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ABSTRACT. The existence of anti-periodic solutions of the following nonlinear
impulsive functional differential equations

' (t) + at)z(t) = f(t,z(t), z(a1(t)),...,z(an(t))), teR,
Ax(ty) = Ir(2(tr)), keZ
is studied. Sufficient conditions for the existence of at least one anti-periodic
solution of the mentioned equation are established. Several new existence results

are obtained.
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1. Introduction

Anti-periodic boundary value problems for ordinary differential equations
with or without impulses effects were studied extensively in the last ten years
since these problems appear in a variety of applications. For example, for first
order ordinary differential equations without impulses effects, a Massera’s cri-
terion is presented in [6], quasilinearization methods are applied in [22] and in
[7], [10]-[12], [17, 19], [21]-[23] the validity of lower and upper solution methods
coupled with the monotone iterative technique is shown.
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Recently, in paper [17], the existence of solutions of of a class of anti-periodic
boundary value problems for impulsive ordinary differential equations was stud-
ied by Luo, Shen and Neito under the existence of pair of coupled lower and
upper solutions of the corresponding system. The methods used in [I7] are based
upon the lower and upper solutions methods and monotone iterative technique.
In [9], the existence of solutions for a class of first order functional differential
equation with anti-periodic boundary value conditions was studied by introduc-
ing the concept of lower and upper solutions using monotone iterative technique
coupled with lower and upper solutions too.

The anti-periodic boundary problems for partial differential equations and
abstract differential equations were considered in [4], 5, [8]. The solvability of
the anti-periodic problems for higher order differential equations were studied
in papers [1}, 2, 3, [6l 20] and the references cited there.

We note that, in above mentioned papers, the anti-periodic boundary value
problems were discussed, and the methods used are lower and upper solution
methods and monotone iterative techniques. There seems to be no paper dis-
cussed the existence of anti-periodic solutions of the corresponding impulsive
functional differential equations on infinite line. Furthermore, the assumptions
in the known theorems imposed on the nonlinear functions or the impulses func-
tions are at most linear in their variables. So the solvability problem have not
been well solved when the nonlinear functions or the impulses functions are
supper-linear.

In this paper, we are concerned with the existence of anti-periodic solutions
of the nonlinear impulsive functional differential equations

{m’(t) +a(t)x(t) = f(t,x(t), x(a1(t)),...,x(ay(t))), t e R, (1.1)
Am(tk) = Ik(:r(tk)), ke Z, ’

where Z, R denote the integer set and real number set respectively, T > 0
a constant, Az(ty) = z(tf) — z(t;), Ix: R — R is continuous, a: R — R,
f:R"™2 5 Rand a;: R— R (i =1,...,n) are functions. Sufficient conditions
for the existence of at least one anti-periodic solutions of (1) are established. The
proofs of the main theorems are based upon the Schauder’s fixed point theorem
[13].

To the author’s knowledge, the existence of periodic solutions of the impulsive
functional differential equations was studied extensively, see the text book [I§]
and papers [15] [16]. It is easy to see that, an anti-periodic solution with anti-
period T of the impulsive functional differential equation is a periodic solution
of the same equation with period 27. So the studies on the existence of anti-
periodic solutions has more importance and significance. On the other hand,
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when one studies the existence of periodic solutions of the impulsive functional
differential equations, the Mawhin’s continuation theorem is used to establish the
existence criteria, see [16]; the existence of multiple positive periodic solutions
of the impulsive functional differential equations is obtained by using the fixed
point theorems on cones on the suitable Banach spaces [15].

The remainder of this paper is divided into two sections, the main results are
established in Section 2 and two examples are given in Section 3 to illustrate the
main results.

