versi 2o I\/\%flhemoﬁco
ovaca

DOI: 10.2478/s12175-012-0019-8
Math. Slovaca 62 (2012), No. 3, 425-{438]

ON o-COMPLETE RETRACTS
OF SPECKER LATTICE ORDERED GROUPS
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ABSTRACT. Let a be a cardinal. The notion of a-complete retract of a Boolean
algebra has been studied by Dwinger. Specker lattice ordered groups were inves-
tigated by Conrad and Darnel. Assume that G is a Specker lattice ordered group
generated by a Boolean algebra B(G). The notion of a-complete retract of G can
be defined analogously as in the case of Boolean algebras. In the present paper we

deal with the relations between a-complete retracts of G and a-complete retracts
of B(G).
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1. Introduction

Dwinger [4] introduced and studied a-complete retracts of Boolean algebras,
where « is a cardinal. In particular, he proved that the classical Skolem’s theo-
rem is a consequence of his result on Ng-complete retracts.

Specker lattice ordered groups were investigated by Conrad and Darnel [3];
cf. also the author [8], [II]. For each Specker lattice ordered group G there
exists a generalized Boolean algebra B(G) such that G is generated by B(G).
In the present paper we restrict ourselves to take case when B(G) is a Boolean
algebra.

The notion of a-complete retract of Specker lattice ordered groups can be
defined analogously as in the case of Boolean algebras.
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Let G and B(G) be as above. We show that there exists a one-to-one corre-
spondence between retract mappings of G and retract mappings of B(G). Fur-
ther, we prove that if B(G) is a-complete, then there exists a bijection between
the system of all a-complete retracts of G and the system of all a-complete
retracts of B(G).

Retracts of lattice ordered groups have been investigated in [5], [6], [7], [9].

2. Preliminaries

For lattice ordered groups we apply the notation as in Birkhoff [1].

The symbol 0 denotes the zero real, the neutral element of a lattice ordered
group or the least element of a Boolean algebra; the meaning of this symbol will
be clear from the context.

We start by recalling the notion of Specker lattice ordered group correspond-
ing to a Boolean algebra B (cf. [2], [3], [8], [I1]). To avoid the trivial case, we
always assume that B has more than one element.

We denote by A the set of all maximal proper filters of B. If b € B, then b
will be identified with the set A(b) of all A € A such that b € X\. Let Z be the
additive group of all integers with the natural linear order.

GOZ HA)\7

AEA

where Ay = Z for each A € A. For a € Z and b € B we denote by a[b] the
element of Gy such that

Consider the direct product

if Aeb,
otherwise.

o) = {5

Further, we denote by Zp the set of all elements g of Gy such that either
g = 0 or g can be expressed in the form

g =afa] + - +anlen, (1)

where aq,...,a, are nonzero elements of Z and cy,...,c, are nonzero elements
of B such that c;1) A cj2) = 0 whenever i(1) and i(2) are distinct elements of
the set {1,2,...,n}. It is clear that Zp is an ¢-subgroup of Gj.

Without loss of generality we can assume that the elements ay,...,a, are
mutually distinct. In such a case, the expression (1) is said to be a standard
Specker representation of g. Each nonzero element of G has a unique standard
Specker representation. Put Zp = G.
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If ai[c1] is as in (1) and a3 = 1 then we write a1[c1] = ¢;. Thus we have
g=aic1 + -+ apCn.

Put B(G) = {b: b € B}. Hence B(G) C G; the partial order on G induces a
partial order on B(G). It is obvious that B(G) is isomorphic to B; hence B(G)
is a Boolean algebra. It is well-known that B(G) is a convex sublattice of the
underlying lattice of G.

We say that G is the Specker lattice ordered group generated by the Boolean
algebra B.

A non-zero f-subgroup G of G is said to be a Specker ¢-subgroup of G if,
whenever {b1, ..., b, } is an orthogonal system of elements of B(G) and a4, ..., a,
are mutually distinct nonzero integers such that a;b; + - -+ + anb, € G1, then
for each i € {1,2,...,n} we have b, € G; and b; € Gy (b; is the complement of
b; in B(G)).

Now, let us put By = {b € B: b € G1}. It is easy to verify that G is
isomorphic to Zp,; hence G; is a Specker lattice ordered group.

We denote by B(G1) the set of all b € B(G) such that b € G;. Hence B(G1)
is a Boolean algebra isomorphic to B;. The relation between Gy and B(G) is
analogous to that between G and B(G).

Now, we recall the notion of a-complete retract of a Boolean algebra defined
in [4].

Let « be a cardinal. Assume that A and X are a-complete Boolean algebras
and that X is a subalgebra of A. We denote by X* the a-complete subalge-
bra of A generated by X. (For a detailed definition of this notion and of the
corresponding notion concerning Specker lattice ordered groups cf. Section 5
below.) The Boolean algebra X is called a-complete retract of A if there exists
an a-complete homomorphic mapping of X* onto X which leaves X elementwise
fixed.

The definition of a-complete retract of a Specker lattice ordered group is
analogous; for the sake of completeness, we formulate it in detail.

