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PARTIAL INFORMATION SYSTEMS

AND THE SMYTH POWERDOMAIN
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ABSTRACT. The dual of the join semilattice of proper compact Scott open sub-

sets of a domain D is called the Smyth powerdomain of D. The Smyth powerdo-

main is used in programming semantics as a model for demonic nondeterminism.

In this paper, we introduce the concept of partial information systems; and, as

an application, show that the Smyth powerdomain of any domain can be realized

in terms of the sub partial information systems of the domain’s corresponding

information system.
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1. Introduction

The classical denotational semantic notion of the information system and the

entities derived from it have been employed in a range of applications in theo-

retical computer science and other disciplines (for recent examples, see Spreen

et. al [9] or Xu and Mao [11]). In particular, information systems have been

used to provide compelling representations of complex objects (see for example

Bedregal [2] or Droste and Göbel [3]).

Order-convex subobjects play an important role in the study of many partially

ordered structures (ideals in lattices and convex normal subgroups in �-groups
come to mind immediately). Since it is possible to view information systems

as preordered structures, it therefore seems reasonable to attempt representing

order theoretic entities well-known to computer science in terms of order-convex

subobjects of information systems, especially when these subobjects can be given

a natural semantic interpretation. In Hart and Tsinakis [5], we prove that the
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Hoare powerdomain can be represented in such a way. The current paper contin-
ues this theme by showing it is possible to identify the Smyth powerdomain with

a family of order-convex subobjects in a structure closely related to information

systems. Before embarking, we pause to introduce the relevant concepts.

We begin with the concept of a domain. A domain for a programming lan-
guage is the underlying set of data objects for an admissible type equipped with

an information-based partial ordering. (Our use of the term “domain” follows

that of Davey and Priestley [1].) To make precise what what is meant, we must

delve briefly into order theory.

A subset V of a poset P is directed if every finite nonempty subset of V has

an upper bound in V . We will say a poset P is directed-complete (a DCPO)

provided the join of every directed subset of P exists in P , and we will refer to a

DCPO with least element as a complete poset (a CPO). Our use of these terms is

common but not universal — see Davey and Priestley [1] for a discussion about
nomenclature.

A subset I of a poset (P,≤) is a lower set (equivalently lower set) of P

provided there exist X ⊆ P such that

I = ↓X =
{
p ∈ P : (∃x ∈ X)(p ≤ x)

}

A lower set I is principal provided I = ↓{x} for some x ∈ P . It is common to

write I = ↓x in this case. (An upper-set U = ↑X of a poset is defined dually.)

An ideal of a poset P is a directed lower set of P . The set Idl(P ) of all ideals

of P , ordered by set-inclusion, is always a DCPO (where joins are unions), and

the assignment x �→ ↓x provides an order embedding of P into (Idl(P ),⊆). The

poset Idl(P ) is called the ideal completion of P .

An element x of a DCPO D is compact if, whenever x is below the supremum

of a directed set V ⊆ D, then x ∈ ↓V . We use K(D) to denote the subposet

of compact elements of D. A DCPO D is algebraic if, for all d ∈ D, the set

K(d) = ↓d ∩K(D) is directed and d =
∨
K(d).

We note in passing that the ideal completion of any poset P is algebraic. The

compact elements of Idl(P ) are precisely the principal lower sets of P .

In this paper, we will use the term “domain” for an algebraic poset in which

the meet of every non-empty subset exists. Equivalently, a “domain” is an

algebraic poset in which the join of every upper bounded subset exists. Note that

a domain is a CPO. (These particular objects are often called Scott domains.)

A lower set of a DCPO D is Scott-closed if it contains the join of each of its

directed subsets. Let Γ(D) denote the set of all Scott-closed subsets of a DCPO

D, ordered by set-inclusion. The collection Γ(D) is the family of closed sets for
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the Scott topology on D. The open sets of the Scott topology are those upper-
sets U of D which are inaccessible by directed joins ; that is, whenever V ⊆ D

is directed,
∨

V exists in D, and
∨
V ∈ U , then U ∩ V 
= ∅. We will let Σ(D)

denote the family of open sets of D under the Scott topology, partially ordered

by set-inclusion.