2. Main results

In this paper, the following assumption is supposed:
(Al) - <ty < - <ty<t; < - <ty <...are constants and there exists
a positive integer | such that ty + 7T =ty and I (x) = —I4(—z) for all
k € Z and z € R; denote
lp = min{l >0: tp+T =tpy and Ii(x) = —Ippi(—x) forall k€ Z, z € R}.
Let X be defined by
X = {UZR—)R: u|(tk’tk+1) Gco(tk,tk+1), keZ

there exist the limits lim z(t) = z(tx), lm z(¢),
t—t; t—t

keZ and z(t) = —z(t+T) for all t € R}.

Define the norm ||u|| = sup |u(t)| for all w € X. It is easy to show that X is a
real Banach space. <
DEFINITION 2.1. A function f: RxR"*! — Ris called an impulsive continuous
function if

o f(-,up,us,...,u,) € X for each u = (ug,...,u,) € R*

o f(t,-,...,-) is continuous for all ¢ € R.
DEFINITION 2.2. By a solution of equation (1) we mean a function z: R — R
satisfying the following conditions:

e z € X is differentiable in (t,tx11) (k € Z), there exist the limits
lim 2/(t) = 2/ (t;) and lim z'(t) (k € Z),
t—t

t—t,
e ' € X;
o x(t) = —x(t+1T) for all t € R;

e The equations in (1) are satisfied.

—ly
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Furthermore, suppose

(A2) al(t, 1, 1) € CO(ty, try1) satisfies a(t+T) = a(t) for all £ € R and there exist
the limits lim a(t) and lim a(t) for all k € Z, denote a™ (t) = max{0, a(t)}

t—t, t—ty

and a~ (t) = max{0, —a(t)} for all t € R;
(A3) ap € CY(R) with ax(t+T) =T +a(t) forallt e Rand k=1,...,n;
(A4) f is an impulsive continuous function satisfying
f+T,—xg,—21,...,—xy) = —f(t,x0,21,...,2Zp)
for all t € R and (x¢,x1,...,7,)) € R

(A5) I(k € Z) are continuous functions satisfying z(z+ Ix(x)) > 0 for all x € R
and k € Z.

For x € X, we define the nonlinear operator L by
1

(La)t) = - T .
1+ exp (fa(u)du)
0
t+T s
/ exp /a(u) du | f(s,2(s), 2(01(s)), ... 2(n(s))) ds
+ Z exp /a(u)du I (z(ty))
t<tp<t+T )

LEMMA 2.1. Suppose that (A1)—(Ab) hold and x € X. Then Lz € X.

Proof. It is easy to see that

(Lz)(t+T)
_ 1
_ ., %
1+ exp <0f a(u) du)
t+2T s
exp / a(u)du | f(s,z(s),z(a1(s)),...,z(an(s))) ds
t+T +T
+ Z exp / a(u) du | I (z(tx))
T <t) <t+2T ir
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. t+T T+ov
= — . |:/ exp (/ a(u)du) X
[ a(u)du f I

1+e0
f(T+v,z(T+v),z(cq (T +v)),...,2(an(T +v)))dsx

+ Z exp (/ a(u) du) I (z(tx))

t<ti—T<t+T ir

t+T T+ov
= — }f [/ exp (/ a(u)du) X
1+ exp <Of a(u) du) t +T

f(T+v,—x),2(T 4+ a1(v)),...,2(T + a,(v))) dvx

tto+T
+ ), exp ( / a(u) du) Te (2 (th—1, + T))]

tStk—lo <t+T

t+T
1 t+T TH+v
= — . {/exp(,/ a(u)du)x
1+ exp <Of a(u) du) t +T
f(T 4 v, —z(v),—x(a1(v)), ..., —z(a,(v))) dvx

t<tp_1,<t+T T

- ; |:7Texp ( / a(w) du) x
1+ exp (({a(u)du) t t

[—f(’U, x(v), .77(0[1(’(1)), A .%(an(?))))} dux

> exp( / a(u)du> fk<x<tkzo>>]

th—io+T
+ ), exp ( / a(u) du) Te (2 (th—1, + T))]

tStk—lo <t+T t
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X

1+ exp ( a(u) du)

t+T v

/ exp /a(u) du | f(v,z(v),z(a1(v)),. .., z(a,(v)))dv

ts

_ Z exp /a(u) du Ik(-r(ts))

t<t,<t+T y
= — (La)(1).

