of the σ -ideals of L with uniformity generated by $\{\downarrow A: A \in \mu\}$. The uniform completion $((C(\mathcal{H}L), C(\mathcal{H}\mu)), \gamma_{\mathcal{H}L})$ of the uniform frame $(\mathcal{H}L, \mathcal{H}\mu)$, the description of which is given below, is then considered. The uniform cozero part of this completion, $(\mathrm{Coz}_u(C(\mathcal{H}L), C(\mathcal{H}\mu)), \mathrm{Coz}_u \gamma_{\mathcal{H}L})$, is then realized as the completion of the uniform σ -frame (L,μ) unique up to isomorphism.

Banaschewski and Pultr in [6] describe the completion of a nearness frame in the following way. For a frame L, the frame $\mathfrak{D}L$ of all non-empty down-sets

2010 Mathematics Subject Classification: Primary 06D22; Secondary 18A40, 54D35. Keywords: uniform and nearness σ -frame, super strong nearness, Lindelöf frame, separable, totally bounded, complete, completion, Samuel compactification.

in L is considered in [6] with the frame homomorphism $\bigvee : \mathfrak{D}L \longrightarrow L$, given by join $U \leadsto \bigvee U$, and right Galois adjoint $\downarrow : L \longrightarrow \mathfrak{D}L$ taking each $x \in L$ to $\downarrow x$. For a nearness frame (L, μ) , $x \in L$ and $A \in \mu$, $k(x) = \{y \in L : y \lhd x\}$ and $x \land A = \{x \land a : a \in A\}$. The system CL of all $U \in \mathfrak{D}L$ such that $x \in U$ whenever $k(x) \subseteq U$, and $x \in U$ whenever $x \land A \subseteq U$ for some $A \in \mu$, is a frame with intersection for meet and $\gamma_L : CL \longrightarrow L$ given by \bigvee is a dense homomorphism with right Galois adjoint \downarrow . Then $\{ \downarrow A : A \in \mu \}$ generates a nearness $C\mu$ on CL and $(CL, C\mu)$ is complete. Finally $((CL, C\mu), \gamma_L)$ is the completion of the nearness frame (L, μ) unique up to isomorphism. Further, if (L, μ) is a uniform frame, then $(CL, C\mu)$ is also its uniform completion.

The structure of a nearness on a σ -frame generalized the notion of uniformity in [10,12] and the category $\mathbf{N}\sigma\mathbf{Frm}$ of nearness σ -frames and uniform σ -frame homomorphisms was introduced therein. The aim within this paper is to continue with the study on the subcategory $\mathbf{S}\mathbf{N}\sigma\mathbf{Frm}$ of strong nearness σ -frames depicted in [13] where the notion of complete was investigated. Although the construction of the completion of an arbitrary nearness σ -frame remains elusive, we restrict our attention to those strong nearness σ -frames L for which the underlying frame of the completion of the nearness frame $\mathcal{H}L$ is Lindelöf. We will call such nearness σ -frames super strong. It is within this restrictive category (which contains uniform σ -frames) that an external construction of the completion is realized.

When a nearness is generated by its finite members the resulting structured frame is totally bounded or precompact. We carry forth this notion to σ -frames which realizes an alternate description of the totally bounded coreflection of the nearness frame of all σ -ideals. We also show that for σ -frames, nearness and uniformity coalesce under strongness and total boundedness. An internal description of the Samuel compactification $\mathfrak{NR}_{\sigma}L$ of a nearness σ -frame is provided in [10]. A recent discussion in [14] provides for an alternative description of the compact regular coreflection of a nearness σ -frame. We use this illustration to bring together the completion, total boundedness, (super) strongness and the Samuel compactification in the realm of σ -frames.

We provide the necessary background on σ -frames and frames and their required structures in the next section. Since any uniform σ -frame is a strong nearness σ -frame, the machinery in [18], with certain appropriate modifications in proof based on the theory governing nearness structures, will be shown to inadvertently provide for the construction of the completion in the larger category $\mathbf{SSN}\sigma\mathbf{Frm}$ of super strong nearness σ -frames. We continue in Section 3 by also showing that completion is a coreflection for super strong nearness σ -frames using the analogous result for nearness frames in [3].

The last part of the paper deals with totally bounded and uniformly normal nearness σ -frames. The Samuel compactification in [10] is revisited in Section 4 which culminates in amalgamating the concepts discussed in this paper.

2. Preliminaries

We recall some basic notions and facts about σ -frames. A σ -frame L is a lattice admitting countable suprema satisfying the join distributivity condition for any $x \in L$ and any countable $Y \subseteq L$, $x \land \bigvee Y = \bigvee_{y \in Y} (x \land y)$. The unit of L is denoted by 1 and the zero by 0. σ -frames are the objects of the category

L is denoted by 1 and the zero by 0. σ -frames are the objects of the category σ **Frm** whose morphisms are the lattice homomorphisms which preserve 1, 0, finite meets and countable joins.

L will always be a σ -frame (unless stated otherwise) and we will use the following terminologies and notions. We will denote countable (finite) subsets of L by using $\subseteq_c (\subseteq_f)$. For $x, y \in L$, we say that y is rather below x and write $y \prec x$ if there is $s \in L$ such that $y \land s = 0$ and $s \lor x = 1$. L is called a regular σ -frame if for each $x \in L$ there is $Y \subseteq_c \{y \in L : y \prec x\}$ such that $x = \bigvee Y$. Reg σ Frm is the corresponding category of regular σ -frames and σ -frame homomorphisms.

