

DOI: 10.2478/s12175-012-0021-1 Math. Slovaca **62** (2012), No. 3, 451–460

ON GENERALIZED (θ, ϕ) -DERIVATIONS IN SEMIPRIME RINGS WITH INVOLUTION

Mohammad Ashraf — Nadeem-ur-Rehman — Shakir Ali* — Muzibur Rahman Mozumder

(Communicated by Constantin Tsinakis)

ABSTRACT. The main purpose of this paper is to prove the following result: Let R be a 2-torsion free semiprime *-ring. Suppose that θ , ϕ are endomorphisms of R such that θ is onto. If there exists an additive mapping $F \colon R \to R$ associated with a (θ, ϕ) -derivation d of R such that $F(xx^*) = F(x)\theta(x^*) + \phi(x)\mathrm{d}(x^*)$ holds for all $x \in R$, then F is a generalized (θ, ϕ) -derivation. Further, some more related results are obtained.

©2012 Mathematical Institute Slovak Academy of Sciences

1. Introduction

Throughout the discussion, unless otherwise mentioned, R will denote an associative ring having at least two elements with center Z(R). However, R may not have unity. For any $x,y\in R$, the symbol [x,y] (resp. $(x\circ y)$) will denote the commutator xy-yx (resp. the anti-commutator xy+yx). Recall that R is prime if $aRb=\{0\}$ implies that a=0 or b=0. A ring R is called semiprime if $aRa=\{0\}$ with $a\in R$ implies a=0. An additive mapping $x\mapsto x^*$ satisfying $(xy)^*=y^*x^*$ and $(x^*)^*=x$ for all $x,y\in R$, is called an involution on R. A ring equipped with an involution is called a *-ring or ring with involution.

²⁰¹⁰ Mathematics Subject Classification: Primary 16W10; Secondary 16W25, 16N60.

Keywords: semiprime ring, involution, derivation, (θ, ϕ) -derivation, generalized derivation, generalized (θ, ϕ) -derivation, generalized Jordan (θ, ϕ) -derivation.

This research is partially supported by grants from DST (Grant No. SR/S4/MS:556/08), UGC (Grant No. 36-8/2008(SR)) and UGC (Grant No. 39-37/2010(SR)).

An additive mapping d: $R \to R$ is called a derivation (resp. Jordan derivation) if d(xy) = d(x)y + xd(y) (resp. $d(x^2) = d(x)x + xd(x)$) holds for all $x, y \in R$. Following Bresar [6], an additive mapping $F \colon R \to R$ is said to be a generalized derivation (resp. generalized Jordan derivation) on R if there exists a derivation $d \colon R \to R$ such that F(xy) = F(x)y + xd(y) (resp. $F(x^2) = F(x)x + xd(x)$) holds for all $x, y \in R$. It is easy to check that the notion of generalized derivation covers the concept of derivation as well as of a left multiplier i.e., an additive mapping f on R satisfying f(xy) = f(x)y for all $x, y \in R$.

Following [11] and [16], an additive mapping $T: R \to R$ is called a left (resp. right) centralizer if T(xy) = T(x)y (resp. T(xy) = xT(y)) holds for all $x, y \in R$. If T is both left as well as right centralizer, then T is called a centralizer. If $a \in R$, then $T_a(x) = ax$ is a left centralizer and $T_a(x) = xa$ is a right centralizer. Note that in a 2-torsion free ring the condition $d(x^2) = d(x)x + xd(x)$ is equivalent to $d(x \circ y) = d(x) \circ y + x \circ d(y)$ for all $x, y \in R$. Therefore, we can define a Jordan centralizer to be an additive mapping T which satisfies $T(x \circ y) =$ $T(x) \circ y = x \circ T(y)$ for all $x, y \in R$. Since the product \circ is commutative, there is no difference between the Jordan left and right centralizers. Let $T: R \to R$ be an additive mapping and α be an endomorphism of R. According to [1], T is called a Jordan left (resp. right) α -centralizer if $T(x^2) = T(x)\alpha(x)$ (resp. $T(x^2) = \alpha(x)T(x)$ holds for all $x \in R$. Obviously every left (right) α -centralizer is a Jordan left (right) α -centralizer. The converse is not true in general (see [1, Example 1). In [1], Albaş showed that under the condition $\alpha(Z(R)) = Z(R)$, in a 2-torsion free semiprime ring R, every Jordan α -centralizer is a α -centralizer. Further, third author together with Haetinger [2] proved that every Jordan left (resp. right) α -centralizer on a 2-torsion free semiprime ring is a left (resp. right) α -centralizer. Considerable work has been done on Jordan left (resp. right) centralizers in prime and semiprime rings during the last couple of decades (see for example: [1], [2], [10], [11], [12], [14] and [15] where further references can be found).