On the other hand, one can easily show that (Lz)|, ¢,.,) € C°(tk, tkt1), k € Z
and there exist the limits lim (Lx)(t) = (Lx)(tx) and lim+(L:v)(t) for all k € Z.

t—ty t—t)f

This completes the proof. O

LEMMA 2.2. Suppose that (A1)—(A5) hold. Then x € X is a anti-periodic
solution of equation (1) if and only if x is a solution of the operator equation
r = Lx.

Proof. Suppose that x € X satisfies x = Lz. Then

x(t) = — }f
1+exp (f a(u) du)
0
T s
/ exp /a(u) du | f(s,2(s), x(a1(s)), ..., z(an(s))) ds
4 Z exp /a(u)du Ik(-r(tk))
t<tp<t+T )

For t # ti, since f and x € X are continuous at ¢, we know that z is differentiable

at t and
'(t) = —

1+ exp (

T

+
[ a(u)du

X

a(u) du)

fE+T,z(t+T),2(cr(T+1)),...,x(an(t+1T)))

O%ﬂ [a—y

t

(§]
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t+T s
— a(t) / exp (/a(u) du) f(s,z(s), z(a1(s)), ..., x(an(s)))ds

t t

= [t @), z((t),. .., x(an(t)))

Then

On the other hand, it is easy to show that x(t + 1) = —x(t) for all ¢ € R
and Ax(ty) = lim z(t) = z(t) and Az(ty) = lim z(t) = z(ty) — lim z(t) =

+ —
t—ty t—t t—ty

I (x(ty)) for all k € Z.
Now suppose that x is a anti-periodic solution of equation (1). We get that

{ ' (t) + a(t)x(t) = f(t, z(t), z(ar(t)),. .., z(an (1)), t e R,
Ax(ty) = Ie(z(tr)), k€L,
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Then
t /

z(t) exp /a(s) ds
0 (2.1)

= f(t,x(t),x(ar(t)),...,z(an(t))) exp (/a(s) ds)
0

Integrating (2) from ¢ to t + 7', one gets that

t+T t

x(t+T)exp /a(u)du — x(t) exp /a(u)du
t+T s ’ ’
= exp a(u)du | f(s,z(s),z(a1(s)), ..., z(an(s)))ds
[\l
£ Y ew / a(u) du | Tu(z(ts)).
1<ty <t+T 0

Then z(t +T) = —z(t) implies that

2(t) = — ; y
1+ exp <0f a(u) du)
t+T s
/ exp /a(u) du | f(s,z(s), z(a1(8)),...,x(an(s)))ds
+ > exp / a(u)du | Tp(z(ty)) | = (Lz)(t).
t<ty, <t+T )
The proof is complete. O

LEMMA 2.3. Suppose that (A1)—(A5) hold. Then L is a completely continuous
operator.

Proof. It suffices to prove that L is continuous and L is compact. We divide
the proof into two steps:
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Step 1. Prove that L is continuous about . Suppose x,, € X and z,, — zg € X.

Then
X
1+ exp (

a(u) du)

(Lan)(t) = -

O%ﬂ [

t+T s

exp /a(u) du | f(s,zn(8), zn(1(8)),. .., zn(an(s)))ds
+ > exp /a(u)du I(xn(ty))| ., i=0,1,....
t<ty <t+T )

Since f and I} are continuous, the continuity of L follows.