A cover on L is any member of the collection $cov(L) = \{A \subseteq_c L : \bigvee A = 1\}.$ For $A, B \in \text{cov}(L)$, $A \wedge B = \{a \wedge B : a \in A \text{ and } b \in B\}$. We write $A \leq B$ if for each $a \in A$ there is $b \in B$ such that $a \leq b$ and we consequently say that A refines B. We also denote $A^* = AA = \{Ax : x \in A\}$. We then say that A star-refines B and write $A \leq^* B$ in case $A^* \leq B$. If $x \in L$ and $A \in cov(L)$, then $Ax = \bigvee \{a \in A : a \land x \neq 0\} \in L$ is the star of x relative to the cover A. If $\mu \subseteq \text{cov}(L)$ and $x, y \in L$ then $x \triangleleft_{\mu} y$ (or for brevity $x \triangleleft y$) will mean that $Ax \leq y$ for some cover $A \in \mu$. If $A, B \in \mu$, then $A \triangleleft_{\mu} B$ will mean that for each $a \in A$ there is $b \in B$ such that $a \triangleleft_{\mu} b$. A nearness on L is a filter of covers μ (relative to the refinement relation \leq) that is necessarily admissible, i.e. for each $x \in L$, $x = \bigvee Y$ where $Y \subseteq_c \{y \in L : y \triangleleft_{\mu} x\}$. The members of a nearness μ are called uniform covers. The pair (L,μ) is then called a nearness σ -frame. These are the objects in the category N σ Frm whose morphisms are the uniform σ -frame homomorphisms, the morphisms on the underlying σ -frames that preserve uniform covers. A nearness μ is strong if for each $B \in \mu$ there is $A \in \mu$ such that $A \triangleleft_{\mu} B$. $\mathbf{SN}\sigma\mathbf{Frm}$ is the resulting subcategory of the strong nearness σ -frames and uniform σ -frame homomorphisms. A uniformity on L is a nearness $\mu \subseteq \text{cov}(L)$ such that each uniform cover has a uniform star refinement. $\mathbf{U}\boldsymbol{\sigma}\mathbf{Frm}$ is the resulting category of uniform $\boldsymbol{\sigma}$ -frames and uniform homomorphisms treated expansively in [16] and [17].

We will also consider the following categories and subcategories from which the above generalizations originated. **Frm** of *frames* and *frame* homomorphisms are treated in [8] and [15]. Frames are σ -frames that accept arbitrary suprema in which \wedge distributes over all \vee . Their homomorphisms also preserve all joins. Regular frames are those frames in which each element is a join of elements rather below it and the resulting category is denoted by **RegFrm**. In a frame L, cov(L) includes any subset whose join is the unit. Lindelöf (Compact) frames are those frames in which each cover has a countable (finite) subcover. For any σ -frame L, an ideal I is a σ -ideal if $X \subseteq_c I$ implies that $\bigvee X \in I$. The collection of all σ -ideals of $L \in \sigma \mathbf{Frm}$ is denoted by $\mathcal{H}L$. $\mathcal{H}L$ is a Lindelöf frame and $\mathcal{H}L \in \mathbf{RegFrm}$ whenever $L \in \mathbf{Reg}\sigma\mathbf{Frm}$. Given any σ -frame homomorphism $h: L \longrightarrow M$, $\mathcal{H}h: \mathcal{H}L \longrightarrow \mathcal{H}M$ defines a frame homomorphism phism where $\mathcal{H}h(I) = \langle h(I) \rangle$ is the σ -ideal generated by h(I). \mathcal{H} is functorial and is left adjoint to the functor Coz: Frm $\longrightarrow \text{Reg}\sigma\text{Frm}$ with unit $\downarrow: L \longrightarrow \operatorname{Coz}(\mathcal{H}L)$ an isomorphism taking any $x \in L$ to the principal ideal generated by $x, \downarrow x = \{y \in L : y < x\}$. The counit, $\bigvee : \mathcal{H}(\operatorname{Coz} L) \longrightarrow L$ is the join map, which is an isomorphism provided that L is regular and Lindelöf. For any (regular) frame L, Coz L is the (regular) σ -frame consisting of all cozero elements of L and $c \in \text{Coz } L$ provided that c = h((0,1]) for some frame homomorphism $h \colon \mathfrak{O}[0,1] \longrightarrow L$ with $\mathfrak{O}[0,1]$ the frame of all open sets of the unit interval [0,1]. Important details on $\operatorname{Coz} L$ may be found in [4]. In [9] it is shown that \mathcal{H} and Coz induce an equivalence between the categories LRegFrm (regular Lindelöf frames) and $\text{Reg}\sigma\text{Frm}$.

NFrm, the category of nearness frames and uniform homomorphisms, is studied in [2,6]. In [11], the category **TNFrm** of totally bounded nearness frames is introduced. The totally bounded coreflection of a nearness frame (L, μ) is shown to be the nearness frame (L, μ_*) where μ_* is the nearness generated by the finite members of μ . The coreflection map is the identity $\mathrm{id}_L \colon (L, \mu_*) \longrightarrow (L, \mu)$. **SNFrm** consists of the *strong* nearness frames viz. those nearness frames (L, μ) in which the cover $A = \{x \in L : x \lhd_{\mu} a \text{ for some } a \in A\}$ is uniform for each $A \in \mu$. A uniform homomorphism $h \colon (L, \mu) \longrightarrow (M, \nu)$ between nearness frames is a *surjection* if h is onto such that $\{h_*(A) : A \in \nu\} = h_*[\nu]$ generates the nearness μ on L. The *right adjoint* of the frame homomorphism $h \colon L \longrightarrow M$ is the meet-preserving map $h_* \colon M \longrightarrow L$ where $h(x) \leq y$ if and only if $x \leq h_*(y)$, given explicitly by $h_*(x) = \bigvee \{a \in L : h(a) \leq x\}$. We always have that $\mathrm{id}_L \leq h_*h$ whilst $hh_* = \mathrm{id}_M$ whenever h is onto.

The following lemma pertaining to the right adjoint, strongness and surjections will be used in Section 3, the first of which is a consequence of the observation in [2: pp. 2], the second is [2: Corollary 2] and the last is [13: Lemma 2.1]. We recall that a frame (or σ -frame) homomorphism $h: L \longrightarrow M$ is dense if x = 0 whenever h(x) = 0 (equivalently for frames, $h_*(0) = 0$), and h is codense

if x = 1 whenever h(x) = 1. In **RegFrm** and **Reg** σ **Frm** dense homomorphisms are monic whilst codense ones are injective.

LEMMA 2.1.

