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PARTIAL INFORMATION SYSTEMS
AND THE SMYTH POWERDOMAIN
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(Communicated by Constantin Tsinakis)

ABSTRACT. The dual of the join semilattice of proper compact Scott open sub-
sets of a domain D is called the Smyth powerdomain of D. The Smyth powerdo-
main is used in programming semantics as a model for demonic nondeterminism.
In this paper, we introduce the concept of partial information systems; and, as
an application, show that the Smyth powerdomain of any domain can be realized
in terms of the sub partial information systems of the domain’s corresponding
information system.
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1. Introduction

The classical denotational semantic notion of the information system and the
entities derived from it have been employed in a range of applications in theo-
retical computer science and other disciplines (for recent examples, see Spreen
et. al [9) or Xu and Mao [11]). In particular, information systems have been
used to provide compelling representations of complex objects (see for example
Bedregal [2] or Droste and Gobel [3]).

Order-convex subobjects play an important role in the study of many partially
ordered structures (ideals in lattices and convex normal subgroups in ¢-groups
come to mind immediately). Since it is possible to view information systems
as preordered structures, it therefore seems reasonable to attempt representing
order theoretic entities well-known to computer science in terms of order-convex
subobjects of information systems, especially when these subobjects can be given
a natural semantic interpretation. In Hart and Tsinakis [5], we prove that the
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Hoare powerdomain can be represented in such a way. The current paper contin-
ues this theme by showing it is possible to identify the Smyth powerdomain with
a family of order-convex subobjects in a structure closely related to information
systems. Before embarking, we pause to introduce the relevant concepts.

We begin with the concept of a domain. A domain for a programming lan-
guage is the underlying set of data objects for an admissible type equipped with
an information-based partial ordering. (Our use of the term “domain” follows
that of Davey and Priestley [I].) To make precise what what is meant, we must
delve briefly into order theory.

A subset V of a poset P is directed if every finite nonempty subset of V' has
an upper bound in V. We will say a poset P is directed-complete (a DCPO)
provided the join of every directed subset of P exists in P, and we will refer to a
DCPO with least element as a complete poset (a CPO). Our use of these terms is
common but not universal — see Davey and Priestley [I] for a discussion about
nomenclature.

A subset I of a poset (P,<) is a lower set (equivalently lower set) of P
provided there exist X C P such that

I=|X={peP: (FxeX)p<a)}

A lower set I is principal provided I = |{x} for some z € P. It is common to
write I = [z in this case. (An upper-set U = 1X of a poset is defined dually.)

An ideal of a poset P is a directed lower set of P. The set Id1(P) of all ideals
of P, ordered by set-inclusion, is always a DCPO (where joins are unions), and
the assignment x — |2 provides an order embedding of P into (Id1(P),C). The
poset Id1(P) is called the ideal completion of P.

An element x of a DCPO D is compact if, whenever x is below the supremum
of a directed set V' C D, then x € [V. We use K(D) to denote the subposet
of compact elements of D. A DCPO D is algebraic if, for all d € D, the set
K(d) = ldn K(D) is directed and d = \/ K(d).

We note in passing that the ideal completion of any poset P is algebraic. The
compact elements of Id1(P) are precisely the principal lower sets of P.

In this paper, we will use the term “domain” for an algebraic poset in which
the meet of every non-empty subset exists. Equivalently, a “domain” is an
algebraic poset in which the join of every upper bounded subset exists. Note that
a domain is a CPO. (These particular objects are often called Scott domains.)

A lower set of a DCPO D is Scott-closed if it contains the join of each of its
directed subsets. Let I'(D) denote the set of all Scott-closed subsets of a DCPO
D, ordered by set-inclusion. The collection I'(D) is the family of closed sets for
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the Scott topology on D. The open sets of the Scott topology are those upper-
sets U of D which are inaccessible by directed joins; that is, whenever V" C D
is directed, \/ V exists in D, and \/V € U, then UNV # (. We will let (D)
denote the family of open sets of D under the Scott topology, partially ordered
by set-inclusion.

