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ABSTRACT. We show that any decoherence functional D can be represented
by a spanning vector-valued measure on a complex Hilbert space. Moreover, this
representation is unique up to an isomorphism when the system is finite. We
consider the natural map U from the history Hilbert space K to the standard
Hilbert space H of the usual quantum formulation. We show that U is an iso-
morphism from K onto a closed subspace of H and that U is an isomorphism

from K onto H if and only if the representation is spanning. We then apply this
work to show that a quantum measure has a Hilbert space representation if and
only if it is strongly positive. We also discuss classical decoherence functionals,
operator-valued measures and quantum operator measures.
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1. Introduction

In the usual quantum description of a physical system, we begin with a com-
plex Hilbert space H. The states of the system are represented by density
operators, the observables by self-adjoint operators and the dynamics by uni-
tary operators on H. In the history approach to quantum mechanics and in
applications such as quantum gravity and cosmology, one defines a useful con-
cept called a decoherence functional D [3, 7, 8, 11]. It is believed by researchers
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in these fields that D encodes important information about the system. For
example, D can be employed to find the interference between quantum objects
and can also be used to find a quantum measure that quantifies the propensity
that quantum events occur [2,5,6,11].

Because of the fundamental importance of D, it appears to be useful to re-
verse this formalism. We propose to begin with a decoherence functional D with
natural properties and to then reconstruct the usual quantum formulation. We
consider two types of reconstruction that we call vector and operator represen-
tations of D. We show that there always exists a spanning vector representation
of D and when the system is finite, this representation is unique up to an iso-
morphism. For a finite system, cyclic operator representations always exist but
for infinite systems, their existence is unknown.

Besides the standard Hilbert space H of the usual quantum formulation, there
exists a history Hilbert space K that is directly associated with D [3]. Moreover,
we can define a natural map U : K → H [3]. We show that U is an isomorphism
from K onto a closed subspace of H and that U is an isomorphism from K onto
H if and only if the vector representation is spanning.

We also present several characterizations of classical decoherence functionals.
We show that a quantum measure has a Hilbert space representation if and
only if it is strongly positive. We briefly consider quantum operator measures
generated by decoherence operators.

2. Vector representations

Let (Ω,A) be a measurable space. The elements of Ω represent outcomes and
the sets in the σ-algebra A represent events for a physical system or process.
A decoherence functional D : A×A → C from the Cartesian product of A with
itself into the complex numbers satisfies the following conditions [3,8,12]:

(D1) D(Ω,Ω) = 1,

(D2) A �→ D(A,B) is a complex measure for all B ∈ A.

(D3) If A1, . . . , An ∈ A, then D(Ai, Aj) is a positive semi-definite n×n matrix.

Condition (D1) is an inessential normalization property that does not affect
any of the results in this paper. Notice that (D3) implies D(A,A) ≥ 0 and

D(A,B) = D(B,A).

We now give two examples of decoherence functionals. If ν : A → C is a
complex measure satisfying ν(Ω) = 1, we can view ν as an amplitude measure
for a physical system. It is easy to check that D : A×A → C given by D(A,B) =
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ν(A)ν(B) is a decoherence functional. The map µ : A → R
+ given by

µ(A) = D(A,A) = |ν(A)|2 (2.1)

is an example of a quantum measure [2, 5, 6, 11, 12] and these will be treated in
Section 6. This is an example of a vector representation of D.

The second example is more general and illustrates an operator representation
of D. Let H be a complex Hilbert and denote the set of bounded linear operators
fromH to H by B(H). We say that E : A → B(H) is an operator-valued measure
if for every sequence of mutually disjoint sets Ai ∈ A and every φ, φ′ ∈ H we
have 〈E(⋃Ai

)
φ, φ′

〉
=
∑

〈E(Ai)φ, φ
′〉

where the summation converges absolutely. If E : A → B(H) is an operator-
valued measure and ψ ∈ H is a unit vector, we define D : A×A → C by

D(A,B) = 〈E(A)ψ, E(B)ψ〉. (2.2)

If D(Ω,Ω) = 1, then it is easy to check that D is a decoherence functional. If
the closed span

span {E(A)ψ : A ∈ A} = H

we say that ψ is a cyclic vector for E . Again, the map µ : A → R
+ defined by

µ(A) = D(A,A) = ‖E(A)ψ‖2 (2.3)

is an example of a quantum measure.

����� 2.1� If D is an n× n positive semi-definite matrix, then there exists a
complex Hilbert space H and a spanning set of vectors ei ∈ H, i = 1, . . . , n, such
that Dij = 〈ei, ej〉. Also, if Dij = 〈fi, fj〉 for a spanning set of vectors fi in a
complex Hilbert space K, then there is a unitary operator U : H → K such that
Uei = fi, i = 1, . . . , n.

P r o o f. Since D is positive semi-definite, the map

〈f, g〉 =
∑

Dijf(i)g(j)

becomes an indefinite inner product on the vector space C
n. Defining ‖f‖ =

〈f, f〉1/2, let N ⊆ C
n be the subspace

N = {f ∈ C
n : ‖f‖ = 0} .

Letting H be the quotient space H = Cn/N , the elements of H become [f ] =
f+N , f ∈ C

n. Then H is a finite-dimensional complex Hilbert space with inner
product 〈[f ], [g]〉 = 〈f, g〉. Letting e1, . . . , en be the standard basis for C

n we
have that

〈[ei], [ej]〉 =
∑

Drsei(r)ej(s) = Dij .
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Since {e1, . . . , en} spans C
n, {[e1], . . . , [en]} spans H. We can assume without

loss of generality that {[e1], . . . , [em]} forms a basis for H, m ≤ n. Then

dimH = m = n− dimN = rank(D).

Now suppose that Dij = 〈fi, fj〉 for a spanning set of vectors fi ∈ K, i =
1, . . . , n. It is well-known that rank(D) is the number of linearly independent
rows of D. Since {[e1], . . . , [em]} are linearly independent we have that the first
m rows of D are linearly independent. We now show that f1, . . . , fm are linearly

independent. Suppose that
m∑
i=1

αifi = 0 for αi ∈ C. Then
m∑
i=1

αi〈fi, fj〉 = 0 for

j = 1, . . . , n, and hence,

α1 (〈f1, f1〉, . . . , 〈f1, fn〉) + · · ·+ αm (〈fm, f1〉, . . . , 〈fm, fn〉) = 0.