Initially, domains were used only to model deterministic programming lan-

guages. When researchers began investigating models for languages which sup-
ported nondeterministic choice, it became necessary to enrich the theory of do-

mains to include so-called power domains — domain theoretic analogs of the

power set. Plotkin [6, 7], a pioneer in this field, identified three distinct ways

to construct power domains for a given domain D. These constructs ultimately

came to be known as the Hoare power domain PH(D), the Smyth power domain

PS(D), and the Plotkin power domain PP (D). All three were initially defined as
the ideal completion of the set Pf [(K(D)] of finite, non-empty subsets of com-

pact elements of D under various preorders derived from the ordering on the

domain (D,≤), namely

(1) The Hoare preorder: X � Y ⇐⇒ (∀x ∈ X)(∃y ∈ Y )(x ≤ y)

(2) The Smyth preorder: X � Y ⇐⇒ (∀y ∈ Y )(∃x ∈ X)(x ≤ y)

(3) The Plotkin preorder:

X � Y ⇐⇒ [(∀x ∈ X)(∃y ∈ Y )(x ≤ y)] ∧ [(∀y ∈ Y )(∃x ∈ X)(x ≤ y)]

Smyth observed that these constructs could also be realized within the Scott
topology on a domain D (see Plotkin [7]). In particular, PH(D) is order isomor-

phic to the lattice Γ∗(D) of non-empty Scott-closed subsets of D, while PS(D)

is order isomorphic to the meet semilattice (Σ∗
K(D))op of all nonempty compact

Scott-open subsets of D under reverse set-inclusion. From this perspective, the

mappings x �→ ↓x and y �→ ↑y serve to embed the domain D into the respective

power domains.

We next turn attention to information systems. Viewed from a logician’s per-

spective, an information system for an object or a process is a triple (S,Con,�),
where S is a collection of propositions (or instructions) concerning the object or

process, Con is a collection of finite subsets of S which are somehow “consistent”

with one another, and � is a relation of interdependence between members of

Con. The members of S are seen as providing simple bits of information about
the object or process and are therefore called tokens. The set Con is called the

consistency predicate, and � is known as a relation of entailment. An infor-

mation system is assumed to obey certain common sense properties normally

associated with the notions of consistency and entailment. These properties are

made mathematically precise in the following definition. (In this definition and
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all the work that follows, we let Fin(S) denote the set of all finite subsets of a
set S.)

���������� 1.1� An information system is a triple S = (S,Con,�) consisting
of

(1) a set S whose elements are called propositions or tokens ;

(2) a non-empty subset Con of Fin(S), called the consistency predicate; and

(3) a binary relation � on Con, called the entailment relation.

These entities satisfy the following axioms:

• (IS1) Con is a lower set of Fin(S) — with respect to set-inclusion —

such that
⋃
Con = S;

• (IS2) if A ∈ Con and B ⊆ A, then A � B;

• (IS3) if A,B,C ∈ Con, A � B, and B � C, then A � C; and

• (IS4) if A,B,C ∈ Con, A � B, and A � C, then B ∪ C ∈ Con and

A � (B ∪ C).

Note that axiom IS1 implies that every singleton subset of S is a member of

Con and that whenever A ∈ Con and B ⊆ A, then B ∈ Con. Furthermore,

axioms IS2 and IS3 imply that (Con,�) is a preordered set; that is, they imply

� is a reflexive and transitive relation on Con.

We advise the reader that our definition of an information system is stated

differently from the one commonly appearing in the literature, where entailment

is defined as a relation on the set Con ×S (see for example Scott [8] or Davey
and Priestley [1]). A comparison quickly shows our definition to be equivalent;

it has the advantage of allowing us to think of (Con;�) as a preordered set. (See

Hart and Tsinakis [5] and Droste and Göbel [4] for additional examples of this

approach).

We close this section by describing the aforementioned well-known correspon-

dence between domains and information systems. Let S = (S,Con,�) be an

information system. For each A ∈ Con, let

A = {B ∈ Con : A � B}
and let DS = Idl(S) denote the ideal completion of the family

{
A : A ∈ Con

}
.