Initially, domains were used only to model deterministic programming lan-
guages. When researchers began investigating models for languages which sup-
ported nondeterministic choice, it became necessary to enrich the theory of do-
mains to include so-called power domains — domain theoretic analogs of the
power set. Plotkin [6] [7], a pioneer in this field, identified three distinct ways
to construct power domains for a given domain D. These constructs ultimately
came to be known as the Hoare power domain Py (D), the Smyth power domain
Ps(D), and the Plotkin power domain Pp(D). All three were initially defined as
the ideal completion of the set P¢[(K(D)] of finite, non-empty subsets of com-
pact elements of D under various preorders derived from the ordering on the
domain (D, <), namely

(1) The Hoare preorder: X CY «— (Vx € X)(Ty e Y)(z <vy)
(2) The Smyth preorder: X CY <= (Vy e€Y)(Fz € X)(z <y)
(3) The Plotkin preorder:

XLY <= [(Vee X)Ey e Y)(x <y)|A[(Vy € Y)(EFer € X)(z <y)]

Smyth observed that these constructs could also be realized within the Scott
topology on a domain D (see Plotkin [7]). In particular, Py (D) is order isomor-
phic to the lattice I'*(D) of non-empty Scott-closed subsets of D, while Ps(D)
is order isomorphic to the meet semilattice (X% (D)) of all nonempty compact
Scott-open subsets of D under reverse set-inclusion. From this perspective, the
mappings x — Jx and y — Ty serve to embed the domain D into the respective
power domains.

We next turn attention to information systems. Viewed from a logician’s per-
spective, an information system for an object or a process is a triple (S, Con, ),
where S is a collection of propositions (or instructions) concerning the object or
process, Con is a collection of finite subsets of S which are somehow “consistent”
with one another, and F is a relation of interdependence between members of
Con. The members of S are seen as providing simple bits of information about
the object or process and are therefore called tokens. The set Con is called the
consistency predicate, and  is known as a relation of entailment. An infor-
mation system is assumed to obey certain common sense properties normally
associated with the notions of consistency and entailment. These properties are
made mathematically precise in the following definition. (In this definition and
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all the work that follows, we let Fin(S) denote the set of all finite subsets of a
set S.)

DEFINITION 1.1. An information system is a triple S = (S, Con, ) consisting
of

(1) a set S whose elements are called propositions or tokens;
(2) a non-empty subset Con of Fin(S), called the consistency predicate; and
(3) a binary relation - on Con, called the entailment relation.

These entities satisfy the following axioms:

e (IS1) Con is a lower set of Fin(S) — with respect to set-inclusion —
such that | JCon = S

e (IS2) if A€ Con and B C A, then A B;

e (IS3) if A,B,C € Con, A+ B, and Bt C, then A+ C; and
e (IS4) if A,B,C € Con, A+ B, and A F C, then BUC € Con and
AF(BUCQ).

Note that axiom IS1 implies that every singleton subset of S is a member of
Con and that whenever A € Con and B C A, then B € Con. Furthermore,
axioms IS2 and IS3 imply that (Con,F) is a preordered set; that is, they imply
F is a reflexive and transitive relation on Con.

We advise the reader that our definition of an information system is stated
differently from the one commonly appearing in the literature, where entailment
is defined as a relation on the set Con x S (see for example Scott [§] or Davey
and Priestley [I]). A comparison quickly shows our definition to be equivalent;
it has the advantage of allowing us to think of (Con;F) as a preordered set. (See
Hart and Tsinakis [5] and Droste and Gobel [4] for additional examples of this
approach).

We close this section by describing the aforementioned well-known correspon-
dence between domains and information systems. Let S = (S, Con,t) be an
information system. For each A € Con, let

A={BeCon: Ar B}

and let Dg = Id1(S) denote the ideal completion of the family { A: A € Con}.
As such, Dg is a CPO with respect to set-union having () as least element; in
fact, it is an algebraic poset whose compact members are precisely the sets A
such that A € Con. It is routine to prove that Dg is closed under non-empty
intersections and is therefore a domain.

On the other hand, suppose that D is a domain. Let Sp = K (D), let

Conp = {F € Fin[K(D)] : (3k € K(D))(F C |k)}
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and, for all A, B € Conp, let Atp B if and only if \/ B <\/ A. Tt is a routine
D D

matter to prove that the triple Sp = (Sp, Conp,Fp) is an information system.

If D is any domain, then Ds, is order isomorphic to D. The situation is more
complicated for information systems. Let & = (5, Con, ) be any information
system and set

§={(A,B) € ConxCon: A B and BF A}

The set 0 is clearly an equivalence relation; and the quotient (Con,F)/6 is a
poset. With this in mind, (Con, F)/6 is order isomorphic to (Conpg,tp.). The
set S of tokens is usually quite different from the set Sp, of tokens for Sp,
although a bijective correspondence exists between Sp, and the equivalence
classes of Con (relative to #) which contain singletons.