We conclude that α1, . . . , αm = 0 so f1, . . . , fm are linearly independent. It
follows that f1, . . . , fm form a basis for K. Define the operator U : H → K by
U [ei] = fi, i = 1, . . . ,m, and extend by linearity. We then have that

〈U [ei], U [ej]〉 = 〈fi, fj〉 = Dij = 〈[ei], [ej]〉
i = 1, . . . ,m. Since any [f ] ∈ H has a unique representation

[f ] =

m∑
i=1

αi[ei]

we have that

‖U [f ]‖2 =
〈∑

αiU [ei],
∑

αjU [ej]
〉
=
∑

αiαj〈U [ei], U [ej]〉
=
∑

αiαj〈[ei], [ej]〉 = 〈[f ], [f ]〉 = ‖f‖2 .
Since U is surjective, U is unitary. �

A map E : A → H is a vector-valued measure on H if for any sequence of
mutually disjoint sets Ai ∈ A we have that

lim
n→∞

n∑
i=1

E(Ai) = E(⋃Ai

)
in the norm topology. A vector representation for a decoherence functional
D : A × A → C is a pair (H, E) where E : A → H is a vector-valued measure
satisfying

D(A,B) = 〈E(A), E(B)〉 (2.4)

for all A,B ∈ A. If span {E(A) : A ∈ A} = H, then (H, E) is called a spanning
vector representation for D. If Ω = {ω1, . . . , ωn}, then we let A = 2Ω and call
(Ω,A) a finite measurable space. It is clear that any map D : A×A → C satis-
fying D(Ω,Ω) = 1 and (2.4) is a decoherence functional. The next two results
show that the converse holds. We use the notation D(ωi, ωj) = D({ωi} , {ωj})
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������� 2.2� If (Ω,A) is a finite measurable space and D : A × A → C is a
decoherence functional, then there exists a spanning vector representation (H, E)
for D. Moreover, if (K,F) is a spanning vector representation for D, then there
is a unitary operator U : H → K such that UE(A) = F(A) for every A ∈ A.

P r o o f. Since D is a decoherence functional, we have that Dij = D(ωi, ωj) is
positive semi-definite. By Lemma 2.1, there exists a spanning set e1, . . . , en in
a Hilbert space H such that Dij = 〈ei, ej〉. For A ∈ A, define E : A → H by

E(A) =
∑

{ei : ωi ∈ A} .
Then E is a vector-valued measure and we have

D(A,B) =
∑

{D(ωi, ωj) : ωi ∈ A, ωj ∈ B} =
∑
ij

{〈ei, ej〉 : ωi ∈ A, ωj ∈ B}

=
〈∑

{ei : ωi ∈ A} ,
∑

{ej : ωj ∈ B}
〉
= 〈E(A), E(B)〉.

Hence (H, E) is a spanning vector representation of D. For the second statement
of the theorem, let ei = E(ωi), fi = F(ωi), i = 1, . . . , n. It is clear that
span {e1, . . . , en} = H and similarly span {f1, . . . , fn} = K. By Lemma 2.1,
there is a unitary operator U : H → K such that Uei = fi. Therefore,

UE(A) = U
[∑

{ei : ωi ∈ A}
]
=
∑

{Uei : ωi ∈ A}
=
∑

{fi : ωi ∈ A} = F(A)

for all A ∈ A. �

For an arbitrary measurable space (Ω,A), we cannot use the method in the
proof of Theorem 2.2. Moreover, we do not know whether the uniqueness result
in Theorem 2.2 holds in general.

������� 2.3� If (Ω,A) is a measurable space and D : A × A → C is a de-
coherence functional, then there exists a spanning vector representation (H, E)
for D.

P r o o f. Let S be the set of all complex-valued measurable functions on Ω with
a finite number of values (simple functions). Any f ∈ S has a canonical rep-
resentation f =

∑
aiχAi

where ai 
= aj , Ai ∩ Aj = ∅ for i 
= j and ai 
= 0,
i, j = 1, . . . , n. If f =

∑
aiχAi

, g =
∑
bjχBj

are canonical representations, we
define

〈f, g〉 =
∑
i,j

aibjD(Ai, Bj). (2.5)

It is straightforward to show that (2.5) holds even if the representations of f
and g are not canonical. It is also easy to verify that 〈· , ·〉 is an indefinite inner
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product. As in Lemma 2.1, we let N be the subspace of S given by

N = {f ∈ S : ‖f‖ = 0} .
Letting H0 = S/N , the elements of H0 are the equivalence classes [f ] = f +N ,
f ∈ S. We define the inner product 〈· , ·〉 on H0 by 〈[f ], [g]〉 = 〈f, g〉. Letting
H be the completion of H0 we have that H0 is a dense subspace of the Hilbert
space H. Defining E : A → H by E(A) = [χA] we have that

span {E(A) : A ∈ A} = H

and

〈E(A), E(B)〉 = 〈χA, χB〉 = D(A,B).

To show that E is a vector-valued measure, let Ai ∈ A be mutually disjoint,
i = 1, 2, . . . . We then have that∥∥∥∥E (

⋃
Ai)−

n∑
i=1

E(Ai)

∥∥∥∥
2

= ‖E (
⋃
Ai)‖2 +

∥∥∥∥∥
n∑

i=1

E(Ai)

∥∥∥∥∥
2

− 2Re

〈
E (
⋃
Ai) ,

n∑
i=1

E(Ai)

〉

= D
(⋃

Ai,
⋃
Ai

)
+

n∑
i,j=1

D(Ai, Aj)− 2Re
n∑

i=1
D
(⋃

Ai, Ai

)
.

Applying Condition (D2) we conclude that

lim
n→∞

n∑
i=1

E(Ai) = E(⋃Ai

)
in the norm topology. �

Results similar to Theorems 2.2 and 2.3 have appeared in [1].