- 1. Let $(L, \mu) \in \mathbf{SNFrm}$. If $h: (L, \mu) \longrightarrow M$ is a dense and onto frame homomorphism, then $h_*h(\check{A}) \leq A$ for each $A \in \mu$.
- 2. For any dense surjection $h: (L, \mu) \longrightarrow (M, \nu)$, if (M, ν) is strong then so is (L, μ) .
- 3. If $h: (L, \mu) \longrightarrow (M, \nu)$ is a dense surjection in **SNFrm**, then $h_*[\nu]$ generates μ if and only if $h[\mu] = \{h(U): U \in \mu\}$ generates ν .

A nearness frame is *separable* if its nearness is generated by the countable uniform covers. The category **SepSLNFrm** consists of those nearness frames in which the nearness is separable and strong and where the underlying frame is Lindelöf. The adjunction described above between **LRegFrm** and **Reg\sigmaFrm** extends to the structured nearness setting as described in [12] which we will require in the sequel.

The functors Coz and \mathcal{H} induce an equivalence between the categories **SepSLNFrm** and **SN** σ **Frm**. Given any $(L, \mu) \in$ **SepSLNFrm**,

$$Coz \mu = \{A \in \mu : A \subseteq_c Coz L\}$$

defines a strong nearness on $\operatorname{Coz} L$. For any $(L, \mu) \in \mathbf{SN}\sigma\mathbf{Frm}$,

$$\mathcal{H}\mu = \{ \mathcal{A} \in \operatorname{cov} \mathcal{H}L : \ \downarrow A \leq \mathcal{A} \text{ for some } A \in \mu \}$$

with $\downarrow A = \{\downarrow a : a \in A\}$ defines a separable strong nearness on the Lindelöf frame $\mathcal{H}L$. The adjunctions are given by the join map $\varepsilon_L : (\mathcal{H}\operatorname{Coz} L, \mathcal{H}\operatorname{Coz} \mu) \longrightarrow (L, \mu)$ and $\eta_L : (L, \mu) \longrightarrow (\operatorname{Coz} \mathcal{H}L, \operatorname{Coz} \mathcal{H}\mu)$ given by \downarrow .

3. The completion in SSN σ Frm

In this section we show the existence of a completion, unique up to isomorphism, for any super strong nearness σ -frame in the spirit of [18,19]. A nearness σ -frame L is said to be super strong if L is strong and the completion of the nearness frame $\mathcal{H}L$, viz. $C(\mathcal{H}L)$, is Lindelöf. In [19] it is shown that the completion of every Lindelöf uniform frame is Lindelöf. Also, for a uniform σ -frame (L, μ) , $\mathcal{H}L$ is a Lindelöf uniform frame, hence the underlying frame of its completion $C(\mathcal{H}L)$ is Lindelöf. Thus, a uniform σ -frame is indeed a super strong nearness σ -frame.

We recall that a σ -frame homomorphism $h: (L, \mu) \longrightarrow (M, \nu)$ between nearness σ -frames is a *surjection* if h is onto and $\{h(A): A \in \mu\} = h[\mu]$ generates ν . (M, ν) is a *complete* nearness σ -frame if and only if every dense surjection $h: (L, \mu) \longrightarrow (M, \nu)$ is an isomorphism. A completion of a nearness σ -frame (M, ν) is a pair $((L, \mu), h)$ with (L, μ) a complete nearness σ -frame and $h: (L, \mu) \longrightarrow (M, \nu)$ a dense surjection.

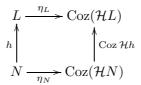
LEMMA 3.1. If $(L, \mu) \in \mathbf{SSN}\sigma\mathbf{Frm}$, then $(C(\mathcal{H}L), C(\mathcal{H}\mu)) \in \mathbf{SepSLNFrm}$.

Proof. Let (L, μ) be a super strong nearness σ -frame. By [12: Lemma 3.5], the nearness frame $\mathcal{H}L$ is also strong. Since the completion map $\gamma_{\mathcal{H}L} \colon C(\mathcal{H}L) \longrightarrow \mathcal{H}L$ is a dense surjection, the completion $C(\mathcal{H}L)$ is a strong nearness frame by Lemma 2.1(2). Also, if \mathcal{A} is a uniform cover of the completion $C(\mathcal{H}L)$ then $(\gamma_{\mathcal{H}L})_*\gamma_{\mathcal{H}L}(\check{\mathcal{A}}) \leq \mathcal{A}$ by Lemma 2.1(1). Since $\gamma_{\mathcal{H}L}(\check{\mathcal{A}})$ is a uniform cover of the separable nearness frame $\mathcal{H}L$, we may find a countable $\mathcal{B} \in \mathcal{H}\mu$ such that $\mathcal{B} \leq \gamma_{\mathcal{H}L}(\check{\mathcal{A}})$. Since $(\gamma_{\mathcal{H}L})_*[\mathcal{H}\mu]$ generates the nearness on $C(\mathcal{H}L)$, $(\gamma_{\mathcal{H}L})_*(\mathcal{B})$ is a countable uniform cover of $C(\mathcal{H}L)$ such that $(\gamma_{\mathcal{H}L})_*(\mathcal{B}) \leq (\gamma_{\mathcal{H}L})_*\gamma_{\mathcal{H}L}(\check{\mathcal{A}}) \leq \mathcal{A}$ showing that the nearness frame $C(\mathcal{H}L)$ is also separable. Since L is super strong, $C(\mathcal{H}L)$ is Lindelöf.

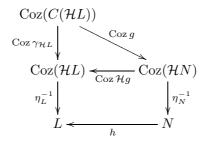
THEOREM 3.1. $(\operatorname{Coz}(C(\mathcal{H}L)), \operatorname{Coz}(C(\mathcal{H}\mu)), \eta_L^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L})$ is the completion of the super strong nearness σ -frame (L, μ) , unique up to isomorphism.