Step 2. Prove that L is compact.
Let Q C X bet a bounded set. Suppose that Q C {z € X : |z|| < M}. For

x € ), we have
|(La) ()] =
1+exp ( a(u) du)

t+T s

/exp /a(u)du f(s,z(s), z(a1(s)), ..., x(an(s)))ds

X

OS% —

tr
FY e / a(u) du | Tn(z(te))
t<tp <t+T )
max |f(s,z0,21,...,2,)]

tER, |z | <M,i=0,1,...n

X
- T
1+ exp (f a(u) du)
0
t+T s
/ exp /a(u) du | ds
t t
tr
+ max |Ii(x)| Z exp /a(u) du
|zl<M 1<ty <t+T )
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|f($,x0,x1, s 7xn)|

max
tER, |zi | <M,i=0,1,...,n
X

) 1+exp (fa(u) du)

0

T T
T exp /a(u)ydu s+ max [T(@)]| 3" exp /a(u)ydu
0 0

|| <
0<tp<T

and similarly (Lz)’(t) is bounded. This shows that (Lx)(t) is equi-continuous on
R. The Arzela-Askoli theorem guarantees that L() is relative compact, which
means that L is compact. Hence the continuity and the compactness of L imply
that L is completely continuous. O

The following abstract existence theorem, which is called Schauder’s fixed
point theorem, will be used in the proof of the main results of this paper. Its
proof can be seen in [13].

LEMMA 2.4. Let X be a Banach space. Suppose L: X — X is completely
continuous operator. If there exists a open bounded subset ) such that0 € Q C X
and © # ALz for all x € D(L) NI and X € [0,1], then there is at least one
x € Q such that x = Lx.

Now, we establish existence results for at least one solution of equation (1).

THEOREM 2.1. Suppose that (A1l)—(A5) hold and
(Gl) xlx(x) >0 for allz € R and k € Z;

(G2) there exist impulsive continuous functions h: RxR"™ - R, g;: RxR - R
and r € X such that

(i) f(t,xo,...,xn) = h(t,xo,...,xn) + >, gi(t,x;) + r(t) holds for all
i=0
(t,x0,...,T,) € R x R+,
(ii) there exists tg € R and constants m > 0 and B8 > 0 such that

h(t,zg,...,xn)x0 >0

holds for all (t,xq,...,1,) € [to,to +T] x R*H1;
(iii) there exist the limits

i(t
hm Sup ‘g’b< ’I>|

=r; € [0, +00), 1=0,...,n.
|| =+00 te[ty,to+T] |
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Then equation (1) has at least one anti-periodic solution if
T T n
1 +
o €XP =2 [ |a(u)|du | =T |{14+exp |2 [ a" (u)du Zri >0. (2.2)
0 0 i=0

Proof. Let A € [0,1]. Consider the operator equation x = A\Lz. If z € X is a
solution of x = ALz, we get that
X

1+ exp ( a(u) du)

t+T s
[/ exp (/a(u) du) f(s,z(s), x(a1(s)),...,x(an(s)))ds

t

xz(t) = — A

O%’ﬂ —

+ Y ew ( / a(u) du) Ik(:v(tk))] — (La)(b).

t<tp<t+T )
Then

' (t) + a(t)x(t) = Mf(t, z(t), x(ar(t)), ..., z(an(t))), teR, (2.3)
Ax(tk) = )\Ik($(tk)), ke Z. ’

Transforming the first equation in (4) into

(:v(t) exp (/t a(s) ds))/

= Af(t,x2(t), x(a1(t)), ..., z(an(t))) exp (/ a(s) ds) .

ft a(s)ds
Multiplying both sides of the equation of (5) by x(t)e'o , we get that

(v fra)) (s 00

= Af(t,x(t), x(a1(t)), ..., z(an(t))) (x(t) exp (2/@(5) ds)) .

to
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Since (H1) implies that
w(t)a(tr) = w(ti)[r(te) + (@ (te))] > Aa(te) Iu(2(t)) > 0,

we get that

(:r(t,j)exp (/ a(s) ds)) (x(tk,)exp (/ a(s) ds)) >0, keZ.