The description we have outlined for the correspondence between informa-
tion systems and domains differs somewhat from what is commonly found in
the literature (see, for example Davey and Priestley [I]). The differences are
superficial and stem from our emphasis on the pre-order structure of the consis-
tency predicate. For the purposes of this paper, it is more convenient to use the
descriptions presented above.

2. A novel representation of the Smyth Powerdomain

In this section, we introduce a concept which extends that of information
systems and show that this notion provides a novel way of representing the
Smyth Powerdomain of any domain. We begin with the fundamental definition,
then discuss its motivation.

DEFINITION 2.1. A partial information system takes the form of a quadruple
S = (S, Con, 8,F) consisting of
(1) a set S whose elements are called propositions or tokens;
(2) a non-empty subset Con of Fin(S), called the consistency predicate;
(3) a nonempty subset 3 of Con, called the frontier; and
(4) a binary relation - on Con, called the entailment relation.
These entities satisfy the following axioms:
e (PS1) S =JCon;
e (PS2) If A, X € Con and X C A, then A+ X;
e (PS3)if A,B,C € Con, A B, and B+ C, then A C;
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o (PS4) if A,B,C € Con, A+ B, and A - C, then BUC € Con and
AR (BUCQ);

e (PS5) If B € 3, then no proper subset of B is a member of Con;
e (PS6) If A € Con, then A+ B for some B € 3;

Note that Axioms PS2 and PS3 together imply that F is a preorder on
Con. Every information system & = (5, Con, ) gives rise to a partial infor-
mation system, namely Sp = (5, Con, {0},-). On the other hand, suppose
S = (S, Con, 8,F) is a partial information system. If () € Con, then it must be
the case that 8 = {0}. Consequently, if Con is a lower set in Fin(S) then S gives
rise to an information system, namely Sg = (S, Con, |).

DEFINITION 2.2. Let S = (5, Cong, 8s,Fs) and T = (T, Conr, fr,t7) be par-
tial information systems. We say that T is a sub partial information system of
S provided

(1) T C S, Conp C Cong, and FrChg;
(2) If A € By, then some subset B of A is a member of 8g, and A F B.
We will write T C S if this is the case.

LEMMA 2.3. LetS = (5, Con, 8,F) be a partial information system and suppose
that T = (T, Conp, Br,Fr) and U = (U, Cony, By, Fu) are sub partial informa-
tion systems of S. If TC U and U C T, then T = U, Conp = Cong, Fr=Fg,
and Br = Bs.

Proof. We need only prove that S = 8s. To this end, suppose that A € Sr.
By definition, there exist B € g such that B C A and A+ B. Likewise, there
exist C' € B such that C C B and B F C. Axiom PS3 tells us that A - C.
Since C' C A and A € Bp, Axiom PS5 tells us that A = C. Hence, we know
that A = B as well; and we see that S C [Sg. The reverse inclusion follows
similarly. O

We will let SPInf(S) denote the family of all sub partial information systems
of a partial information system S, partially ordered by the relation C.

Having defined partial information systems, we now pause to give some mo-
tivation for this concept. The definition of an information system given in the
previous section makes it possible to think of the consistency predicate as a
preordered set; hence, it is natural to examine the pre-order convex substruc-
tures of this set. In Hart and Tsinakis [5], we show that the lower sets of the
consistency predicate for an information system & correspond to so-called full
subinformation systems of S and show that this family provides a concrete re-
alization of the Hoare powerdomain of the domain corresponding to S. Since
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the Smyth preorder is, in a sense, the dual of the Hoare preorder, it is natural
to think that the Smyth powerdomain for the domain corresponding to & may
be realized concretely as some family of upper-sets of the consistency predicate.
This turns out to be true, but upper-sets of the consistency predicate pose a
semantic problem not encountered with lower sets — they do not correspond to
any type of subinformation system in §. As we will show, partial information
systems provide a way of understanding upper-sets in the consistency predicate
as substructures of the information system.

There is another way to motivate the concept of partial information systems.
Intuitively, we can think of partial information systems as representing “reverse
engineering” processes. Suppose we wish to determine the simplest components
needed to describe fully the operation of a complex machine (such as the human
body). In this situation, we assume there is an information system S which fully
determines the machine. We know some information about the more complex
aspects of the machine, but have not fully identified the “tokens” of information
for the machine or the entirety of its consistency predicate. In this setting, the
sub partial information systems represent the processes of understanding the
machine more fully. The frontiers of these systems represent the “cutting edge”
of our understanding — we have developed the consistency predicate “above” the
frontier (in the sense of entailment), but have yet to develop any part “below”
the frontier. To say that T C S means that we know more about consistency
and entailment in S than in T, but the condition on the frontiers also says that
the “cutting edge” of understanding has progressed, since in S we know more
“below” the frontier of T.