Proof. Let (L, μ) be a super strong nearness σ -frame. By the Lemma above, $C(\mathcal{H}L)$ is a complete separable strong Lindelöf nearness frame. Consequently, by [13: Lemma 3.4], $(\operatorname{Coz}(C(\mathcal{H}L)), \operatorname{Coz}(C(\mathcal{H}\mu)))$ is a complete strong nearness σ -frame. Moreover, since $C(\mathcal{H}L)$ is Lindelöf, $\mathcal{H}\operatorname{Coz}(C(\mathcal{H}L)) \simeq C(\mathcal{H}L)$ so that $\operatorname{Coz}(C(\mathcal{H}L))$ is complete in $\operatorname{\mathbf{SSN}}\sigma\mathbf{Frm}$. Since the functor $\operatorname{Coz}\operatorname{preserves}$ dense surjections ([13: Lemma 3.3]), $\operatorname{Coz}\gamma_{\mathcal{H}L}$ is a dense surjection between the strong nearness σ -frames $\operatorname{Coz}(C(\mathcal{H}L))$ and $\operatorname{Coz}\mathcal{H}L \simeq L$. Thus $\operatorname{Coz}(C(\mathcal{H}L))$ is indeed a completion of L with dense surjection $\eta_L^{-1} \circ \operatorname{Coz}\gamma_{\mathcal{H}L}$: $\operatorname{Coz}(C(\mathcal{H}L)) \longrightarrow L$.

For the uniqueness of $\eta_L^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L}$, let $h \colon (N, \xi) \longrightarrow (L, \mu)$ be any completion of (L, μ) in $\operatorname{\mathbf{SSN}\sigma\mathbf{Frm}}$. Then $\mathcal{H}h \colon (\mathcal{H}N, \mathcal{H}\xi) \longrightarrow (\mathcal{H}L, \mathcal{H}\mu)$ is a dense surjection in $\operatorname{\mathbf{SepSLNFrm}}$ by [13: Lemma 3.2]. Consequently, by [6: Proposition 8], there is a dense surjection $g \colon C(\mathcal{H}L) \longrightarrow \mathcal{H}N$ such that $\mathcal{H}h \circ g = \gamma_{\mathcal{H}L}$. Since $\mathcal{H}N$ is complete, g is an isomorphism. Since η is natural the following is a commutative diagram



and thus $\eta_L^{-1} \circ \operatorname{Coz} \mathcal{H} h = h \circ \eta_N^{-1}$. We then have the following



Then

$$h \circ \eta_N^{-1} \circ \operatorname{Coz} g = \eta_L^{-1} \circ \operatorname{Coz} \mathcal{H} h \circ \operatorname{Coz} g = \eta_L^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L}.$$

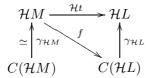
Since g is an isomorphism, so is $\operatorname{Coz} g$. Consequently, $\bar{g} = \eta_N^{-1} \circ \operatorname{Coz} g$ is an isomorphism. Thus, we have shown that $\eta_L^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L}$ is unique up to isomorphism since given any completion $h \colon (N, \xi) \longrightarrow (L, \mu)$ we can find an isomorphism $\bar{g} \colon \operatorname{Coz}(C(\mathcal{H}L)) \longrightarrow N$ such that $h \circ \bar{g} = \eta_L^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L}$.

If (L, μ) is a uniform σ -frame, then $(\operatorname{Coz}(C(\mathcal{H}L)), \operatorname{Coz}(C(\mathcal{H}\mu)), \eta_L^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L})$ is also its uniform completion. We will denote the completion of the super strong nearness σ -frame (L, μ) by $C_{\sigma}(L, \mu)$ (for brevity $C_{\sigma}L$) and γ_L will be the completion map $\eta_L^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L}$. In [3] completion is shown to be a coreflection in the larger category of strong nearness frames. This also transmits to the category of super strong nearness σ -frames as shown below.

Theorem 3.2. Completion is a coreflection in $SSN\sigma Frm$.

Proof. Let (L, μ) and (M, ν) be super strong nearness σ -frames and let $t: (M, \nu) \longrightarrow (L, \mu)$ with (M, ν) complete. We must show that there is a unique $g: (M, \nu) \longrightarrow C_{\sigma}(L, \mu)$ such that $\gamma_L \circ g = t$, *i.e.* the following triangle commutes:

Consider the completion $C(\mathcal{H}L)$ of the nearness frame $\mathcal{H}L$ with the completion map $\gamma_{\mathcal{H}L}$. We then have the following diagram:



Since \mathcal{H} preserves completeness, by [13: Lemma 3.5], $\mathcal{H}M$ is a complete separable strong Lindelöf nearness frame. Since $\mathcal{H}M$ is complete, $\gamma_{\mathcal{H}M}$ is an isomorphism. Since (L,μ) is a strong nearness σ -frame, [12: Lemma 3.5] implies that $\mathcal{H}L$ is a strong nearness frame. Since completion is a coreflection on strong nearness frames (see [2,3]) there exists a unique $f:\mathcal{H}M\longrightarrow C(\mathcal{H}L)$ such that $\gamma_{\mathcal{H}L}\circ f=\mathcal{H}t$. Now consider

$$C(\mathcal{H}M) \xrightarrow{\gamma_{\mathcal{H}M}} \mathcal{H}M \xrightarrow{f} C(\mathcal{H}L)$$

Applying the functor Coz gives

$$C_{\sigma}M \xrightarrow{\text{Coz } \gamma_{\mathcal{H}M}} \text{Coz}(\mathcal{H}M) \xrightarrow{\text{Coz } f} C_{\sigma}L$$

$$\uparrow_{\gamma_M} \downarrow \simeq \qquad \qquad \downarrow_{\gamma_L}$$

$$M \xrightarrow{\qquad \qquad \downarrow} L$$

Note that since (M, ν) is complete γ_M and $\operatorname{Coz} \gamma_{\mathcal{H}M}$ are isomorphisms. We then have

$$\begin{array}{ll} \gamma_{L} \circ (\operatorname{Coz} f \circ \operatorname{Coz} \gamma_{\mathcal{H}M}) & = & (\eta_{L}^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}L}) \circ \operatorname{Coz} f \circ \operatorname{Coz} \gamma_{\mathcal{H}M} \\ & = & \eta_{L}^{-1} \circ \operatorname{Coz} (\gamma_{\mathcal{H}L} \circ f \circ \gamma_{\mathcal{H}M}) \\ & = & \eta_{L}^{-1} \circ \operatorname{Coz} (\mathcal{H}t \circ \gamma_{\mathcal{H}M}) & (\because \gamma_{\mathcal{H}L} \circ f = \mathcal{H}t) \\ & = & \eta_{L}^{-1} \circ \operatorname{Coz} \mathcal{H}t \circ \operatorname{Coz} \gamma_{\mathcal{H}M} \\ & = & (\eta_{L}^{-1} \circ \operatorname{Coz} \mathcal{H}t \circ \eta_{M}) \circ (\eta_{M}^{-1} \circ \operatorname{Coz} \gamma_{\mathcal{H}M}) \\ & = & (\eta_{L}^{-1} \circ \operatorname{Coz} \mathcal{H}t \circ \eta_{M}) \circ \gamma_{M}. \end{array}$$