3. Operator representations

An operator representation for a decoherence functional D : A × A → C is
a triple (H, E , ψ) where H is a complex Hilbert space, ψ ∈ H is a unit vector
and E : A → B(H) is an operator-valued measure such that (2.2) holds for
every A,B ∈ A. We say that (H, E , ψ) is cyclic if ψ is a cyclic vector for E .
We call E(A) the event or class operator at A. It is not hard to show that
if (H, E , ψ) is an operator representation for D, then F(A) = E(A)ψ gives a
vector representation for D. However, the operator representation gives more
information because it specifies the class operator at every A ∈ A. Moreover,
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we do not know whether every vector representation (H,F) has a corresponding
operator representation (H, E , ψ) such that F(A) = E(A)ψ for all A ∈ A. Two
operator representations (H, E , ψ) and (K,F , φ) are equivalent if there exists a
unitary operator U : H → K such that Uψ = φ and UE(A)U∗ = F(A) for all
A ∈ A. For example, if (H, E , ψ) is an operator representation for D and α ∈ C

with |α| = 1, then (H, E , αψ) is an equivalent operator representation for D. In
this case, the unitary operator is U = αI.

We shall show that a decoherence functional on a finite measurable space
possesses an operator representation. It is an open problem whether this result
holds for an arbitrary decoherence functional. It should be pointed out that
although finiteness is a strong restriction, there are important applications for
finite quantum systems. For example, models for quantum computation and
information are usually finite. Moreover, measurement based quantum compu-
tation has a structure that is similar to that of the history approach to quantum
mechanics [10].

������� 3.1� If (Ω,A) is a finite measurable space and D : A × A → C is a
decoherence functional, then there exists a cyclic operator representation for D.

P r o o f. By Lemma 2.1, there exists a spanning set e1, . . . , en in a Hilbert space
H such that D(ωi, ωj) = 〈ei, ej〉, i, j = 1, . . . , n. We show by induction on m
that there is a φ ∈ H such that 〈ei, φ〉 
= 0 for all ei 
= 0, i = 1, . . . ,m ≤ n. The
result clearly holds for m = 1. Assume that the result holds for m. Then there
is a φ such that 〈ei, φ〉 
= 0 for all ei 
= 0, i = 1, . . . ,m. Suppose em+1 
= 0 and
〈em+1, φ〉 = 0. By continuity, we can find a small ball B ⊆ H centered at φ such
that 〈ei, f〉 
= 0 for all f ∈ B and ei 
= 0, i = 1, . . . ,m. If 〈em+1, f〉 = 0 for all
f ∈ B then em+1 = 0 which is a contradiction. Hence, there is an f ∈ B such
that 〈ei, f〉 
= 0 for all ei 
= 0, i = 1, . . . ,m + 1. This completes the induction
proof. Letting ψ = φ/‖φ‖ we conclude that ψ ∈ H is a unit vector satisfying
〈ei, ψ〉 
= 0 for all ei 
= 0, i = 1, . . . , n. Define Pi ∈ B(H), i = 1, . . . , n, as follows.
If ei = 0, then Pi = 0 and if ei 
= 0, then

Pi =
1

〈ei, ψ〉 |ei〉〈ei|.

We then have that
〈Piψ, Pjψ〉 = D(ωi, ωj)

for i, j = 1, . . . n. Defining E : A → B(H) by

E(A) =
∑

{Pi : ωi ∈ A}
we have that (H, E , ψ) is a cyclic operator representation for D. �

We now give an example which shows that there may exist inequivalent cyclic
operator representations for D. Let Ω = {1, 2} and let D : 2Ω × 2Ω → C be the
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decoherence functional given by D(∅, A) = D(A, ∅) = 0, D(Ω,Ω) = 1

D(Ω, 1) = D(1,Ω) = 2/5

D(Ω, 2) = D(2,Ω) = 3/5

and D(i, j) are the components of the matrix

1

5

[
1 1

1 2

]
.

Let H = C
2 with the usual inner product and standard basis e1, e2. Define the

operator-valued measure F : 2Ω → H by F(∅) = 0, F(1) = c|e1〉〈e1|, F(2) = cI
and

F(Ω) = c|e1〉〈e1|+ cI

where c =
√
2/5 . Let φ be the unit vector φ = 2−1/2(1, 1). Since F(1)φ = c√

2
e1

and F(2)φ = cφ we see that φ is cyclic for F . Moreover,

〈F(1)φ,F(1)φ〉 = c2

2
=

1

5
= D(1, 1)

〈F(2), φ,F(2)φ〉 = c2 =
2

5
= D(2, 2)

〈F(1)φ,F(2)φ〉 = c2√
2
〈e1, φ〉 = c2

2
=

1

5
= D(1, 2) = D(2, 1).

It follows that 〈F(A),F(B)〉 = D(A,B) for all A,B ∈ 2Ω. We conclude that
(H,F , φ) is a cyclic operator representation for D. Since rank (F(2)) = 2 and
rank (E(2)) = 1 where E(2) is the operator defined in Theorem 3.1, (H,F , φ) is
not equivalent to (H, E , ψ) of Theorem 3.1.

4. History Hilbert space

Let D : A× A → C be a decoherence functional and K0 the set of complex-
valued functions on A that vanish except for a finite number of sets in A. For
f, g ∈ K0 define

〈f, g〉 =
∑

A,B∈A
D(A,B)f(A)g(B).

As before, we define the subspace

N = {f ∈ K0 : ‖f‖ = 0} .
The quotient space K1 = K0/N consists of equivalence classes [f ] = f + N ,
f ∈ K0. Again 〈[f ], [g]〉 = 〈f, g〉 becomes an inner product on K1. We denote
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the completion of K1 by K and call K the history Hilbert space for D [3]. The
space K corresponds to the history approach to quantum mechanics [8,9,12].

Let (H, E) be a vector representation for D. We think of H as the standard
Hilbert space of the usual quantum formulation. A natural connection between
K and H was introduced in [2]. We define the natural map U : K0 → H by

Uf =
∑
A∈A

f(A)E(A).