As such, DS is a CPO with respect to set-union having ∅ as least element; in

fact, it is an algebraic poset whose compact members are precisely the sets A

such that A ∈ Con. It is routine to prove that DS is closed under non-empty

intersections and is therefore a domain.

On the other hand, suppose that D is a domain. Let SD = K(D), let

ConD =
{
F ∈ Fin[K(D)] :

(∃k ∈ K(D)
)(
F ⊆ ↓k)}
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and, for all A,B ∈ ConD, let A �D B if and only if
∨
D

B ≤ ∨
D

A. It is a routine

matter to prove that the triple SD = (SD,ConD,�D) is an information system.

If D is any domain, then DSD
is order isomorphic to D. The situation is more

complicated for information systems. Let S = (S,Con,�) be any information

system and set

θ =
{
(A,B) ∈ Con×Con : A � B and B � A

}

The set θ is clearly an equivalence relation; and the quotient (Con,�)/θ is a
poset. With this in mind, (Con,�)/θ is order isomorphic to (ConDS

,�DS
). The

set S of tokens is usually quite different from the set SDS
of tokens for SDS

,

although a bijective correspondence exists between SDS
and the equivalence

classes of Con (relative to θ) which contain singletons.

The description we have outlined for the correspondence between informa-

tion systems and domains differs somewhat from what is commonly found in

the literature (see, for example Davey and Priestley [1]). The differences are

superficial and stem from our emphasis on the pre-order structure of the consis-
tency predicate. For the purposes of this paper, it is more convenient to use the

descriptions presented above.

2. A novel representation of the Smyth Powerdomain

In this section, we introduce a concept which extends that of information
systems and show that this notion provides a novel way of representing the

Smyth Powerdomain of any domain. We begin with the fundamental definition,

then discuss its motivation.

���������� 2.1� A partial information system takes the form of a quadruple

S = (S,Con, β,�) consisting of

(1) a set S whose elements are called propositions or tokens ;

(2) a non-empty subset Con of Fin(S), called the consistency predicate;

(3) a nonempty subset β of Con, called the frontier ; and

(4) a binary relation � on Con, called the entailment relation.

These entities satisfy the following axioms:

• (PS1) S =
⋃
Con;

• (PS2) If A,X ∈ Con and X ⊆ A, then A � X;

• (PS3) if A,B,C ∈ Con, A � B, and B � C, then A � C;
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• (PS4) if A,B,C ∈ Con, A � B, and A � C, then B ∪ C ∈ Con and
A � (B ∪ C);

• (PS5) If B ∈ β, then no proper subset of B is a member of Con;

• (PS6) If A ∈ Con, then A � B for some B ∈ β;

Note that Axioms PS2 and PS3 together imply that � is a preorder on

Con. Every information system S = (S,Con,�) gives rise to a partial infor-

mation system, namely SP = (S,Con, {∅},�). On the other hand, suppose

S = (S,Con, β,�) is a partial information system. If ∅ ∈ Con, then it must be

the case that β = {∅}. Consequently, if Con is a lower set in Fin(S) then S gives
rise to an information system, namely SS = (S,Con,�).
���������� 2.2� Let S = (S,ConS , βS,�S) and T = (T,ConT , βT ,�T ) be par-

tial information systems. We say that T is a sub partial information system of

S provided

(1) T ⊆ S, ConT ⊆ ConS, and �T⊆�S ;

(2) If A ∈ βT , then some subset B of A is a member of βS, and A � B.

We will write T � S if this is the case.

��		
 2.3� Let S = (S,Con, β,�) be a partial information system and suppose

that T = (T,ConT , βT ,�T ) and U = (U,ConU , βU ,�U ) are sub partial informa-

tion systems of S. If T � U and U � T, then T = U , ConT = ConS , �T=�S,

and βT = βS .

P r o o f. We need only prove that βT = βS . To this end, suppose that A ∈ βT .