It follows from

to+T to+T
x(to+ T') exp ( / a(s) ds) = —x(to) exp ( / a(s) ds)

to tO

that there exists £ € [tg,to + T such that x(£) = 0. For to <t < &, we have

/g (x(s) exp (/s a(u) du)) (m(s) exp (/S a(u) du) )/ ds

It follows (H2) that

_ ; (x(t) exp (/a(u) du))
_ ;K;E {(m(ti)exp (/a(S) ds)) - (m(t;)exp (/a(s) ds)) ]

zz\/f(s,x(s),x(al(s)) ..... z(an(s))) (x(s) exp (2/a(u) du)) ds

to
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= /\/h(s,x(s),x(al(s)) ..... z(an(s))) (x(s) exp (2/a(u) du)) ds

to

+>\Z/gi(s,x(ai(s))) (x(s) exp (2/a(u) du)) ds

0£ to

+A j r(s) (:L‘(s) exp (2 / alu) du)) ds.
3

to

It follows from (H1) that

(@) — (2(t))* = (2(t)

Then, we get

. g :
<y / 1935, @(s(s)))| exp (2 / a(u) du) 2(s)] ds

to

+ |ITII/§II(S)exp (2/Sa(u) du) ds

to
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T n I3
< 2/a+(u) du ||$||Z/gi(5,x(ai(8))) ds
+ |||l exp 2/a+(u) du | Tz

Let £ > 0 satisfy that
T n

1
o €XP —Q/a(u)]du —T [1+exp 2/a+(u)du (ri4+¢) > 0. (2.5)
0 =0

For such € > 0, there is 6 > 0 such that

lgi(t,z)| < (r; +€)|z| uniformly for ¢ € [0,7] and |z| > 4, i=0,1,...,n.
(2.6)
Let, fori=1,...,n,
A”:{t~ teR, |z(ai(t)] <6}, i=1,...,n,
2 ={t: teR, |x(a(t))| >}, i=1,...,n,

;= ; i=1,...,n.
9s,i teﬂg}g}fgé ‘ z( ,I)|, ? ; I
Then, we get
" 2
x(t) exp (/a(u) du
to

IN

exp | 2 /Ta+<u>du > [+ [ |t ds

=0 t,ENAL;  [tE]NA2;

T
+ |7l exp 2/a+ Vdu | Tzl
0

IN

T n
exp (2/a+(u) du | ||| Z Tds;i + (ri +¢€) / |z(ai(s))| ds

0 =0 [t.€lNA2;

T
+ |7l exp 2/a+ Vdu | Tzl
0
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T n
< exp (2/a+(u) du) 1Y~ (To5: + (ri + )T
0 1=0

+ |||l exp (2/a+(u) du) Tz

0

Especially, one sees that
T n
1
o [7(t0)[* < exp 2/a+(u) du | |l Y (65 + (ri + )T )
o i=0
T
+ ||7|| exp (2/a+(u) du) Tz
0
Then
T n
1 2 +
Hlzlto + TP < exp | 2 [ a*(u)du 2] > (Td5: + (ri + )T | =)
o i=0

T
+ |7l exp (2/a+(u) du) 2.
0

Now, for £ <t <ty+ T, we have

to+T s s /
7 (s o)) e o]

:/\/f(s,:v(s),m(oq(s)),...,x(an(s))) (x(s) exp (2/a(u) du)) ds.

to

It follows (H2) that

to+T 2 t 2
; (m(to +T) exp( / a(u) du)) — ; (:v(t) exp (/a(u) du))
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1 i 2 B ty 2
- t§t£+Tl<x(t:)exp (to/ a(s) ds)) - (:r(tk)exp (to/a(s) ds)) ]
to+T s
— ) / F(5,2(5), 2(1(s)), - - ., 2(cn(5))) (x(s) exp (2/a(u) du)) ds
tZ—FT tOs
= h(s,z(s),z(a1(s)), ..., x(an(s))) (m(s) exp (2/a(u) du)) ds
t n to+T s ’
+ A i(s,x(ai(s))) | z(s)exp | 2 [ a(u)du ds
o V)
to+T s
+A / r(s) (m(s) exp (2/a(u) du)) ds.