By [12: Theorem 3.2], η_L is a natural isomorphism. Thus the following diagram is commutative

$$(M, \nu) \xrightarrow{\eta_M} (\operatorname{Coz} \mathcal{H}M, \operatorname{Coz} \mathcal{H}\nu)$$

$$\downarrow \qquad \qquad \downarrow \operatorname{Coz} \mathcal{H}t$$

$$(L, \mu) \xrightarrow{\eta_L} (\operatorname{Coz} \mathcal{H}L, \operatorname{Coz} \mathcal{H}\mu)$$

so that $t = \eta_L^{-1} \circ \operatorname{Coz} \mathcal{H} t \circ \eta_M$. Let $g = (\operatorname{Coz} f \circ \operatorname{Coz} \gamma_{\mathcal{H} M}) \circ \gamma_M^{-1}$. We then have

$$\begin{array}{rcl} \gamma_L \circ (\operatorname{Coz} f \circ \operatorname{Coz} \gamma_{\mathcal{H}M}) & = & (\eta_L^{-1} \circ \operatorname{Coz} \mathcal{H} t \circ \eta_M) \circ \gamma_M \\ & = & t \circ \gamma_M \\ \therefore & \gamma_L \circ (\operatorname{Coz} f \circ \operatorname{Coz} \gamma_{\mathcal{H}M}) \circ \gamma_M^{-1} & = & t \\ & \text{i.e.} & \gamma_L \circ g & = & t. \end{array}$$

Now if $g': (M, \nu) \longrightarrow C_{\sigma}(L, \mu)$ such that $\gamma_L \circ g' = t$ then $\gamma_L \circ g = \gamma_L \circ g'$. Since γ_L is dense it is monic. Thus g = g'. Hence g is unique such that $\gamma_L \circ g = t$ proving our result.

COROLLARY 3.2.1. If $f:(M,\nu) \longrightarrow (L,\mu)$ is a uniform homomorphism in $SSN\sigma Frm$, then there is a unique uniform homomorphism $c: C_{\sigma}(M,\nu) \longrightarrow C_{\sigma}(L,\mu)$ such that the following diagram commutes

$$C_{\sigma}(M,\nu) \xrightarrow{c} C_{\sigma}(L,\mu)$$

$$\uparrow^{\gamma_{M}} \qquad \qquad \downarrow^{\gamma_{L}}$$

$$(M,\nu) \xrightarrow{f} (L,\mu)$$

Proof. Let $f:(M,\nu) \longrightarrow (L,\mu)$ be a uniform homomorphism between super strong nearness σ -frames. Since $f \circ \gamma_M : C_{\sigma}M \longrightarrow L$ with $C_{\sigma}M$ complete, by the previous theorem there is a unique $c: C_{\sigma}M \longrightarrow C_{\sigma}L$ such that $\gamma_L \circ c = f \circ \gamma_M$.

We also observe that if $f:(M,\nu) \longrightarrow (L,\mu)$ is a surjection between super strong nearness σ -frames, then since the functor \mathcal{H} preserves surjections $\mathcal{H}f:(\mathcal{H}M,\mathcal{H}\nu) \longrightarrow (\mathcal{H}L,\mathcal{H}\mu)$ is a surjection between strong nearness frames. Then, by [3: Corollary 6.1], $\mathcal{H}h$ lifts to a surjection g between the completions $C(\mathcal{H}M) \longrightarrow C(\mathcal{H}L)$. Following through with the functor Coz, the surjection f lifts to a surjection f c: f since every uniform f surjections to completions and the last two results above are applicable in the category f surjections to completions and the last two results above are applicable in the category f surjections to completions

4. The Samuel compactification and completion

In this concluding section we focus on the effects of total boundedness on structured σ -frames. We also revisit the Samuel compactification of a nearness σ -frame depicted in [10]. The formulation in [11] on the coreflective subcategory **TNFrm** of **NFrm** carries through to the σ -frame case with a minor modification to incorporate pseudocomplements since, in general, elements of σ -frames do not have pseudocomplements.

Let (L,μ) be a nearness σ -frame and consider the filter of covers generated by the finite uniform members $\mu_t = \{A \in \mu : B \leq A \text{ for some finite } B \in \mu\}$. If $x \in L$ then the admissibility of μ gives $x = \bigvee Y$ for some $Y \subseteq_c \{y \in L : y \lhd_\mu x\}$. If $y \lhd_\mu x$, we may find $A \in \mu$ such that $Ay \leq x$. Let $s = \bigvee \{a \in A : a \land y = 0\}$. Then $s \land y = 0$ and $s \lor x = 1$. Moreover, since $A \leq \{s, x\}, \{s, x\} \in \mu$. Since $\{s, x\}y = x, y \lhd_{\mu_t} x$. Consequently, μ_t is admissible. Then (L, μ_t) is the totally bounded coreflection of (L, μ) with coreflection map, the identity, $\mathrm{id}_L \colon (L, \mu_t) \longrightarrow (L, \mu)$. We denote the resulting category of totally bounded nearness σ -frames by $\mathbf{TN}\sigma\mathbf{Frm}$.

LEMMA 4.1. If $(L, \mu) \in \mathbf{TN}\sigma\mathbf{Frm}$, then $(\mathcal{H}L, \mathcal{H}\mu) \in \mathbf{TNFrm}$.