Let θ and ϕ be endomorphisms of R. An additive mapping d: $R \to R$ is said to be a (θ, ϕ) -derivation (resp. Jordan (θ, ϕ) -derivation) if $d(xy) = d(x)\theta(y) + \phi(x)d(y)$ (resp. $d(x^2) = d(x)\theta(x) + \phi(x)d(x)$) holds for all $x, y \in R$. Following [4], an additive mapping $F: R \to R$ is called a generalized (θ, ϕ) -derivation (resp. generalized Jordan (θ, ϕ) -derivation) on R if there exists a (θ, ϕ) -derivation d: $R \to R$ such that $F(xy) = F(x)\theta(y) + \phi(x)d(y)$ (resp. $F(x^2) = F(x)\theta(x) + \phi(x)d(x)$) holds for all $x, y \in R$. Note that for I_R the identity map on R, an (I_R, I_R) -generalized Jordan derivation is called simply a generalized Jordan derivation. It is obvious to see that every generalized (θ, ϕ) -derivation

on a ring is a generalized Jordan (θ, ϕ) -derivation. But the converse need not be true in general (see [2, Example 3.1]). A number of authors have studied this problem in the setting of prime and semiprime rings (viz. [2], [3], [4], [5], [7], [9] and [13], where further references can be found). Very recently, third author together with Haetinger [2], proved that every generalized Jordan (θ, ϕ) -derivation on a 2-torsion free semiprime ring is a generalized (θ, ϕ) -derivation. In [8], Daif and El-Sayiad obtained the following result: Let R be a 2-torsion free semiprime *-ring and $F: R \to R$ is an additive mapping associated with a derivation d: $R \to R$ such that $F(xx^*) = F(x)x^* + xd(x^*)$ holds for all $x \in R$. Then F is a generalized Jordan derivation.

The main purpose of this paper is to extend the above mentioned result for generalized Jordan (θ, ϕ) -derivation.

2. Main results

The main result of the present paper states as follows:

THEOREM 2.1. Let R be a 2-torsion free semiprime *-ring. Suppose that θ , ϕ are endomorphisms of R such that θ is an automorphism of R. If there exists an additive mapping $F \colon R \to R$ associated with a (θ, ϕ) -derivation d of R such that

$$F(xx^*) = F(x)\theta(x^*) + \phi(x)d(x^*)$$

holds for all $x \in R$, then

$$F(xy) = F(x)\theta(y) + \phi(x)d(y)$$
 for all $x, y \in R$.

We begin our discussion with the following known lemmas:

LEMMA 2.1. ([2, Theorem 2.2]) Let R be a 2-torsion free semiprime ring and θ be an automorphism of R. If $H: R \to R$ is an additive mapping such that $H(x^2) = H(x)\theta(x)$ for all $x \in R$, then H is a left θ -centralizer.

Lemma 2.2. ([2, Theorem 3.1]) Let R be a 2-torsion free semiprime ring. Suppose that θ , ϕ are endomorphisms of R such that θ is an automorphism of R. If $F: R \to R$ is a generalized Jordan (θ, ϕ) -derivation on R, then F is a generalized (θ, ϕ) -derivation on R.