Then similarly to above discussion we get

; (m(t) exp (/ a(u) du))
= ; (36‘(150 +T') exp (/a(u) du))
_ ; Z |:<m(t;)exp (/a(s) ds)) — (m(tk)exp (/ a(s) ds)) ]
t<tp<to+T i J

to+T s

—A / h(s,z(s),z(a1(s)), ..., z(an(s))) (x(s) exp (Z/a(u) du)) ds
:L to+T s .

_)\Z gi(s, x(a;(s))) | z(s)exp (2/a(u) du)) ds
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T n
< [exp (2/a+(U) dU) 2]l Y~ (o5 + (ri + )T |z])
=0

0

+||r| exp (2/a+(u) du) T||x||] exp (2/a+(u) du)
T

+exp <z/a+(u) du) 2l " (T65 + (ri + )Tl
0 1=0

T

+ |7l exp (2/a+(u) du) T
0

2/a+(u)du)] X

- . .
exp (2/a+(u) du) 2] > (Td5: + (ri + )T || =)
L 0 1=0

T
+||7|| exp (2/a+(u) du) Tz
0

Hence for all ¢ € [tg,to + T, we get

| —|

IN
—
—+
@
”
o

T
+||7|| exp (2/a+(u) du) T x|
0
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Then

< IxIIQGXp

el exp (—2 / a(w)| du

IN

1+ exp

exp [ 2 [ Ja(uw)] du ||:v||z (T65: + (ri +)T|z]))
1=0

Tht—s —

T
rflexp [ 2 / la(w)| du | Tl
0
It follows that

T
;exp —2/a_(u) du
0
n

T T
— |1+ exp 2/a+(u)du exp 2/a+(u)du (ri +)T| |||
0 i=0

0
T T "
< |1+ exp 2/a+(u) du exp 2/a+(u) du T||x||255’i
0 0 =

T

Hr exp 2/a+<u)du T

0

Hence one sees from (6) that there exists a constant M > 0 such that ||z|| < M

forallz € Q= {z € X : = ALz for some X € [0,1]}.
Let Q9 = {x € X : |z|| < M +1}. Then = # ALz for all A € [0,1] and

all x € D(L) () 0%. Lemmas 2.1 and 2.3 implies that L: X — X is completely
continuous. It follows from Lemma 2.4 that there is x € X such that x = Lx.

Then Lemma 2.2 implies that equation (1) has at least one anti-periodic solution

x € X. The proof is complete.
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Remark 1. In paper [14], the existence of solutions of the following anti-periodic
boundary value problem of the form
' (t) = f(t,z(t),z(aa(t)),...,x(an(t))), t€[0,T], t#ty, k=1,...,m,
Al‘(tk) ZIk(JZ(tk)), k=1,...,m,
z(0) = —=(T)

(BVP)
was studied. It was proved (see [14, Theorem 3]) that if z(z + I (x)) > 0 for all
re€Rand k=1,...,m, Ix(x)2x+ Ip(z) > 0forallz e Rand k =1,...,m
and (G2) holds, then (BVP) has at least one solution if

g 1
To + Z re < AT
k=1
One can see from Theorem 2.1 in this paper and [14] Theorem 3] that the
existence conditions for solutions of (1) and for solutions of (BVP) are extensively
different from each other.
THEOREM 2.2. Suppose that (A1)-(Ab) hold and
(G3) Inp(z)(2x + Ix(x)) <0 forallz € R and k € Z;

(G4) there exist impulsive continuous functions h: RxR* - R, g;: RxR —- R
and r € X such that

(1) f(ta Zo, - .-, xn) = h(t7 Zoy---, xn) + Z gi(tv .’Ei) + T(t)
i=0
holds for all (t,xo,. .., v,) € R x R**1;
(ii) there ezist to € R and constants m > 0 and 8 > 0 such that
h(t,xo, ..., 2n)x0 <0
holds for all (t,xo,...,xy,) € [to,to +T] x R*H1;
(iii) there exist the limits
7 ta
im sy (967