Suppose that & = (S, Con, ) is an information system. For each A € Con,
let

A={BeCon: AF B}

It is well-known (and easy to show) that ¥(Id1(S)) is a bialgebraic (algebraic
and dually algebraic), distributive lattice whose compact, join-prime elements
are precisely the sets

1A ={vel1dl(S): ACuv}
(For a novel approach to the proof, see Vickers [10].) With this fact in mind, we
have the following result.

LEMMA 2.4. Suppose that S = (S, Con,t) is an information system. If T =
(T, Cony, Br,br) is a sub partial information system of Sp, then the set Up =
U{TB : Be BT} is a nonempty Scott open subset of Id1(S).

Proof. By construction, Ur is a nonempty upper set of Id1(S). Suppose that
D C 141(S) is directed and such that |JD € Up. It follows that there exist
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B € pp such that B C D. Let B = {b1,...,b,}, then it follows that for each
1 < j < n, there exist D; € D such that {b;} € D. Since D is directed, this
implies that there exist Dg € D such that B € Dg. Since Dpg is a lower set of
Con, it follows that B C D. Consequently, we know that D € 1B; hence, we
know that D € Ur. We may conclude that Ur is Scott open. J

LEMMA 2.5. Suppose that S = (S, Con, ) is an information system, and sup-
pose that U is a nonempty Scott open subset of 1d1(S). There exists a largest
family By C Con having the property that A € By if and only if

(1) AeU; and
(2) B¢ U for any proper B C A.

Proof. Since U is Scott open and nonempty, we know that there exists a family
My C Con such that U = [J{tA: A € My}. For any A € My, let Sy[A] =
{BQA: BEU},andlet

BulA] = {B € Sa: B has smallest cardinality}

The set Sy[A] is nonempty (at worst, Sy[A] = {0}). Clearly, the members of
Bu[A] satistfy Properties (1) and (2). A simple application of Zorn’s Lemma now
gives a maximal family Sy. The uniqueness of By is trivial. O

Such a set By will be called the frontier for the Scott open set U. The frontier
serves as a generating set for U, as the following result shows.

LEMMA 2.6. Suppose that S = (S, Con, F) is an information system, and sup-
pose that U is a nonempty Scott open subset of I1d1(S). We have

U=|J{tB: Bepu}.

Proof. For simplicity, let V = U{TB : Be BU}. It is clear that V C U. To
establish the reverse inclusion, first suppose that A € Con is such that A € U
and let S[A] be as as defined in the proof of Lemma If ulA] € By, then
Bu U BulA] is a family of Con whose members satisfy Properties (1) and (2)
of Lemma which properly contains Sy — contradicting the maximality of
Bu. Tt follows that A € V. Now, suppose that v € Id1(S) is a member of
U. It follows that there exists a directed family D, of compact members of
1d1(S) such that v = |J D,. Since U is Scott open, there exist d € D, NU. We
know that d = A for some A € Con; hence, we may conclude that v € V, as
desired. (|
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Suppose that S = (S, Con, ) is an information system, and suppose that U
is a nonempty Scott open subset of Id1(S). The set U induces a sub partial
information system of Sp. To see how, let

(1) Bu be the frontier of U;

(2) Cony ={A€Con: AU},

(3) Ty = U Cony; and

(4) Fu =F N (Cony x Cony)
Finally, let Ty = (Ty, Cony, Su, Fu).

LEMMA 2.7. Let § = (S, Con, ) be an information system. If U is a nonempty
Scott open subset of 1d1(S), then Ty is a sub partial information system of Sp.

Proof. Notice that Axioms PS1 and PS3 are satisfied by construction. Con-
sider Axiom PS2. Suppose that A, X € Cony and X C A. We therefore know
that A+ X. Since (A, X) € Cony x Cony, it follows that A by X, as desired.

We turn attention to Axiom PS4. Suppose that A, B, C' € Cony and suppose
that AF B and A F C. Since S is an information system, we already know that
B UC € Con, and we know that A + (B U C). Hence, we need only show that
B UC € Cony. To this end, observe that there exist D € §y such that B + D.
The fact that - is a preorder therefore implies that (B U C) F D. Lemma
therefore implies that (B U C) € U; consequently, BUC € Cony.

Consider Axiom PS5. Suppose that B € Sy. By construction, B € U and no
proper subset C' of B is such that C' € B. Consequently, B does not entail any
of its proper subsets under .