Now we prove the following:

LEMMA 2.3. Let R be a 2-torsion free semiprime ring. Suppose that θ is an automorphism of R. If there exists an element $a \in R$ such that $a\theta(x^*) = a\theta(x)$ holds for all $x \in R$, then $a \in Z(R)$.

Proof. By hypothesis, we have $a\theta(x^*) = a\theta(x)$, for all $x \in R$. Replacing x by x^*y , we obtain $a\theta([x,y]) = 0$, for all $x,y \in R$. Replacing y by $\theta^{-1}(a)$ in the latter relation we find that $a[\theta(x),a] = 0$, for all $x \in R$. Again replacing x by yx, we find that

$$a\theta(y)[\theta(x), a] = 0$$
 for all $x, y \in R$. (2.1)

Now, putting xy for y in (2.1), we get

$$a\theta(x)\theta(y)[\theta(x), a] = 0$$
 for all $x, y \in R$. (2.2)

Left multiplication by $\theta(x)$ to the equation (2.1) yields that

$$\theta(x)a\theta(y)[\theta(x), a] = 0$$
 for all $x, y \in R$. (2.3)

Combining (2.2) and (2.3), we have $[\theta(x), a]\theta(y)[\theta(x), a] = 0$ for all $x, y \in R$. Since θ is onto, the last expression implies that $[\theta(x), a]R[\theta(x), a] = \{0\}$ for all $x \in R$. Thus, the semiprimeness of R forces that $[\theta(x), a] = 0$ for all $x \in R$ and hence $a \in Z(R)$.

Proof of Theorem 2.1. Suppose that the associated (θ, ϕ) -derivation $d \neq 0$. Then, by the hypothesis, we have

$$F(xx^*) = F(x)\theta(x^*) + \phi(x)d(x^*) \quad \text{for all} \quad x \in R.$$
 (2.4)

Replace x by x + y in (2.4), to get

$$F(xy^* + yx^*) = F(x)\theta(y^*) + F(y)\theta(x^*) + \phi(y)d(x^*) + \phi(x)d(y^*)$$
for all $x, y \in R$. (2.5)

Replacing y by x^* in (2.5), we obtain

$$F(xx + x^*x^*) = F(x)\theta(x) + F(x^*)\theta(x^*) + \phi(x^*)d(x^*) + \phi(x)d(x)$$
 for all $x \in R$. (2.6)

This can be rewritten as

$$\delta(x) + \delta(x^*) = 0$$
 for all $x \in R$ (2.7)

where $\delta(x) = F(x^2) - F(x)\theta(x) - \phi(x)d(x)$.

Now, taking $xy^* + yx^*$ for y in (2.5), we find that

$$F(x(y^* + y)x^*) = -\delta(x)\theta(y^*) + F(x)\theta((y + y^*)x^*) + \phi(x)d((y + y^*)x^*).$$
 (2.8)

Replacing y by $y - y^*$ in (2.8) we get

$$\delta(x)\theta(y) = \delta(x)\theta(y^*)$$
 for all $x, y \in R$. (2.9)

In view of Lemma 2.3, the above expression implies that $\delta(x) \in Z(R)$ for all $x \in R$. Further, replace y by y^* in (2.5), to get

$$F(xy + y^*x^*) = F(x)\theta(y) + F(y^*)\theta(x^*) + \phi(y^*)d(x^*) + \phi(x)d(y)$$
for all $x, y \in R$. (2.10)

Now, replacing y by xy in (2.10), we obtain

$$F(x^{2}y + y^{*}x^{*2}) = F(x)\theta(xy) + F(y^{*}x^{*})\theta(x^{*}) + \phi(y^{*}x^{*})d(x^{*}) + \phi(x)d(xy)$$
for all $x, y \in R$.
(2.11)