=r; € [0, +OO), 7
|| —=+00 te[ty,to+T] ||

I
N
S

Then equation (1) has at least one anti-periodic solution if
T

T

1 n

o CXP —2/ la(u)|du | =T |14 exp 2/a+(u) du Zri >0. (2.7)
0 i=0

0

Proof. The proof is similar to that of Theorem 2.1. We omitted it. O

Remark 2. One can see from Theorem 2.2 in this paper and [I4, Theorem 2]
that the existence conditions for solutions of (1) and for solutions of (BVP) are
extensively different from each other.
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THEOREM 2.3. Suppose that (A1)-(A4) hold and

(G5) Ix(k € Z) are continuous functions satisfying that there exist constants
¢k > 0 such that I (z)| < cglz| for all x € R and k € Z.

(G6) there exist impulsive continuous functions g;: Rx R = R and r € X such
that

(i) f(t, a0, .. an) = ; gi(t i) + 7 (2)

holds for all (t,xo,. .., v,) € R x R**1;
(i) there exists to € R such that the limits

i(t
lim sup l9:(t, )| =r; €10,+00), i=0,...,n.
|| =400 te(tg,to+T) ||

Then equation (1) has at least one anti-periodic solution if

exp (fa““(u) du) .
Z c, + 7T O<T >Zn<1.

(2.8)

Proof. The proof is similar to that of Theorem 2.1. We consider equation (5).
The the definition of L implies that

X
1+exp<

a(u) du)
t+T s

/ exp (/a(u) du) f(s,z(s), z(a1()), ..., x(an(s))) ds

t t

+ Z exp(/a(u) du)-fk@(tk))H

t<tn<t+T /

[(8)] =A|—

O%ﬂ —

exp (f{ﬁ(u) du) T
< [ £su2(6).atas))..aans)) ds
1+ exp (f a(u) du) t

+ Y Hala(tn)

t<tp<t+T
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exp (fcﬁ (u) du) t+T
- 0

< , / £ (s, 2(s), 2(aa(s)), ..., x(an(s)))] ds
1+ exp (fa(u) du) t

0

+ Yzt

t<tp<t+T

exp (fcﬁr (u) du) T
0

_ ] / £ (s,2(5), 2(a1(5)), . . ., &(cn(s)))] ds
1+ exp (f a(u) dU>

0

S et

0<tr<T

exp(fa+ u) T
< vV, /<gz \+Z\gmmz +|r<>|>ds
1—|—exp<f du)o

0

el Y e

0<tp<T

Similarly to the proof of Theorem L1, we get that

exp (!a u)
)] <

T
z(t)] < . /(Igosx |+Z\gztxaz |+|7"()|>d5
1+exp<f u)O

0

+lall Y e

Ogtk <T

Let £ > 0 satisfy that

exp (fa““(u) du) .
S 4T ’ . S(rite) <1 (2.9)
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For such € > 0, there is § > 0 such that

lg:(t,x)| < (r; +€)|z| uniformly for ¢ €[0,7] and |z| >4, i=0,1,...,n.

(2.10)
Let, fori=1,...,n,
Al’i:{t: teR, |z(a;(t))] §5}, i=1,...,n,
Aoy ={t: teR, |z(a;(t))] >}, i=1,...,n,
= ; L =1,...
9o = max lgit,z),  i=1,....m,
Ay ={t: teR, |z(t)] <5},
Ay ={t: teR, |z(t)| >d},
6= t,x)|.
max la(t @)l
Then, we get
T
exp | [a™(u)du .
0
[z(t)] < . <T5+ngé,i+ ||7“||>
1+ exp (f a(u) du) =1
0
T
exp | [at(u)du]| T N
0
+ . /<T0+5)~’E(S))| +Z(Ti+5)|x(ai(5)))> ds
1+ exp (f a(u) du) 0 =1
0
+lal Y e
0<tr<T
T
exp | [aT(u)du .
0
< , <T5+TZg(s,i + ||r||>
1+ exp (f a(u) du) =1
0

T
exp (f a™(u) du) .
0
+T Iz Y (i) +lzl Y
1+ exp ( a(u) du) =1 Oste<T
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It follows from (10) that there exists a constant M > 0 such that ||z|| < M for
allz € Q= {z € X: o= ALz for some X € [0,1]}.