By definition, there exist B ∈ βS such that B ⊆ A and A � B. Likewise, there

exist C ∈ βT such that C ⊆ B and B � C. Axiom PS3 tells us that A � C.
Since C ⊆ A and A ∈ βT , Axiom PS5 tells us that A = C. Hence, we know

that A = B as well; and we see that βT ⊆ βS . The reverse inclusion follows

similarly. �

We will let SPInf(S) denote the family of all sub partial information systems

of a partial information system S, partially ordered by the relation �.

Having defined partial information systems, we now pause to give some mo-

tivation for this concept. The definition of an information system given in the

previous section makes it possible to think of the consistency predicate as a

preordered set; hence, it is natural to examine the pre-order convex substruc-

tures of this set. In Hart and Tsinakis [5], we show that the lower sets of the

consistency predicate for an information system S correspond to so-called full

subinformation systems of S and show that this family provides a concrete re-

alization of the Hoare powerdomain of the domain corresponding to S. Since
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the Smyth preorder is, in a sense, the dual of the Hoare preorder, it is natural
to think that the Smyth powerdomain for the domain corresponding to S may

be realized concretely as some family of upper-sets of the consistency predicate.

This turns out to be true, but upper-sets of the consistency predicate pose a

semantic problem not encountered with lower sets — they do not correspond to

any type of subinformation system in S. As we will show, partial information

systems provide a way of understanding upper-sets in the consistency predicate
as substructures of the information system.

There is another way to motivate the concept of partial information systems.
Intuitively, we can think of partial information systems as representing “reverse

engineering” processes. Suppose we wish to determine the simplest components

needed to describe fully the operation of a complex machine (such as the human

body). In this situation, we assume there is an information system S which fully

determines the machine. We know some information about the more complex

aspects of the machine, but have not fully identified the “tokens” of information

for the machine or the entirety of its consistency predicate. In this setting, the
sub partial information systems represent the processes of understanding the

machine more fully. The frontiers of these systems represent the “cutting edge”

of our understanding — we have developed the consistency predicate “above” the

frontier (in the sense of entailment), but have yet to develop any part “below”

the frontier. To say that T � S means that we know more about consistency

and entailment in S than in T, but the condition on the frontiers also says that
the “cutting edge” of understanding has progressed, since in S we know more

“below” the frontier of T.
Suppose that S = (S,Con,�) is an information system. For each A ∈ Con,

let

A = {B ∈ Con : A � B}
It is well-known (and easy to show) that Σ(Idl(S)) is a bialgebraic (algebraic

and dually algebraic), distributive lattice whose compact, join-prime elements

are precisely the sets

↑A =
{
v ∈ Idl(S) : A ⊆ v

}

(For a novel approach to the proof, see Vickers [10].) With this fact in mind, we

have the following result.

��		
 2.4� Suppose that S = (S,Con,�) is an information system. If T =

(T,ConT , βT ,�T ) is a sub partial information system of SP , then the set UT =⋃{↑B : B ∈ βT
}
is a nonempty Scott open subset of Idl(S).

P r o o f. By construction, UT is a nonempty upper set of Idl(S). Suppose that

D ⊆ Idl(S) is directed and such that
⋃

D ∈ UT . It follows that there exist
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B ∈ βT such that B ⊆ D. Let B = {b1, . . . , bn}, then it follows that for each
1 ≤ j ≤ n, there exist Dj ∈ D such that {bj} ∈ D. Since D is directed, this

implies that there exist DB ∈ D such that B ∈ DB . Since DB is a lower set of

Con, it follows that B ⊆ D. Consequently, we know that DB ∈ ↑B; hence, we

know that DB ∈ UT . We may conclude that UT is Scott open. �

��		
 2.5� Suppose that S = (S,Con,�) is an information system, and sup-

pose that U is a nonempty Scott open subset of Idl(S). There exists a largest

family βU ⊆ Con having the property that A ∈ βU if and only if

(1) A ∈ U ; and

(2) B /∈ U for any proper B ⊂ A.