On the other hand, replacing x by x^2 in (2.10), we find that

$$F(x^{2}y + y^{*}x^{*2}) = F(x^{2})\theta(y) + F(y^{*})\theta(x^{*2}) + \phi(y^{*})d(x^{*2}) + \phi(x^{2})d(y)$$
 for all $x, y \in R$. (2.12)

Combining (2.11) and (2.12), we obtain

$$\delta(x)\theta(y) + (F(y^*)\theta(x^*) - F(y^*x^*) + \phi(y^*)d(x^*)\theta(x^*) = 0 \quad \text{for all} \quad x, y \in R.$$
(2.13)

In particular, the above relation reduces to

$$\delta(x)\theta(x) - \delta(x^*)\theta(x^*) = 0 \quad \text{for all} \quad x \in R.$$
 (2.14)

According to (2.7), one can obtain

$$\delta(x)\theta(x+x^*) = 0 \quad \text{for all} \quad x \in R.$$
 (2.15)

Replacing y by x in (2.9) we get

$$\delta(x)\theta(x-x^*) = 0 \quad \text{for all} \quad x \in R. \tag{2.16}$$

On combining last two equations, we find that

$$\delta(x)\theta(x) = 0$$
 for all $x \in R$. (2.17)

Since $\delta(x) \in Z(R)$ for all $x \in R$, the last equation implies that $\theta(x)\delta(x) = 0$ for all $x \in R$. Linearization of (2.17) yields that

$$\delta(x)\theta(y) + \delta(y)\theta(x) + A(x,y)\theta(x) + A(x,y)\theta(y) = 0 \qquad \text{for all} \quad x,y \in R, \ (2.18)$$

where $A(x,y) = F(xy+yx) - F(x)\theta(y) - F(y)\theta(x) - \phi(x)d(y) - \phi(y)d(x)$. Taking -x in place of x in the last expression, we get

$$\delta(x)\theta(y) - \delta(y)\theta(x) + A(x,y)\theta(x) - A(x,y)\theta(y) = 0$$
 for all $x, y \in R$. (2.19)

On adding (2.18) and (2.19) and using the fact that R is 2-torsion free, we find that $\delta(x)\theta(y) + A(x,y)\theta(x) = 0$ for all $x,y \in R$. On right multiplication by $\delta(x)$ gives that $\delta(x)\theta(y)\delta(x) = 0$ for all $x,y \in R$. Since θ is onto, we have $\delta(x)R\delta(x) = \{0\}$ for all $x \in R$. Semiprimeness of R implies that $\delta(x) = 0$, i.e., $F(x^2) = F(x)\theta(x) + \phi(x)d(x)$ for all $x \in R$. Therefore, F is a generalized Jordan (θ,ϕ) -derivation on R and in view of Lemma 2.2, F is a generalized (θ,ϕ) -derivation.

On the other hand we assume that the associated (θ, ϕ) -derivation d = 0. Then, we have $F(xx^*) = F(x)\theta(x^*)$ for all $x \in R$. Following similar proof as above, we find that $F(x^2) = F(x)\theta(x)$ for all $x \in R$, i.e., F is a Jordan left θ -centralizer on R. Thus, F is a left θ -centralizer on R by Lemma 2.1. Hence, F is a generalized (θ, ϕ) -derivation for d = 0. This completes the proof of the theorem.

Following are the immediate consequences of Theorem 2.1.

COROLLARY 2.1. ([8, Theorem 2.1]) Let R be a 2-torsion free semiprime *-ring. If there exists an additive mapping $F: R \to R$ associated with a derivation d of R such that $F(xx^*) = F(x)x^* + xd(x^*)$ holds for all $x \in R$, then F is a generalized Jordan derivation.

COROLLARY 2.2. Let R be a 2-torsion free semiprime *-ring. If there exists an additive mapping $F \colon R \to R$ associated with a derivation d of R such that $F(xx^*) = F(x)x^* + xd(x^*)$ holds for all $x \in R$, then F is a generalized derivation.