It is clear that U is linear and moreover,

〈Uf, Ug〉 =
〈∑

A∈A
f(A)E(A),

∑
B∈A

g(B)E(B)

〉

=
∑

A,B∈A
f(A)g(B)〈E(A), E(B)〉

=
∑

A,B∈A
f(A)g(B)D(A,B) = 〈f, g〉.

Hence, U : K1 → H given by U [f ] = Uf is well-defined and is an isometry. It
follows that U has a unique extension to an isometry, that we also denote by
U , from K into H. The next result shows that K is isomorphic to a closed
subspace of H and characterizes when K is isomorphic to all of H. This proves
a conjecture posed in [3].

������� 4.1� The operator P = UU∗ is an orthogonal projection on H and
U : K → PH is unitary. The natural map U : K → H is unitary if and only if
(H, E) is spanning.

P r o o f. The operator P is clearly self-adjoint and since U∗U = IK we have that

P 2 = UU∗UU∗ = UU∗ = P.

Clearly PH ⊆ Range(U ). Conversely, if φ ∈ Range(U ) then φ = Uφ′ for some
φ′ ∈ K. Again, U∗U = IK gives

Pφ = PUφ′ = UU∗Uφ = Uφ′ = φ.

Hence, PH = Range(U ). Thus, U : K → PH is unitary from K to the closed
subspace PH of H. Now it is clear that

span {E(A) : A ∈ A} = Range(U ).

Hence, Range(U ) = H if and only if E is spanning. It follows that U : K → H
is unitary if and only if (H, E) is spanning. �

We can proceed in a similar way for an operator representation (H, E , ψ) forD.
Then the corresponding vector representation (H,F) given by F(A) = E(A)ψ
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is spanning if and only if (H, E , ψ) is cyclic. By Theorem 4.1 the natural map
U : K → H given by

Uf =
∑
A∈A

f(A)E(A)ψ (4.1)

is unitary if and only if (H, E) is cyclic.
We now introduce an example presented in [3]. Consider a system consisting

of a single particle that has n possible positions {1, 2, . . . , n} at any time. We
assume that the particle evolves in N − 1 discrete time steps at times 0 = t1 <
t2 < · · · < tN = T . Each history ω of the system is represented by an N -tuple
of integers ω = (ω1, . . . , ωN ) with 1 ≤ ωi ≤ n, i = 1, . . . , N , where ωi is the
location of the particle at time ti. The corresponding sample space Ω is the
collection of nN possible histories and A = 2Ω = {A : A ⊆ Ω}. For this example,
the standard Hilbert space is H = Cn with the usual inner product

〈φ, φ′〉 =
n∑

i=1

φiφ′i

where φ = (φ1, . . . , φn). The initial state is given by a fixed unit vector ψ ∈ H.

To describe the decoherence functional, we assume that states propagate from
time t to time t′ according to a unitary evolution operator U (t′, t) that satisfies

U (t′′, t′)U (t′, t) = U (t′′, t).

Let P1, . . . , Pn be the projection operators given by

Pi(φ1, . . . , φn) = (0 . . . , 0, φi, 0, . . . , 0)

i = 1, . . . , n. These projections form the spectral measure for the position oper-
ator. For a path ω = (ω1, . . . , ωN ) we define the path operator

E(ω) = PωN
U (tN , tN−1)PωN−1

· · ·Pω3
U (t3, t2)Pω2

U (t2, t1)Pω1
. (4.2)

We next define the event operator (or class operator) E(A), A ∈ A, by

E(A) =
∑
ω∈A

E(ω).

Then E : A → B(H) becomes an operator-valued measure and (H, E , ψ) is an
operator representation for the decoherence functional D : A×A → C given by

D(A,B) = 〈E(A)ψ, E(B)ψ〉
So far we have presented the standard quantum formulation for the system.

We now construct the history Hilbert space K for the decoherence functional D
just defined. We have seen that the natural map U : K → H given by (4.1) is
an isometry from K into H. Theorem 4.1 tells us that U is unitary if and only
if (H, E , ψ) is cyclic. Another sufficient condition for U to be unitary is given in
[3]. We now show that this condition is also necessary.
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������� 4.2� For this example, U is unitary if and only if for every i =
1, . . . , n there exists an ω ∈ Ω such that

[E(ω)ψ] (i) 
= 0 (4.3)

P r o o f. Let
{
ψ1, . . . , ψn

}
be the standard basis for Cn. By (4.2) we have that

E(ω)ψ = c(ω)ψωN for some c(ω) ∈ C. If (4.3) holds, then E(ω)ψ = c(ω)ψi for
c(ω) 
= 0. It follows that ψ is cyclic so by Theorem 4.1, U is unitary. Conversely,
suppose [E(ω)ψ] (i0) = 0 for every ω ∈ Ω. It follows that if

φ ∈ span {E(A)ψ : A ∈ A}
then φ(i0) = 0. Hence, ψ is not cyclic so by Theorem 4.1, U is not unitary. �

5. Classical decoherence functionals

A decoherence functional D : A×A → C is weakly classical if µ(A) = D(A,A)
is a probability measure on A. A decoherence functional D : A × A → C is
classical if D(A,B) = µ(A ∩ B) for some probability measure on A. Of course,
D is weakly classical if D is classical.

������� 5.1�

(a) A decoherence functional D : A × A → C is weakly classical if and only
if there exists a probability measure µ : A → R+ such that ReD(A,B) =
µ(A ∩B).

(b) If D : A×A → C has the form D(A,B) = µ(A ∩ B) for some probability
measure µ : A → R+, then D is a classical decoherence functional.

P r o o f.

(a) If ReD(A,B) = µ(A ∩ B) for some probability measure µ, it is clear
that D is weakly classical. Conversely, suppose D is weakly classical so that
µ(A) = D(A,A) is a probability measure. By Theorem 2.3, there is spanning
vector representation (H, E) so that D(A,B) = 〈E(A), E(B)〉. If A,B ∈ A are
disjoint, then

〈E(A), E(A)〉+ 〈E(B), E(B)〉
= µ(A) + µ(B) = µ(A ∪ B)

= 〈E(A ∪ B), E(A ∪ B〉 = 〈E(A) + E(B), E(A) + E(B)〉
= 〈E(A), E(A)〉+ 〈E(B), E(B)〉+ 2Re 〈E(A), E(B)〉.