P r o o f. Since U is Scott open and nonempty, we know that there exists a family

MU ⊆ Con such that U =
⋃{↑A : A ∈ MU

}
. For any A ∈ MU , let SU [A] ={

B ⊆ A : B ∈ U
}
, and let

βU [A] = {B ∈ SA : B has smallest cardinality}
The set βU [A] is nonempty (at worst, βU [A] = {∅}). Clearly, the members of
βU [A] satisfy Properties (1) and (2). A simple application of Zorn’s Lemma now

gives a maximal family βU . The uniqueness of βU is trivial. �

Such a set βU will be called the frontier for the Scott open set U . The frontier

serves as a generating set for U , as the following result shows.

��		
 2.6� Suppose that S = (S,Con,�) is an information system, and sup-

pose that U is a nonempty Scott open subset of Idl(S). We have

U =
⋃{↑B : B ∈ βU

}
.

P r o o f. For simplicity, let V =
⋃{↑B : B ∈ βU

}
. It is clear that V ⊆ U . To

establish the reverse inclusion, first suppose that A ∈ Con is such that A ∈ U

and let β[A] be as as defined in the proof of Lemma 2.5. If βU [A] 
⊆ βU , then

βU ∪ βU [A] is a family of Con whose members satisfy Properties (1) and (2)

of Lemma 2.5 which properly contains βU — contradicting the maximality of

βU . It follows that A ∈ V . Now, suppose that v ∈ Idl(S) is a member of

U . It follows that there exists a directed family Dv of compact members of

Idl(S) such that v =
⋃
Dv. Since U is Scott open, there exist d ∈ Dv ∩ U . We

know that d = A for some A ∈ Con; hence, we may conclude that v ∈ V , as

desired. �
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Suppose that S = (S,Con,�) is an information system, and suppose that U
is a nonempty Scott open subset of Idl(S). The set U induces a sub partial

information system of SP . To see how, let

(1) βU be the frontier of U ;

(2) ConU = {A ∈ Con : A ∈ U};
(3) TU =

⋃
ConU ; and

(4) �U = � ∩ (ConU ×ConU )

Finally, let TU = (TU ,ConU , βU ,�U ).

��		
 2.7� Let S = (S,Con,�) be an information system. If U is a nonempty

Scott open subset of Idl(S), then TU is a sub partial information system of SP .

P r o o f. Notice that Axioms PS1 and PS3 are satisfied by construction. Con-

sider Axiom PS2. Suppose that A,X ∈ ConU and X ⊆ A. We therefore know
that A � X. Since (A,X) ∈ ConU ×ConU , it follows that A �U X, as desired.

We turn attention to Axiom PS4. Suppose that A,B,C ∈ ConU and suppose

that A � B and A � C. Since S is an information system, we already know that

B ∪ C ∈ Con, and we know that A � (B ∪ C). Hence, we need only show that

B ∪ C ∈ ConU . To this end, observe that there exist D ∈ βU such that B � D.

The fact that � is a preorder therefore implies that (B ∪ C) � D. Lemma 2.6

therefore implies that (B ∪ C) ∈ U ; consequently, B ∪ C ∈ ConU .

Consider Axiom PS5. Suppose that B ∈ βU . By construction, B ∈ U and no

proper subset C of B is such that C ∈ B. Consequently, B does not entail any

of its proper subsets under �U .

Axiom PS6 is a consequence of Lemma 2.6.

It follows that TU is a partial information system. It remains to prove that TU

is a sub partial information system of SP . It is clear that TU ⊆ S, ConU ⊆ Con,

and �U ⊆ �. Since S is an information system, we know that β = {∅}. Since

A � ∅ for all A ∈ Con, it follows that for every A ∈ βU , there exist B ∈ β such

that B is a subset of A and A � B. Hence, TU � SP . �

��		
 2.8� Let S = (S,Con,�) be an information system. If U is a nonempty

Scott open subset of Idl(S), then, then UTU
= U .

P r o o f. Observe that

v ∈ U ⇐⇒ (∃A ∈ βU )
(
A ⊆ v

) ⇐⇒ v ∈ UTU

�
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���������� 2.9� Let S = (S,Con, β,�) be a partial information system and let
T = (T,ConT , βT ,�T ) be a sub partial information system of S. We say that T
is saturated provided the following conditions hold

(1) A ∈ ConT if and only if A ∈ Con and A �T B for some B ∈ βT .