COROLLARY 2.3. ([15, Theorem 1]) Let R be a 2-torsion free prime *-ring and let $T: R \to R$ be an additive mapping such that $T(xx^*) = T(x)x^*$ (resp. $T(xx^*) = x^*T(x)$) holds for all $x \in R$. In this case T is a left (resp. right) centralizer.

We now prove another result in the spirit of Theorem 2.1, that is:

THEOREM 2.2. Let R be a 2-torsion free semiprime *-ring. Suppose that θ , ϕ are endomorphisms of R such that θ is one-one and onto. If there exists an additive mapping $F \colon R \to R$ associated with a (θ, ϕ) -derivation d of R such that

$$F(xy^*x) = F(x)\theta(y^*x) + \phi(x)d(y^*)\theta(x) + \phi(xy^*)d(x)$$

holds for all $x, y \in R$, then F is a generalized (θ, ϕ) -derivation.

Proof. By the hypothesis, we have

$$F(xy^*x) = F(x)\theta(y^*x) + \phi(x)d(y^*)\theta(x) + \phi(xy^*)d(x) \qquad \text{for any} \quad x, y \in R.$$
(2.20)

Linearizing (2.20) on x, we get

$$\begin{split} F((x+z)y^{*}(x+z)) &= F(x)\theta(y^{*}x) + F(x)\theta(y^{*}z) + F(z)\theta(y^{*}x) \\ &+ F(z)\theta(y^{*}z) + \phi(x)\mathrm{d}(y^{*})\theta(x) + \phi(x)\mathrm{d}(y^{*})\theta(z) \\ &+ \phi(z)\mathrm{d}(y^{*})\theta(x) + \phi(z)\mathrm{d}(y^{*})\theta(z) + \phi(xy^{*})\mathrm{d}(x) \\ &+ \phi(xy^{*})\mathrm{d}(z) + \phi(zy^{*})\mathrm{d}(x) + \phi(zy^{*})\mathrm{d}(z) \\ &\qquad \qquad \text{for all} \quad x,y,z \in R. \end{split}$$

On the other hand, we obtain

$$F((x+z)y^{*}(x+z)) = F(xy^{*}z + zy^{*}x) + F(x)\theta(y^{*}x) + \phi(x)d(y^{*})\theta(x) + \phi(xy^{*})d(x) + F(z)\theta(y^{*}z) + \phi(z)d(y^{*})\theta(z) + \phi(zy^{*})d(z) \quad \text{for all} \quad x, y, z \in R.$$
(2.22)

Combining (2.21) and (2.22), we get

$$F(xy^*z + zy^*x) = F(x)\theta(y^*z) + F(z)\theta(y^*x) + \phi(x)d(y^*)\theta(z)$$

$$+\phi(z)d(y^*)\theta(x) + \phi(xy^*)d(z) + \phi(zy^*)d(x)$$
for all $x, y, z \in R$. (2.23)

Replacing z by x^2 in (2.23) we find that

$$\begin{split} F(xy^*x^2 + x^2y^*x) &= F(x)\theta(y^*x^2) + F(x^2)\theta(y^*x) + \phi(x)\mathrm{d}(y^*)\theta(x^2) \\ &+ \phi(x^2)\mathrm{d}(y^*)\theta(x) + \phi(xy^*)\mathrm{d}(x^2) + \phi(x^2y^*)\mathrm{d}(x) \\ &\quad \text{for all} \quad x,y \in R. \end{split} \tag{2.24}$$

Further, replacing $x^*y + yx^*$ for y in (2.20), we get

$$F(xy^*x^2 + x^2y^*x) = F(x)\theta(xy^*x) + F(x)\theta(y^*x^2) + \phi(x)d(xy^*)\theta(x) + \phi(x)d(y^*x)\theta(x) + \phi(x^2y^*)d(x) + \phi(xy^*x)d(x)$$
 (2.25) for all $x, y \in R$.