Hence,

ReD(A,B) = Re 〈E(A), E(B)〉 = 0.
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For arbitrary A,B ∈ A we have

ReD(A,B) = ReD [(A ∩B) ∪ (A ∩ B′), (A ∩B) ∪ (A′ ∩B)]

= Re [D(A ∩ B,A ∩B) +D(A ∩ B,A′ ∩ B)

+D(A ∩ B′, A ∩ B) +D(A ∩B′, A′ ∩ B)]

= ReD(A ∩B,A ∩ B) = µ(A ∩B).

(b) Suppose D(A,B) = µ(A ∩ B) for a probability measure µ : A → R
+.

We only need to show that D is a decoherence functional. It is clear that
D(Ω,Ω) = 1 and that A �→ D(A,B) is a complex measure for every B ∈ A. Let
A1, . . . , Ak ∈ A and let A0 be the Boolean algebra generated by {A1, . . . , Ak}.
Since |A0| < ∞, by Stone’s theorem there is a finite set Ω = {ω1, . . . , ωn}
and an isomorphism h : 2Ω → A0. Define D′ : 2Ω × 2Ω → C by D′(A,B) =
D (h(A), h(B)). In particular,

D′
ij = D′(ωi, ωj) = D (h(ωi), h(ωj)) .

Now,
∑
i,j
D′

ij = 1 and for i 
= j we have

D′
ij = D (h(ωi), h(ωj)) = µ (h(ωi) ∩ h(ωi)) = 0.

Hence, D′(ωi, ωj) = µ (h(ωi)) δij, i, j = 1, . . . , n so
[
D′

ij

]
is a positive semi-

definite matrix. It follows from the proof of Theorem 2.2 that there exists a
vector representation (H, E) such that

D′(ωi, ωj) = 〈E(ωi), E(ωj)〉
for i, j = 1, . . . , n. Hence, D′(A,B) = 〈E(A), E(B)〉 so D′ is a decoherence
functional. Hence,

D(Ai, Aj) = D′ (h−1(Ai), h
−1(Aj)

)
is a positive semi-definite matrix. We conclude that D is a decoherence func-
tional. �

������� 5.2� If D : A × A → C is a decoherence functional, the following
statements are equivalent.

(a) D is classical.

(b) D(A ∩B,C) = D(B,A ∩ C) for all A,B,C ∈ A.

(c) If A ∩B = ∅, then D(A,B) = 0.

(d) D has a spanning vector representation (H, E) where E(A) ⊥ E(B) when-
ever A ∩ B = ∅.
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P r o o f.

For (a) =⇒ (b), if D is classical, then D(A,B) = µ(A ∩ B) for a probability
measure µ : A → R

+. Hence

D(A ∩B,C) = µ ((A ∩B) ∩ C) = µ (B ∩ (A ∩ C)) = D(B,A ∩ C).
For (b) =⇒ (c), suppose (b) holds and A ∩B = ∅. We have that

D(A,B) = D(A ∩ B,B) = D(∅, B) = 0.

For (c) =⇒ (d), suppose (c) holds. By Theorem 2.3, D has a spanning vector
representation (H, E) such that D(A,B) = 〈E(A), E(B)〉 for all A,B ∈ A. If
A ∩ B = ∅, then D(A,B) = 0 so that E(A) ⊥ E(B).

For (d) =⇒ (a), suppose (d) holds. We conclude that

D(A,B) = 〈E(A), E(B)〉 = 〈E(A ∩ B) + E(A ∩B′), E(A ∩B) + E(B ∩A′)〉
= 〈E(A ∩ B), E(A ∩ B)〉 = ‖E(A ∩ B)‖2 .

Defining µ : A → R+ by µ(A) = ‖E(A)‖2 we have that D(A,B) = µ(A∩B). To
show that µ is a probability measure, we have

µ(Ω) = µ(Ω ∩ Ω) = D(Ω,Ω) = 1.

Moreover, if Ai ∈ A are mutually disjoint, then

µ (
⋃
Ai) = ‖E (

⋃
Ai)‖2 =

∥∥∥∥∥ lim
n→∞

n∑
i=1

E(Ai)

∥∥∥∥∥
2

= lim
n→∞

∥∥∥∥∥
n∑

i=1

E(Ai)

∥∥∥∥∥
2

= lim
n→∞

n∑
i=1

‖E(Ai)‖2 =

∞∑
i=1

µ(Ai). �

The importance of Theorem 5.2 is that it characterizes classical decoherence
functionals in terms of their vector representations. In fact, we have the following
corollary.

	���

��� 5.3� A decoherence functional D : A × A → C is classical if and
only if for any vector representation (H, E) for D we have E(A) ⊥ E(B) whenever
A ∩ B = ∅.

The following is another characterization of classicality.

	���

��� 5.4� A decoherence functional D is classical if and only if
D(A,B) = D(A ∩B,A ∩ B) for all A,B ∈ A.

P r o o f. If D(A,B) = D(A ∩B,A ∩ B), then A ∩B = ∅ implies that

D(A,B) = D(∅, ∅) = 0.
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By Theorem 5.2, D is classical. Conversely, if D is classical by Theorem 5.2 we
have

D(A ∩B,A ∩ B) = D(A,A ∩B) = D(A,B). �

6. Quantum measures

This section applies our previous work on decoherence functionals to the study
of quantum measures. For (Ω,A) a measurable space, a map µ : A → R

+ is
grade-2 additive if

µ(A∪B ∪C) = µ(A ∪B) + µ(A∪C) + µ(B ∪C)− µ(A)− µ(B)− µ(C) (6.1)

for all mutually disjoint A,B,C ∈ A. A q-measure is a grade-2 additive set
function µ : A → R

+ that satisfies the following conditions.

(C1) If A1 ⊆ A2 ⊆ . . . is an increasing sequence in A, then

lim
n→∞

µ(An) = µ

(∞⋃
i=1

Ai

)

(C2) If A1 ⊇ A2 ⊇ . . . is a decreasing sequence in A, then

lim
n→∞

µ(An) = µ

(∞⋂
i=1

Ai

)

Using the notation A�B = (A∩B′)∪(A′∩B), it is shown in [4] that µ : A → R
+

is grade-2 additive if and only if

µ(A∪B) = µ(A) +µ(B)− µ(A∩B) +µ(A�B)− µ(A∩B′)− µ(A′ ∩B) (6.2)

for all A,B ∈ A.