Proof. Suppose that (L, μ) is a totally bounded nearness σ -frame. Let $A \in \mathcal{H}\mu$. Then there is $A \in \mu$ such that $\downarrow A \leq A$. Consequently, there is a finite $B \in \mu$ such that $B \leq A$. Then $\downarrow B \leq A$ and $\downarrow B \in \mathcal{H}\mu$ is finite so that $(\mathcal{H}L, \mathcal{H}\mu)$ is a totally bounded nearness frame.

The proof of [7: Lemma 3.3] holds verbatim with "nearness frame" replaced by "nearness σ -frame". We state this below for σ -frames.

Lemma 4.2. If $(L, \mu) \in \mathbf{TN}\sigma\mathbf{Frm}$, then μ is strong if and only if $(L, \mu) \in \mathbf{U}\sigma\mathbf{Frm}$.

The functors \mathcal{H} and Coz may also be used to achieve the above result, albeit rather circuitously as follows. If $(L, \mu) \in \mathbf{N}\sigma\mathbf{Frm}$ is strong and totally bounded, then $(\mathcal{H}L, \mathcal{H}\mu) \in \mathbf{NFrm}$ is also strong ([12: Lemma 3.5]) and totally bounded by Lemma 4.1, hence a (separable) uniform frame ([10: Theorem 6.1]). Then $(\operatorname{Coz}_u \mathcal{H}L, \operatorname{Coz}_u \mathcal{H}\mu) = (\operatorname{Coz} \mathcal{H}L, \operatorname{Coz} \mathcal{H}\mu)$ is a uniform σ -frame ([17: Proposition 4.5]). Since $(L, \mu) \simeq (\operatorname{Coz} \mathcal{H}L, \operatorname{Coz} \mathcal{H}\mu)$ ([12: Lemma 3.7]), $(L, \mu) \in \mathbf{U}\sigma\mathbf{Frm}$.

We observe the following based on the discussion above. If (L, μ) is totally bounded and strong then so is the nearness frame $(\mathcal{H}L, \mathcal{H}\mu)$. Since $(\mathcal{H}L, \mathcal{H}\mu)$ is now a totally bounded uniform frame, by [2: Proposition 5], the completion $C(\mathcal{H}L)$ is compact (hence Lindelöf so that L is super strong) and thus $C\mathcal{H}\mu = \text{cov}(\mathcal{H}L)$ i.e. the nearness on the completion is fine. Hence, $C_{\sigma}(L,\mu) = (\text{Coz}(C\mathcal{H}L), \text{Coz}(\text{cov}(\mathcal{H}L)))$ the completion of the strong totally bounded nearness σ -frame is compact. Now consider the completion $C_{\sigma}(L,\mu)$ of a super strong nearness σ -frame. If $C_{\sigma}(L,\mu)$ is compact, then unpacking the completion from Theorem 3.1 we see that $\text{Coz}(C(\mathcal{H}L))$ is compact. Applying the functor \mathcal{H} makes $\mathcal{H} \text{Coz}(C(\mathcal{H}L))$ a compact nearness frame. However, $C(\mathcal{H}L) \simeq \mathcal{H} \text{Coz}(C(\mathcal{H}L))$ since $C(\mathcal{H}L)$ is separable strong and Lindelöf ([12: Lemma 3.8]). Since $C(\mathcal{H}L)$ is the completion of $\mathcal{H}L$, compactness renders $\mathcal{H}L$ totally bounded and uniform ([2: Proposition 5]). Consequently, $(\text{Coz}\,\mathcal{H}L, \text{Coz}\,\mathcal{H}\mu) \simeq (L,\mu)$ is a totally bounded uniform σ -frame. We have thus shown the following.

Theorem 4.1. For any super strong nearness σ -frame L its completion $C_{\sigma}L$ is compact if and only if L is a totally bounded uniform σ -frame.

Lemma 4.1 above shows that the functor \mathcal{H} preserves total boundedness. For any Lindelöf nearness frame (L, μ) , $(\operatorname{Coz} L, \operatorname{Coz} \mu)$ is a nearness σ -frame by [12: Theorem 3.1]. We show next that the functor Coz also preserves total boundedness.

Lemma 4.3. If (L, μ) is a totally bounded Lindelöf nearness frame, then $(\operatorname{Coz} L, \operatorname{Coz} \mu)$ is a totally bounded nearness σ -frame.

Proof. Let $A \in \operatorname{Coz} \mu$, then $A \subseteq_c \operatorname{Coz} L$ and $A \in \mu$. We may then find a finite $B \in \mu$ such that $B \leq A$ since (L, μ) is totally bounded. Then for each $b \in B$ there is $a_b \in A$ such that $b \leq a_b$. Then $B \leq \overline{A} = \{a_b : b \in B\}$ so that $\overline{A} \in \mu$. Moreover, $\overline{A} \subseteq_f \operatorname{Coz} L$ so that $\overline{A} \in \operatorname{Coz} \mu$. Since $\overline{A} \leq A$, $(\operatorname{Coz} L, \operatorname{Coz} \mu)$ is a totally bounded nearness σ -frame.

For any nearness σ -frame (L, μ) consider the totally bounded nearness frames $(\mathcal{H}L, \mathcal{H}\mu_t)$ and $(\mathcal{H}L, (\mathcal{H}\mu)_*)$. We show below that the totally bounded coreflection of the nearness frame $(\mathcal{H}L, \mathcal{H}\mu)$ is precisely $(\mathcal{H}L, \mathcal{H}\mu_t)$. For any nearness frame or nearness σ -frame L, let τL denote its totally bounded coreflection. Also, denote the nearness of a nearness frame (or nearness σ -frame) M by $\mathfrak{N}M$.

Theorem 4.2. For any nearness σ -frame L, $\mathcal{H}(\tau L) = \tau(\mathcal{H}L)$.

Proof. Clearly, the underlying frames of $\mathcal{H}(\tau L)$ and $\tau(\mathcal{H}L)$ coincide. So it remains to show that $\mathfrak{N}(\mathcal{H}(\tau L)) = \tau(\mathfrak{N}(\mathcal{H}L))$. Let $\mathcal{A} \in \mathfrak{N}(\mathcal{H}(\tau L))$. Then there exists a finite uniform cover A of L such that $\downarrow A \leq \mathcal{A}$. Now, $\downarrow A$ is a finite uniform cover of $\mathcal{H}L$, and hence a uniform cover of $\tau(\mathcal{H}L)$. Therefore $\mathcal{A} \in \tau(\mathfrak{N}(\mathcal{H}L))$, and hence $\mathfrak{N}(\mathcal{H}(\tau L)) \subseteq \tau(\mathfrak{N}(\mathcal{H}L))$.