Combining the last two equations, we obtain

$$F(x^2)\theta(y^*x) - F(x)\theta(x)\theta(y^*x) - \phi(x)d(x)\theta(y^*x) = 0 \quad \text{for all} \quad x, y \in R.$$
(2.26)

Now, we put $H(x) = F(x^2) - F(x)\theta(x) - \phi(x)d(x)$. Then, the equation (2.26) reduces to

$$H(x)\theta(y^*x) = 0$$
 for all $x, y \in R$. (2.27)

Since θ is one-one and onto, (2.27) implies that

$$\theta^{-1}(H(x))y^*x = 0$$
 for all $x, y \in R$. (2.28)

Replacing y by y^*x^* in (2.28), we find that

$$\theta^{-1}(H(x))xyx = 0 \quad \text{for all} \quad x, y \in R.$$
 (2.29)

Now, replace y by $\theta^{-1}(z)\theta^{-1}(H(x))$ in (2.29), to get

$$\theta^{-1}(H(x))x\theta^{-1}(z)\theta^{-1}(H(x))x = 0$$
 for all $x, z \in R$. (2.30)

This implies that

$$H(x)\theta(x)zH(x)\theta(x)=0$$
 i.e., $H(x)\theta(x)RH(x)\theta(x)=\{0\}$ for all $x\in R$.

Semiprimeness of R yields that

$$H(x)\theta(x) = 0$$
 for all $x \in R$. (2.31)

Linearize (2.31) to get

$$H(x+y)\theta(x) + H(x+y)\theta(y) = 0$$
 for all $x, y \in R$. (2.32)

Now, we find

$$H(x+y) = \left\{ F(xy+yx) - F(x)\theta(y) - F(y)\theta(x) - \phi(x)d(y) - \phi(y)d(x) \right\}$$

$$+ \left\{ F(x^2) - F(x)\theta(x) - \phi(x)d(x) \right\}$$

$$+ \left\{ F(y^2) - F(y)\theta(y) - \phi(y)d(y) \right\}$$

$$= \beta(x,y) + H(x) + H(y) \quad \text{for all} \quad x, y \in R,$$

$$(2.33)$$

where $\beta(x, y)$ stands for $F(xy+yx)-F(x)\theta(y)-F(y)\theta(x)-\phi(x)\mathrm{d}(y)-\phi(y)\mathrm{d}(x)$. Thus, in view of (2.33) and (2.32) we have

$$H(x)\theta(y) + \beta(x,y)\theta(x) + H(y)\theta(x) + \beta(x,y)\theta(y) = 0$$
 for all $x, y \in R$. (2.34)

Again, replace x by -x in the last equation to get

$$H(x)\theta(y) + \beta(x,y)\theta(x) - H(y)\theta(x) - \beta(x,y)\theta(y) = 0 \quad \text{for all} \quad x, y \in R.$$
(2.35)

Adding (2.34) and (2.35) and using the fact that R is 2-torsion free, we find that

$$H(x)\theta(y) + \beta(x,y)\theta(x) = 0$$
 for all $x, y \in R$. (2.36)

On right multiplication of equation (2.36) by H(x), we obtain

$$H(x)\theta(y)H(x) + \beta(x,y)\theta(x)H(x) = 0$$
 for all $x, y \in R$. (2.37)

Now replacing y by y^* in (2.28), we find that $\theta(x)H(x)\theta(y)\theta(x)H(x) = 0$. That is,

$$\theta(x)H(x)R\theta(x)H(x) = \{0\}$$
 for all $x \in R$. (2.38)

Thus the semiprimeness of R forces that

$$\theta(x)H(x) = 0$$
 for all $x \in R$. (2.39)

Combining (2.37) and (2.39), we have $H(x)\theta(y)H(x)=0$, i.e., $H(x)RH(x)=\{0\}$ for all $x \in R$, and hence H(x)=0, i.e., $F(x^2)-F(x)\theta(x)-\phi(x)\mathrm{d}(x)=0$ for all $x \in R$. Thus F is a generalized Jordan (θ,ϕ) -derivation of R. Therefore by Lemma 2.2, we get the required result.