Due to quantum interference, a q-measure need not satisfy the usual additivity
condition of an ordinary measure but satisfies the more general grade-2 additivity
condition (6.1) instead [5,7,8,11,12]. We have already mentioned that (2.1) and
(2.3) are examples of q-measures. If µ is a q-measure on A, we call (Ω,A, µ) a
q-measure space. We shall not assume that a q-measure µ satisfies µ(Ω) = 1.
For this reason we relax Condition (D1) for a decoherence functional and our
previous results still hold.

Let (Ω,A, µ) be a q-measure space in which Ω = {ω1, . . . , ωn} is finite and A
is the power set 2Ω. The two-point interference term for µ is defined by

Iµij = µ ({ωi, ωj})− µ(ωi)− µ(ωj)
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for i 
= j = 1, . . . , n, where µ(ωi) = µ ({ωi}). The decoherence matrix D is given
by

Dii = D(ωi, ωj) = µ(ωi), i = 1, . . . , n

Dij = D(ωi, ωj) =
1
2 I

µ
ij , i 
= j = 1, . . . , n.

The q-measure µ is strongly positive if D is positive semi-definite. Of course, if
µ is a measure, then Iµij = 0 for i 
= j so µ is strongly positive. However, there
are many examples of q-measures that are not strongly positive. For instance,
let Ω = {ω1, ω2} and define the q-measure µ : A → R

+ by µ(Ω) = 1 and

µ(∅) = µ(ω1) = µ(ω2) = 0.

Then µ is not strongly positive because

D =

[
0 1

1 0

]

is not positive semi-definite. For another example, let Ω = {ω1, ω2, ω3} and
define the q-measure µ : A → R

+ by µ(∅) = µ(Ω) = 0 and µ(A) = 1 for A 
= ∅,Ω.
Then µ is not strongly positive because

D =

⎡
⎢⎣ 1 −1 −1

−1 1 −1
−1 −1 1

⎤
⎥⎦

is not positive semi-definite.

������� 6.1� Let (Ω,A) be a finite measurable space. A map µ : A → R
+

is a strongly positive q-measure if and only if there exists a finite-dimensional
complex Hilbert space H and a spanning vector-valued measure E : A → H such
that

µ(A) = ‖E(A)‖2 (6.3)

for all A ∈ A.

P r o o f. Let Ω = {ω1, . . . , ωn}. It is straightforward to check that if µ has the
form (6.3), then µ is a strongly positive q-measure. Conversely, suppose that
µ : A → R

+ is a strongly positive q-measure and let Dij be the correspond-
ing positive semi-definite decoherence matrix. By Lemma 2.1 and the proof of
Theorem 2.2, there exists a decoherence functional D : A×A → C given by

D(A,B) =
∑

{Dij : ωi ∈ A, ωj ∈ B}
a finite-dimensional complex Hilbert space H and a spanning vector-valued mea-
sure E : A → H such that

D(A,B) = 〈E(A), E(B)〉
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for all A,B ∈ A. Notice that (6.3) holds if A = {ωi}, i = 1, . . . , n. To show that
(6.3) holds for a general A ∈ A, we can assume without loss of generality that
A = {ω1, . . . , ωm}, 2 ≤ m ≤ n. It follows from [3: Theorem 2.2] that

µ(A) =

m∑
i<j=1

µ ({ωi, ωj})− (m− 2)

m∑
i=1

µ(ωi).

We then have that

‖E(A)‖2 = D(A,A) =

m∑
i,j=1

Dij =

m∑
i=1

Dii + 2

m∑
i<j=1

Dij

=

m∑
i=1

µ(ωi) +

m∑
i<j=1

Iµij

=

m∑
i=1

µ(ωi) +

m∑
i<j=1

µ ({ωi, ωj})−
m∑

i<j=1

[µ(ωi) + µ(ωj)]

=

m∑
i=1

µ(ωi) +

m∑
i<j=1

µ ({ωi, ωj})− (m− 1)

m∑
i=1

µ(ωi)

=

m∑
i<j=1

µ ({ωi, ωj})− (m− 2)

m∑
i=1

µ(ωi) = µ(A). �

If the sample space Ω is infinite, then we must proceed differently than we did
for the finite case. For example, when Ω is infinite the singleton and doubleton
subsets may not be measurable (i.e., may not be in A) and even if they are
measurable, they frequently all have measure zero.

Let (Ω,A, µ) be a q-measure space. For A,B ∈ A define

�(A,B) = 1
2 [µ(A ∪ B) + µ(A ∩B)− µ(A ∩ B′)− µ(A′ ∩B)] . (6.4)

Notice that if {ωi} and {ωj} are measurable, then

� ({ωi} , {ωj}) = Dij

so �(A,B) is a generalization of the decoherence matrix. We say that µ is
strongly positive if for any A1, . . . , Ak ∈ A, the matrix �(Ai, Aj), i, j = 1, . . . , k
is positive semi-definite. It follows that this definition reduces to the definition
of strongly positive in the finite case. Also, observe that if µ is a measure, then
(6.4) gives �(A,B) = µ(A ∩ B) so � is a classical decoherence functional. Ap-
plying Theorem 5.2, there exists a vector-valued measure E : A → H satisfying
E(A) ⊥ E(B) whenever A ∩ B = ∅ such that µ(A) = ‖E(A)‖2 for all A ∈ A.
Although the next result generalizes Theorem 6.1, we gave an independent proof
of Theorem 6.1 because the decoherence matrix Dij is physically more intuitive
than �.
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������� 6.2� Let (Ω,A) be a measurable space. A map µ : A → R
+ is a

strongly positive q-measure if and only if there exists a complex Hilbert space H
and a spanning vector-valued measure E : A → H such that (6.3) holds.