Let Q9 = {x € X : |z|| < M +1}. Then z # ALz for all A € [0,1] and
all z € D(L) (0. Lemmas 2.1 and 2.3 implies that L: X — X is completely
continuous. It follows from Lemma 2.4 that there is x € X such that z = Lx.
Then Lemma 2.2 implies that equation (1) has at least one anti-periodic solution
x € X. The proof is complete. O

Remark 3. One can see from Theorem 2.3 in this paper and [I4, Theorem 1]
that the existence conditions for solutions of (1) and for solutions of (BVP) are
extensively different from each other.

3. Examples

Now, we present two examples, whose solutions can not be obtained by the-
orems in other known papers, to illustrate the main results.

Example 1. Consider the following equation

2/ (t) + (1 +sint)z(t) = ax(t) + i bix (t — cosit) +sin &, t € R,
Aa(ty) = caty), keZ,
Ax(s) = dx(sk), ke Z,
Az(ug) = ex(ug), keZ,
(3.1)
where t, = kn + 7, s, = kn+ 7, up, = km + 35, keZ,a b, (k=1,...,n),

43 27
c,d,e > 0 are constants. The question is that under what conditions equation

(12) has at least one anti-periodic solution with anti-period .
Proof. Corresponding to equation (1), we find that a(t) = 1+sint, Iy(z) = crx
(k € Z) and f(t,x0,21,...,2n) = azo + . bx; +sinl and ay(t) =t — coskt
k=1
(keZ).
It is easy to check that (A1)—(A5) hold.

One sees that xI(x) > 0 if ¢,d,e > 0 for all k € Z.
Choose g;(t, ;) = |bi||z;| (i =0,1,...,n), r(t) = |sin }|. Then

f(tzo, 21, 2n)| <D gilty ) +(t).
i=0
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It is easy to check that (G5) and (G6) hold with r; = |b;| (¢ =0,1,...,n). Then
Theorem 2.3 implies that equation (12) has at least one anti-periodic solution
with anti-periodic if

exp<f01+shm0du>

ctdtetm 0 S bi< L (3.2)
1+ exp <f(1 + sinw) du) i=0

0

(]
Example 2. Consider the following equation

' (t) + (1 +sint)z(t) = 1+[S()t)]6 + Z bilz (t — cost)] +sin }, (3.3)

A%(tk) = Ck[l‘<tk)]3, ke,
wherea > 0, ty = kr+7,k € Z,a, b, (k =1,...,n) are constants. The question

is that under what condltlons equation (13) has at least one anti-periodic solution
with anti-period 7.

Proof. Corresponding to equation (1), we ﬁnd that a(t) = 1+ sint, Ix(z) =
ckr® (k € Z) and f(t,zo,71,...,2n) = 1+x6 + Z biz; +sin 5 and ax(t) =
t —coskt (ke€Z).

It is easy to check that (A1)—(A5) hold.

One sees that z(x + I (x)) > 0 and zI;(z) > 0 if ¢, > 0 for all k € Z.

Choose h(t,zg,T1,...,%n) = aliiﬁ, gi(t,z) = |billw| (G = 0,1,...,n),

0
r(t) = |sin }|. Then
h(t,zo,1,...,2n)x0 > 0.

It is easy to check that (G1) and (G2) hold with r; = |b;| (¢ =0,1,...,n). Then
Theorem 2.1 implies that equation (13) has at least one anti-periodic solution
with anti-periodic if
—2 f(lJrsin u) du 7T n

0
—T [1+exp 2/(1+sinu)du > bl > 0. (3.4)

0 ) —

e
2

0
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