If we take d = 0 in Theorem 2.2, then we get the following result.

THEOREM 2.3. Let R be a 2-torsion free semiprime *-ring. Suppose that θ is an automorphism of R. If there exists an additive mapping $F: R \to R$ such that

$$F(xy^*x) = F(x)\theta(y^*x)$$

holds for all $x, y \in R$, then F is a left θ -centralizer.

COROLLARY 2.4. Let R be a 2-torsion free semiprime *-ring. Let $F: R \to R$ be an additive mapping associated with a derivation d such that

$$F(xy^*x) = F(x)y^*x + xd(y^*)x + xy^*d(x)$$

holds for all $x, y \in R$. Then F is a generalized derivation on R.

Acknowledgement. The authors are greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper.

REFERENCES

- [1] ALBAS, E.: On τ-centralizers of semiprime rings, Siberian Math. J. 48 (2007), 191–196.
- [2] ALI, S.—HAETINGER, C.: Jordan α-centralizers in rings and some applications, Bol. Soc. Parana. Mat. (2) 26 (2008), 71–80.
- [3] ASHRAF, M.—AL-SHAMMAKH, W. S. M.: On generalized (θ, φ)-derivations in rings, Int. J. Math. Game Theory Algebra 12 (2002), 295–300.
- [4] ASHRAF, M.—ALI, A.—ALI, S.: On Lie ideals and generalized (θ, φ)-derivations in prime rings, Comm. Algebra 32 (2004), 2977–2985.
- [5] ASHRAF, M.—REHMAN, N.—ALI, S.: On Lie ideals and Jordan generalized derivations of prime rings, Indian J. Pure Appl. Math. 34 (2002), 291–294.
- [6] BREŠAR, M.: On the distance of the composition of two derivations to the generalized derivations, Glasg. Math. J. 33 (1991), 89–93.
- [7] CUSACK, J.: Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 53 (1975), 321–324.
- [8] DAIF, M. N.—EL-SAYIAD, M. S.: On generalized derivations of semiprime rings with involution, Internat. J. Algebra 1 (2007), 551–555.
- [9] LANSKI, C.: Generalized derivations and nth power maps in rings, Comm. Algebra 35 (2007), 3660–3672.
- [10] MOLNAR, L.: On centralizers of an H*-algebra, Publ. Math. Debrecen 46 (1995), 89–95.

M. ASHRAF — N. REHMAN — S. ALI — M. R. MOZUMDER

- [11] VUKMAN, J.: An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (1999), 447–456.
- [12] VUKMAN, J.: Centralizers of semiprime rings, Comment. Math. Univ. Carolin. 42 (2001), 237–245.
- [13] VUKMAN, J.: A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), 367–370.
- [14] VUKMAN, J.—ULBL, I. K.: On centralizers of semiprime rings, Aequationes Math. 66 (2003), 277–283.
- [15] VUKMAN, J.—ULBL, I. K.: On centralizers of semiprime rings with involution, Studia Sci. Math. Hungar. 43 (2006), 61–67.
- [16] ZALAR, B.: On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609–614.

Received 8. 12. 2009 Accepted 18. 10. 2010 Department of Mathematics Aligarh Muslim University Aligarh-202002 INDIA

 $E\text{-}mail: \\ \\ \text{mashraf80@hotmail.com} \\ \\ \text{shakir.ali.mm@amu.ac.in} \\ \\ \text{rehman100@gmail.com} \\ \\ \\ \text{mrm7862000@yahoo.co.in} \\ \\ \end{aligned}$

 $* Corresponding \ author$