P r o o f. Suppose µ has the form (6.3). It is straightforward to check that µ is
a q-measure. To show that µ is strongly positive, let A1, . . . , Ak ∈ A. Applying
(6.4) we have that

�(A,B) = 1
2 [〈E(A ∪ B), E(A ∪ B)〉+ 〈E(A ∩ B), E(A ∩ B)〉
−〈E(A ∩B′), E(A ∩ B′)〉 − 〈E(A′ ∩B), E(A′ ∩ B)〉]

= 1
2

[‖E(A ∩B) + E(A ∩B′) + E(A′ ∩ B)‖2 + ‖E(A ∩ B)‖2 .
− ‖E(A ∩ B′)‖2 − ‖E(A′ ∩ B)‖2 ]

= Re
[‖E(A ∩B)‖2 + 〈E(A ∩ B), E(A ∩ B′)〉

+ 〈E(A ∩ B), E(A′ ∩B)〉+ 〈E(A ∩B′), E(A′ ∩B)〉]
= Re [〈E(A ∩B) + E(A ∩B′), E(A ∩ B) + E(A′ ∩ B)〉]
= Re 〈E(A), E(B)〉.

Hence, for α1, . . . , αk ∈ C we have∑
i,j

�(Ai, Aj)αiαj =
∑
i,j

Re 〈E(Ai), E(Aj)〉αiαj

= Re
〈∑

αiE(Ai),
∑

αjE(Aj)
〉
≥ 0.

We conclude that �(Ai, Aj) is a positive semi-definite matrix so µ is strongly
positive.

Conversely, suppose that µ is a strongly positive q-measure. We show that
A �→ �(A,B) is a complex-valued measure for every B ∈ A. If A1, A2 ∈ A are
disjoint we have

�(A1 ∪ A2, B) = 1
2 {µ [(A1 ∪ B) ∪ (A2 ∪B)] + µ [(A1 ∩ B) ∪ (A2 ∩B)]

−µ [(A1 ∩ B′) ∪ (A2 ∩ B′)]− µ(A′
1 ∩A′

2 ∩B)} . (6.5)

By (6.2) we have

µ [(A1 ∪ B) ∪ (A2 ∪B)]

= µ [(A1 ∪ B)�(A2 ∪ B)]− µ [(A1 ∪B) ∩ (A2 ∪ B)′]

− µ [(A1 ∪B)′ ∩ (A2 ∩ B)] + µ(A1 ∪ B) + µ(A2 ∪ B)

− µ [(A1 ∪B) ∩ (A2 ∪ B)]
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= µ [(A1 ∩ B′) ∪ (A2 ∩B′)]− µ(A1 ∩ B′)− µ(A2 ∩B′)

+ (A1 ∪ B) + µ(A2 ∪B)− µ(B). (6.6)

Since µ is grade-2 additive we have

µ(B) = µ [(B ∩A1) ∪ (B ∩ A2) ∪ (B ∩A′
1 ∩ A′

2)]

= µ [(B ∩A1) ∪ (B ∩ A2)] + µ [(B ∩A1) ∪ (B ∩ A′
1 ∩A′

2)]

+ µ [(B ∩ A2) ∪ (B ∩A′
1 ∩ A′

2)]− µ(B ∩ A1)− µ(B ∩A2)

− µ(B ∩A′
1 ∩A′

2)

= µ [(B ∩A1) ∪ (B ∩ A2)] + µ(B ∩ A′
2) + µ(B ∩A′

1)

− µ(B ∩A1)− µ(B ∩ A2)− µ(B ∩A′
1 ∩ A′

2). (6.7)

Substituting (6.7) into (6.6) gives

µ [(A1 ∪ B) ∪ (A2 ∪B)]

= µ [(A1 ∩B′) ∪ (A2 ∩B′)]− µ(A1 ∩ B′)− µ(A2 ∩ B′)

+ µ(A1 ∪B) + µ(A2 ∪ B)− µ [(B ∩A1) ∪ (B ∩ A2)]− µ(B ∩ A′
2)

− µ(B ∩A′
1) + µ(B ∩ A1) + µ(B ∩ A2) + µ(B ∩A′

1 ∩ A′
2). (6.8)

Substituting (6.8) into (6.5) gives

�(A1 ∪A2, B) = 1
2 [µ(A1 ∪B) + µ(A2 ∪ B) + µ(A1 ∩B) + µ(A2 ∩B)

−µ(A1 ∩B′)− µ(A2 ∩ B′)− µ(A′
2 ∩ B)− µ(A′

1 ∩B)]

= �(A1, B) +�(A2, B).

We conclude by induction that

�
(

n⋃
i=1

Ai, B

)
=

n∑
i=1

�(Ai, B)

whenever A1, . . . , An ∈ A are mutually disjoint. Let Ai ∈ A withA1 ⊆ A2 ⊆ . . . .
Since µ is continuous, we have

lim�(Ai, B)

= 1
2 [limµ(Ai ∪ B) + limµ(Ai ∩ B)− limµ(Ai ∩B′)− lim(A′

i ∩ B)]

= 1
2

{
µ
[(⋃

Ai

) ∪ B]+ µ
[(⋃

Ai

) ∩ B]− µ
[(⋃

Ai

) ∩B′]− µ
[(⋂

Ai

)′ ∩ B]}
= �(⋃Ai, B

)
.

It follows that A �→ D(A,B) is a complex-valued measure for all B ∈ B. Hence,
D is a decoherence functional (except for Condition (D1)) and the result follows
from Theorem 2.3 �
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7. Operator quantum measures

This section briefly considers a generalization of q-measures to operator
q-measures. Let (Ω,A) be a measurable space and E : A → B(H) be an operator-
valued measure. We define the decoherence operator D : A×A → B(H) by

D(A,B) = E(B)∗E(A).
Notice that if ‖E(Ω)ψ‖ = 1, then D(A,B) = 〈D(A,B)ψ, ψ〉 is a decoherence
functional. We call Q : A → B(H) given by

Q(A) = D(A,A) = E(A)∗E(A) (7.1)

an operator q-measure. The next result summarizes some of the interesting
properties of Q.

������� 7.1� If E : A → B(H) is an operator-valued measure, then the op-
erator q-measure (7.1) is a positive operator-valued function that satisfies the
following conditions.