Axiom PS6 is a consequence of Lemma,

It follows that Ty is a partial information system. It remains to prove that Ty
is a sub partial information system of Sp. It is clear that Ty C S, Cony C Con,
and Fy C F. Since S is an information system, we know that 8 = {0}. Since
AR for all A € Con, it follows that for every A € Sy, there exist B € 8 such
that B is a subset of A and A+ B. Hence, Ty C Sp. O

LEMMA 2.8. Let S = (S, Con,t) be an information system. If U is a nonempty
Scott open subset of Id1(S), then, then Ur, = U.

Proof. Observe that

velU < (A€ fu)(ACv) < veUry,

629



JAMES B. HART

DEFINITION 2.9. Let S = (S, Con, 8,F) be a partial information system and let
T = (T, Conr, Br,Fr) be a sub partial information system of S. We say that T
is saturated provided the following conditions hold

(1) A € Conr if and only if A € Con and A F¢ B for some B € f3r.
(2) For all A, B € Cony, we have A+ B if and only if A ¢ B.
(3) B € pr if and only if B € Cony and no proper subset of B is in Conrp.
If § is an information system and U is any nonempty Scott open subset of

Id1(S), then it is easy to see that Ty is a saturated sub partial information
system of Sp.

LEMMA 2.10. Let § = (5,Con,t) be an information system. If T =
(T, Conp, Br,Fr) is a saturated sub partial information system of Sp, then
Ty, =T.
Proof. We first prove that Cony = Cony,.. Since T is saturated, we know that
A€ Cony < A€ Con A (3B € pr)(Atr B)

< AcCon A (3B € fr)(A € 1B)

< AcCon N AecUr

<— A€ Cony, .

It now follows that 7' = Up. We next prove that Fr = .. Let A, B € Conr.
Since T is saturated, we know that

AFp B <— AF B <= Aty, B.
It remains to prove that Spr = By,.. Since T is saturated, we know that
Aepr <= AecConr A (VB)[(BS A) = B ¢ Cony]
< AecConyr NAeUr A (VB)[(BS A) = B¢ Uy
< AeCony, A(VB)[(BSA) = B¢ Cony,]
— Acfu,.
O
Let S be an information system and let £*(Id1(S)) denote the family of all
nonempty Scott open subsets of Id1(S), partially ordered by set inclusion. Since
1d1(S) has least element (namely (), it follows that ¥*(Id1(S)) is a bialgebraic,
distributive lattice. In the work to follow, let SatPInf(Sp) denote the family of

all saturated sub partial information systems of Sp, partially ordered by C (see
Definition [2.2]).
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THEOREM 2.11. IfS=(S, Con, 8,F) is an information system, then ¥*(I1d1(S))
is order isomorphic to SatPInf(Sp).

Proof. Consider the mappings
7: S8atPInf(Sp) — ¥*(1d1(S)) o: ¥*(Id1(S)) — SatPInf(Sp)

defined by 7(T) = Ur and o(U) = Ty. In light of Lemmas 2.8 and [Z10] it is
clear that 7 and o are inverses of each other. We must prove these maps are
order preserving.

To this end, suppose that U,V € ¥*(Id1(S)) are such that U C V. Tt is
clear that Ty € Ty, Cony C Cony, and by C Fy. Suppose that A € Sy. It
follows that A € V; and we know that the family 8y [A] C By (see the proof of
Lemma [25]). Consequently, A Fy B for all B € fy[A]; and we may conclude
that TU C Tv.

On the other hand, suppose that T C V in SatPInf(Sp). For each A € fr,
there exists a subset B of A in 8y such that A y B. Consequently, B C A,
and it follows that A € 1B. Hence, Uy C Uy, as desired. O

If S = (5, Con,F) is an information system, then Theorem [ZTT tells us that
the compact members of SatPInf(Sp) are precisely those saturated sub partial
information systems of Sp which have finite frontiers.

Let D be any domain and let Sp = (Sp, Conp,p) be the information system
induced by D as described in the introduction. As mentioned in the introduc-
tion, it is well-known that the Smyth powerdomain Pg(D) of a domain D is
dually order isomorphic to the join semilattice of compact members of ¥*(D).
Consequently, we have the following result.

COROLLARY 2.12. If D is any domain, then Ps(D) is dually order isomorphic
to the join semilattice of saturated sub partial information systems of Sp having
finite frontiers.

Proof. We know that D is order isomorphic to Id1(Sp). Hence, Theorem 21T
tells us that ¥*(D) is order isomorphic to SatPInf(Sp). The desired result
follows at once. O
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