(2) For all A,B ∈ ConT , we have A � B if and only if A �T B.

(3) B ∈ βT if and only if B ∈ ConT and no proper subset of B is in ConT .

If S is an information system and U is any nonempty Scott open subset of

Idl(S), then it is easy to see that TU is a saturated sub partial information

system of SP .

��		
 2.10� Let S = (S,Con,�) be an information system. If T =

(T,ConT , βT ,�T ) is a saturated sub partial information system of SP , then

TUT
= T.

P r o o f. We first prove that ConT = ConUT
. Since T is saturated, we know that

A ∈ ConT ⇐⇒ A ∈ Con ∧ (∃B ∈ βT )(A �T B)

⇐⇒ A ∈ Con ∧ (∃B ∈ βT )
(
A ∈ ↑B)

⇐⇒ A ∈ Con ∧ A ∈ UT

⇐⇒ A ∈ ConUT
.

It now follows that T = UT . We next prove that �T = �UT
. Let A,B ∈ ConT .

Since T is saturated, we know that

A �T B ⇐⇒ A � B ⇐⇒ A �UT
B.

It remains to prove that βT = βUT
. Since T is saturated, we know that

A ∈ βT ⇐⇒ A ∈ ConT ∧ (∀B)
[
(B � A) =⇒ B /∈ ConT

]

⇐⇒ A ∈ ConT ∧ A ∈ UT ∧ (∀B)
[
(B � A) =⇒ B /∈ UT

]

⇐⇒ A ∈ ConUT
∧ (∀B)

[
(B � A) =⇒ B /∈ ConUT

]

⇐⇒ A ∈ βUT
.

�

Let S be an information system and let Σ∗(Idl(S)) denote the family of all

nonempty Scott open subsets of Idl(S), partially ordered by set inclusion. Since

Idl(S) has least element (namely ∅), it follows that Σ∗(Idl(S)) is a bialgebraic,

distributive lattice. In the work to follow, let SatPInf(SP ) denote the family of

all saturated sub partial information systems of SP , partially ordered by � (see

Definition 2.2).
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����
�	 2.11� If S=(S,Con, β,�) is an information system, then Σ∗(Idl(S))
is order isomorphic to SatPInf(SP ).

P r o o f. Consider the mappings

τ : SatPInf(SP ) −→ Σ∗(Idl(S)) σ : Σ∗(Idl(S)) −→ SatPInf(SP )

defined by τ(T) = UT and σ(U ) = TU . In light of Lemmas 2.8 and 2.10, it is

clear that τ and σ are inverses of each other. We must prove these maps are

order preserving.

To this end, suppose that U, V ∈ Σ∗(Idl(S)) are such that U ⊆ V . It is

clear that TU ⊆ TV , ConU ⊆ ConV , and �U ⊆ �V . Suppose that A ∈ βU . It

follows that A ∈ V ; and we know that the family βV [A] ⊆ βV (see the proof of

Lemma 2.5). Consequently, A �V B for all B ∈ βV [A]; and we may conclude

that TU � TV .

On the other hand, suppose that T � V in SatPInf(SP ). For each A ∈ βT ,

there exists a subset B of A in βV such that A �V B. Consequently, B ⊆ A,
and it follows that A ∈ ↑B. Hence, UT ⊆ UV , as desired. �

If S = (S,Con,�) is an information system, then Theorem 2.11 tells us that

the compact members of SatPInf(SP ) are precisely those saturated sub partial

information systems of SP which have finite frontiers.

LetD be any domain and let SD = (SD,ConD,�D) be the information system

induced by D as described in the introduction. As mentioned in the introduc-
tion, it is well-known that the Smyth powerdomain PS(D) of a domain D is

dually order isomorphic to the join semilattice of compact members of Σ∗(D).

Consequently, we have the following result.

��
���

� 2.12� If D is any domain, then PS(D) is dually order isomorphic

to the join semilattice of saturated sub partial information systems of SD having

finite frontiers.

P r o o f. We know that D is order isomorphic to Idl(SD). Hence, Theorem 2.11

tells us that Σ∗(D) is order isomorphic to SatPInf(SP ). The desired result

follows at once. �
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