(a) (Grade-2 additivity) For any mutually disjoint sets A,B,C ∈ A we have

Q(A ∪ B ∪ C) = Q(A ∪ B) +Q(A ∪ C) +Q(B ∪ C)−Q(A)−Q(B)−Q(C)

(b) (Regularity) If Q(A) = 0, then Q(A ∪ B) = Q(B) whenever A ∩ B = ∅.
If A ∩B = ∅ and Q(A ∪B) = 0, then Q(A) = Q(B).

(c) (Continuity) If A1 ⊆ A2 ⊆ . . . and φ, φ′ ∈ H, then〈Q(⋃Ai

)
φ, φ′

〉
= lim 〈Q(Ai)φ, φ

′〉
and if A1 ⊇ A2 ⊇ . . . and φ, φ′ ∈ H, then〈Q(⋂Ai

)
φ, φ′

〉
= lim 〈Q(Ai)φ, φ

′〉

P r o o f. It is clear that Q(A) is a positive operator for all A ∈ A.

(a) Since Q(A) = E(A)∗E(A), A ∈ A, we have

Q(A ∪B) +Q(A ∪ C) +Q(B ∪ C)−Q(A)−Q(B)−Q(C)

= 2E(A)∗E(A) + 2E(B)∗E(B) + 2E(C)∗E(C) + E(A)∗E(B)

+ E(B)∗E(A) + E(A)∗E(C) + E(C)∗E(A) + E(B)∗E(C) + E(C)∗E(B)

− E(A)∗E(A)− E(B)∗E(B)− E(C)∗E(C)
= E(A ∪B ∪ C)∗E(A ∪B ∪ C) = Q(A ∪ B ∪ C).

(b) If Q(A) = 0, then E(A)∗E(A) = 0. Hence, for every φ ∈ H we have

‖E(A)φ‖2 = 〈E(A)φ, E(A)φ〉 = 〈E(A)∗E(A)φ, φ〉 = 0.
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Hence, E(A)φ = 0 so E(A) = 0. For A,B ∈ A with A ∩B = ∅ we have

Q(A ∪ B) = E(A ∪B)∗E(A ∪ B) = [E(A) + E(B)]
∗
[E(A) + E(B)]

= E(B)∗E(B) = Q(B).

If A ∩ B = ∅ and Q(A ∪B) = 0, then

0 = Q(A ∪B) = E(A)∗E(A) + E(B)∗E(B) + E(A)∗E(B) + E(B)∗E(A)
= [E(A) + E(B)]

∗
[E(A) + E(B)] .

As before, E(A) + E(B) = 0. It follows that

E(B)∗E(A) = −E(B)∗E(B)

and

E(A)∗E(B) = −E(B)∗E(B).

Hence

E(A)∗E(A)− E(B)∗E(B) = 0

so that Q(A) = Q(B).

(c) Let A1 ⊆ A2 ⊆ . . . be increasing in A and let φ, φ′ ∈ H. Define B1 = A1,
Bi = Ai �Ai−1 i = 2, 3, . . . . Then Bi ∈ A are mutually disjoint so we have〈Q(⋃Ai

)
φ, φ′

〉
=
〈E(⋃Bi

)
φ, E(⋃Bj

)
φ′
〉
=
∑
i,j

〈E(Bi)φ, E(Bj)φ
′〉

= lim
n,m→∞

〈
E
(

n⋃
i=1

Bi

)
φ, E

(
m⋃
j=1

Bj

)
φ′
〉

= lim
n,m→∞ 〈E(An)φ, E(Am)φ′〉

= lim
n→∞

〈E(An)
∗E(An)φ, φ

′〉 = lim 〈Q(An)φ, φ
′〉.

The result is similar for A1 ⊇ A2 ⊇ . . . . �

Motivated by Section 5 we make the following definitions. A decoherence
operator D is classical if D(A,B) = 0 whenever A ∩ B = ∅. For an operator
T ∈ B(H) we define ReT = 1

2 (T + T ∗). A decoherence operator D is weakly
classical if ReD(A,B) = 0 whenever A ∩B = ∅.
������� 7.2� Let E : A→B(H) be an operator-valued measure and let D(A,B)
= E(B)∗E(A) and Q(A) = D(A,A) be the corresponding decoherence operator
and operator q-measure.

(a) D is classical if and only if D(A,B) = Q(A ∩B) for every A,B ∈ A.

(b) D is weakly classical if and only if Q is an operator-valued measure.
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P r o o f.

(a) If D(A,B) = Q(A ∩ B) and A ∩ B = ∅, then
D(A,B) = Q(∅) = D(∅, ∅) = 0

so D is classical. Conversely, if D is classical, then

D(A,B) = E(B)∗E(A) = [E(A ∩ B)∗ + E(B ∩ A′)∗] [E(A ∩B) + E(A ∩B′)]

= D(A ∩ B,A ∩B) +D(A ∩B,A ∩ B′) +D(B ∩ A′, A ∩ B)

+ D(B ∩ A′, A ∩B′)

= D(A ∩ B,A ∩B) = Q(A ∩B).

(b) If Q is an operator-valued measure and A ∩ B = ∅, then
E(A ∪ B)∗E(A ∪B) = Q(A ∪B) = Q(A) +Q(B) = E(A)∗E(A) + E(B)∗E(B).

Hence,

ReD(A,B) = 1
2 [E(B)∗E(A) + E(A)∗E(B)] = 0

so D is weakly classical. Conversely, suppose D is weakly classical. To show
that Q is an operator-valued measure, let Ai be a sequence of mutually disjoint
sets in A. For any φ, φ′ ∈ H we have that〈Q(⋃Ai

)
φ, φ′

〉
=
〈E(⋃Ai

)
φ, E(⋃Aj

)
φ′
〉

= lim
m,n→∞

〈
m∑
i=1

E(Ai)φ,

n∑
j=1

E(Aj)φ
′
〉

= lim
n→∞

n∑
i=1

〈E(Ai)φ, E(Ai)φ
′〉 =

∞∑
i=1

〈Q(Ai)φ, φ
′〉.

Hence, Q is an operator-valued measure. �
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