On the other hand, let $\mathcal{B} \in \tau(\mathfrak{N}(\mathcal{H}L))$. Consider any finite uniform cover $\{J_1, \ldots, J_m\}$ of $\mathcal{H}L$ refining \mathcal{B} . Then pick a uniform cover B of L such that

$$\downarrow B \leq \{J_1, \ldots, J_m\}.$$

For eack $k \in \{1, \ldots, m\}$, let

$$B^{(k)} = \{ x \in B : \ \downarrow x \subseteq J_k \},\$$

and put $b_k = \bigvee B^{(k)}$. Then the set $\overline{B} = \{b_1, \dots, b_k\}$ is a uniform cover of L (it is refined by B), and so \overline{B} is a uniform cover of τL such that $\bigcup \overline{B} \leq \mathcal{B}$. Thus, $\mathcal{B} \in \mathfrak{N}(\mathcal{H}(\tau L))$; establishing the other inclusion.

A direct internal description of the compact regular coreflection of a nearness σ -frame is presented in [10]. For a nearness σ -frame (L,μ) , the compact σ -frame $\mathfrak{MR}_{\sigma}L$ of all countably generated uniformly normally regular ideals is established as the Samuel compactification of (L,μ) with coreflection map $\varrho \colon \mathfrak{MR}_{\sigma}L \longrightarrow (L,\mu)$ given by join. An ideal J of L is uniformly normally regular if for each $x \in J$, $x \blacktriangleleft y$ for some $y \in J$ where $x \blacktriangleleft y$ means that there is a normal μ -cover A such that $Ax \leq y$. $A \in \mu$ is normal if there is a sequence $(A_n) \subseteq \mu$ such that $A = A_1$ and $A_{n+1} \leq^* A_n$ for each n. We now provide an external characterization of the Samuel compactification of a nearness σ -frame required for the purpose of our remaining results.

In [1], for a nearness frame (L, μ) its uniform coreflection $(\mathcal{U}L, \mathcal{U}\mu)$ is constructed with coreflection map given by the inclusion $j: \mathcal{U}L \longrightarrow L$. Also, the frame $\mathfrak{J}L$ of all ideals of L is considered and the subframe $\mathfrak{NR}L$ of all normally regular ideals is shown to be isomorphic to the Samuel compactification of the

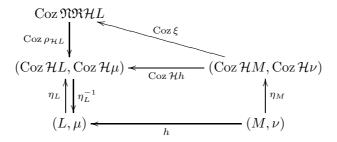
uniform coreflection of (L, μ) i.e. $\mathfrak{MRL} \simeq \mathfrak{RUL}$ ([1: Theorem 3,3]). The description of the Samuel compactification $\mathfrak{R}M$ of a uniform frame M is given by Banaschewski and Pultr in [5]. Subsequent to this, [1] establishes \mathfrak{RUL} as the Samuel compactification of the nearness frame (L, μ) . Now, for a nearness σ -frame (L, μ) we may consider the compact regular coreflection \mathfrak{RUHL} of the nearness frame $(\mathcal{H}L, \mathcal{H}\mu)$ with coreflection map $\rho_{\mathcal{UHL}} : \mathfrak{RUHL} \longrightarrow \mathcal{UHL}$ given by join. Consequently, $\operatorname{Coz} \mathfrak{RUHL}$ is a compact nearness σ -frame. We can then show that $\operatorname{Coz} \mathfrak{RUHL}$ is the Samuel compactification of the nearness σ -frame (L, μ) .

Theorem 4.3. $\operatorname{Coz} \mathfrak{R} \mathcal{U} \mathcal{H} L \simeq \mathfrak{N} \mathfrak{R}_{\sigma} L$.

Proof. It is shown in [11] that the Samuel compactification of a nearness frame is the same as the completion of the totally bounded coreflection of its uniform coreflection. Thus for the nearness frame $(\mathcal{H}L,\mathcal{H}\mu)$, $\mathfrak{NSH}L \simeq C(\mathcal{UHL},(\mathcal{UH}\mu)_*)$ with the following from [11] for the nearness frame of all σ -ideals of L

$$\begin{array}{cccc} C(\mathcal{U}\mathcal{H}L,(\mathcal{U}\mathcal{H}\mu)_*) & \simeq & \mathfrak{R}\mathcal{U}\mathcal{H}L & \simeq & \mathfrak{N}\mathfrak{R}\mathcal{H}L \\ & & & & & & & & & \\ \gamma_{\mathcal{U}\mathcal{H}L} & & & & & & & \\ (\mathcal{U}\mathcal{H}L,(\mathcal{U}\mathcal{H}\mu)_*) & \xrightarrow[\mathrm{id}_{\mathcal{U}\mathcal{H}L}]{}} (\mathcal{U}\mathcal{H}L,\mathcal{U}\mathcal{H}\mu) & \xrightarrow{j_{\mathcal{H}L}} (\mathcal{H}L,\mathcal{H}\mu) \end{array}$$

Now if (M, ν) is any compact nearness σ -frame and $h: (M, \nu) \longrightarrow (L, \mu)$ is uniform then $(\mathcal{H}M, \mathcal{H}\nu)$ is a compact nearness frame so that there is a unique uniform homomorphism $\xi: (\mathcal{H}M, \mathcal{H}\nu) \longrightarrow \mathfrak{N}\mathcal{H}L$ such that $\rho_{\mathcal{H}L} \circ \xi = \mathcal{H}h$. Consequently, following the diagram below,



 $\eta_L^{-1} \circ \operatorname{Coz} \rho_{\mathcal{H}L} \circ \operatorname{Coz} \xi \eta_M = h$ with $\operatorname{Coz} \xi \circ \eta_M$ unique. Thus the uniform homomorphism $\eta_L^{-1} \circ \operatorname{Coz} \rho_{\mathcal{H}L} : \operatorname{Coz} \mathfrak{N}\mathfrak{R}\mathcal{H}L \longrightarrow (L,\mu)$ is universal with respect to homomorphisms from compact nearness σ -frames to (L,μ) . We have thus established $\operatorname{Coz} \mathfrak{N}\mathcal{U}\mathcal{H}L \simeq \operatorname{Coz} \mathfrak{N}\mathfrak{R}\mathcal{H}L$ as the Samuel compactification of the nearness σ -frame (L,μ) . Consequently, $\operatorname{Coz} \mathfrak{N}\mathcal{U}\mathcal{H}L \simeq \mathfrak{N}\mathfrak{R}_{\sigma}L$.

We can now show the correlation between the Samuel compactification, total boundedness and the completion of a super strong nearness σ -frame. Our concluding result confirms that in the category of super strong nearness σ -frames, the Samuel compactification of a super strong nearness σ -frame with strong totally bounded coreflection is the same as the completion of its totally bounded coreflection. If μ and μ_t are strong we call (L, μ) a uniformly normal nearness σ -frame, the concept and terminology being a transition from [7].

THEOREM 4.4. Let $(L, \mu) \in \mathbf{SSN}\sigma\mathbf{Frm}$ be uniformly normal. Then $\mathfrak{NR}_{\sigma}L \simeq C_{\sigma}(L, \mu_t)$.

Proof. If $(L, \mu) \in \mathbf{N}\sigma\mathbf{Frm}$ is uniformly normal, then so is the nearness frame $(\mathcal{H}L, \mathcal{H}\mu)$ (Lemma 4.1, Theorem 4.2 and [12: Lemma 3.5]). Then $(\mathcal{H}L, (\mathcal{H}\mu)_*)$ is a totally bounded strong nearness frame, hence uniform. Then by [5: Proposition 3], $\mathfrak{N}\mathfrak{R}\mathcal{H}L \simeq C(\mathcal{H}L, (\mathcal{H}\mu)_*)$. Since $(\mathcal{H}L, (\mathcal{H}\mu)_*)$ and (L, μ_t) are uniform, $\operatorname{Coz}\mathfrak{N}\mathfrak{R}\mathcal{H}L \simeq \operatorname{Coz} C(\mathcal{H}L, (\mathcal{H}\mu)_*) = C_{\sigma}(L, \mu_t)$ (see [14] or [17: Proposition 4.7]). Hence $\mathfrak{N}\mathfrak{R}_{\sigma}L \simeq C_{\sigma}(L, \mu_t)$.

Acknowledgement. Thanks are extended to the referee for pointing out a gap in the original submission and recognition is indebted for suggesting the category of super strong nearness σ -frames which substantially improved the final version of the paper.

REFERENCES

- BABOOLAL, D.—ORI, R. G.: The Samuel Compactification and Uniform Coreflection of Nearness Frames. Proc. Symp. on Categorical Topology, University of Cape Town, Cape Town, 1994.
- [2] BANASCHEWSKI, B.: Completion in Pointfree Topology. Lecture Notes in Math. and Appl. Math., Univ. of Cape Town, SoCat 94, No. 2/1996.
- [3] BANASCHEWSKI, B.: Uniform completion in pointfree topology. In: Topological and Algebraic Structures in Fuzzy Sets, Vol. 20. Trends Log. Stud. Log. Libr., Kluwer Acad. Publ., Dordrecht, 2003, pp. 19–56.
- [4] BANASCHEWSKI, B.—GILMOUR, C.: Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37 (1996), 577–587.
- [5] BANASCHEWSKI, B.—PULTR, A.: Samuel compactification and completion of uniform frames, Math. Proc. Cambridge Philos. Soc. 108 (1990), 63–78.
- [6] BANASCHEWSKI, B.—PULTR, A.: Cauchy points of uniform and nearness frames, Quaest. Math. 19 (1996), 101–127.
- [7] DUBE, T.: A note on complete regularity and normality, Quaest. Math. 19 (1996), 467–478.
- [8] JOHNSTONE, P. T.: Stone Spaces. Cambridge Stud. Adv. Math. 3, Cambridge Univ. Press, Cambridge, 1982.
- [9] MADDEN, J.—VERMEER, H.: Lindelöf locales and Realcompactness, Math. Proc. Cambridge Philos. Soc. 99 (1986), 473–480.

- [10] NAIDOO, I.: Samuel compactification and uniform coreflection of nearness σ-frames, Czechoslovak Math. J. 56(131) (2006), 1229–1241.
- [11] NAIDOO, I.: Remarks on some coreflexive subcategories of nearness frames, Acta Math. Hungar. 111 (2006), 107–117.
- [12] NAIDOO, I.: Aspects of nearness in σ -frames, Quaest. Math. 30 (2007), 133–145.
- [13] NAIDOO, I.: Complete nearness σ-frames, Acta. Math. Hungar. 121 (2008), 171–186.
- [14] NAIDOO, I.: Uniformly locally connected uniform σ -frames, Acta Math. Hungar. 122 (2009), 373–385.
- [15] PULTR, A.: Frames. In: Handbook of Algebra, Vol 3 (M. Hazewinkel, ed.), North Holland, Amsterdam, 2003, pp. 791–857.
- [16] WALTERS, J. L.: Uniform Sigma Frames and the Cozero Part of Uniform Frames. Masters Dissertation, University of Cape Town, 1990.
- [17] WALTERS, J. L.: Compactifications and uniformities on σ -frames, Comment. Math. Univ. Carolin. **32** (1991), 189–198.
- [18] WALTERS-WAYLAND, J. L.: Completeness and Nearly Fine Uniform Frames. PhD Thesis, Univ. Catholique de Louvain, 1996.
- [19] WALTERS-WAYLAND, J. L.: A Shirota Theorem for frames, Appl. Categ. Structures 7 (1999), 271–277.

Received 23. 5. 2010 Accepted 22. 2. 2011 Department of Mathematical Sciences University of South Africa P.O. Box 392 UNISA 0003 SOUTH AFRICA

E-mail: naidoi@unisa.ac.za