Let A and X be a-complete Specker lattice ordered groups such that X is a
Specker f-subgroup of A. Let X™* be the a-complete f-subgroup of A which is
generated by X. Suppose that there exists and a-complete homomorphism of
X* onto X which leaves X elementwise fixed. Then X is an a-complete retract
in A.

We recall that a lattice ordered group A is a-complete if each upper-bounded
subset A7 of A with 0 # card A7 £ « has the supremum in A. In such a case,
the corresponding dual condition is also valid. An /¢-subgroup X of A is an a-
complete f-subgroup of A if, whenever X is a subset of X with card X; < « and
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the relation sup X; = z is valid in A, then z; € X. A homomorphic mapping ¢
of a lattice ordered group A into a lattice ordered group B is called a-complete
if it satisfies the following condition (%) and the corresponding dual condition:
(¥*) Whenever {z;},er € A, card] < « and the relation z = \/ z; is valid in
i€l
A, then the relation p(z) = \ ¢(z;) is valid in B.
i€l

An analogous terminology is applied for Boolean algebras.

3. Retracts and retract mappings

Let B be a Boolean algebra. A homomorphism ¢: B — B is a retract mapping
if p(p(z)) = ¢(z) for each x € B. Then the set ¢(B) is said to be a retract
in B.

Let G be a Specker f-subgroup of a Specker lattice ordered group G and let
1 be a homomorphism of G onto G1 such that (i (z)) = ¢ (x) for each z € G;
then v is a retract mapping and G is a retract in G.

In the present section we prove that there exists a one-to-one correspondence
between retract mappings of the Specker lattice ordered group G = Zp and
retract mappings of the Boolean algebra B. Further, some results of this section
will be applied by the investigation of a-complete retracts.

LEMMA 3.1. Let ¢ be a retract mapping on a Specker lattice ordered group
G = Zg. Then ¥(B(@)) C B(G).

Proof. Let b € B(G). It suffices to deal with the case ¢(b) # 0. Put ¢(b) ==
and let
T =a1by + -+ anby (1)
be the standard Specker representation of x. Then either there exists i €
{1,2,...,n} with a; # 1 or n = 1, a3 = 1. In the latter case, ¥(b) = =
= by € B(G). Consider the former case. Since b > 0, we must have z > 0, and
thus, a; > 1. Without loss of generality, we can suppose that i = 1.
The set ¥(G) is a retract in G and hence it is a Specker ¢-subgroup of G.
i

Since z € 9(G), we conclude that by and b’ belong to (G). Hence w(bll) =0,.
We have b < b; V b;. Then

arby £ @ < p(b) < (br) Vb(by) = by V b}

Since by A b/1 = 0 we get (a1b1) A b/1 = 0, thus a1b;y £ b;. We arrived at a
contradiction. U
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Let 1 be as above. For each b € B(G) we put ¥y(b) = ¢(b). From Lemma 3.1
we immediately obtain:

LEMMA 3.2. For each retract mapping ¥ on G, g is a retract mapping on
B(G).

Now let ¢ be a retract mapping on the Boolean algebra B(G). We define a
mapping po: G — G as follows. We set ¢(0) = 0. If 0 # 2z € G and if (1) is
the standard Specker representation of z, then we put

wo(x) = a1p(by) + - - + anp(bn)-
We need an auxiliary result concerning the representation of elements of G. Let
x and (1) be as above; further, let
r1 = a1bi1 + - = a1mbim

be a standard Specker representation of an element x1 € G.

If a € Z, b € B(G) and either a = 0 or b = 0, then we put ab = 0.

We set api1 =0, b1 = (b1 V---Vb,), I ={1,2,...,n+ 1}, and similarly
a1mt1 =0, b1 mi1 =011V~ Vbin), J={1,2,...,m+1}. Then we have

T = Zaibi = \/ aibi,

el iel
rT = E aljblj = \/ aljblj.
JjeJ JjeJ

Let i € I and j € J. We put
¢ij = by Nbj, Qi = Qj, ayij = aj.

By a simple calculation (using the fact that the underlying lattice of G is dis-

tributive) we obtain
L= Z aijbi; = \/ aizbij,

(ij)elxJ (i,5)€IxJ
Tl = E a1,ijbij = \/ at,ijbij.
(G.g)elxJ (g)elxJ

Therefore we have the following result (using a modified notation):

LEMMA 3.3. Let © and x1 be elements of G. Then they can be expressed in the
form

r=aiby + -+ anby,

r1 = ai1by + - + ainby,

such that by, ..., b, are mutually orthogonal elements of B(G) and ay, ..., ap,
a11,-..,01n are elements of Z.
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LEMMA 3.4. For each retract mapping ¢ on B(G), ¢o is a retract mapping
on G.

Proof.

a) Let us remark that to calculate @o(x), we can use any representation of x,
not necessarily a standard one. It is easy to verify that whenever z, x; are
elements of G and if they are represented as in Lemma 3.3, then

wo(z) = arp(br) + -+ + anp(bn),
po(z1) = anp(br) + - + a1,np(bn),
r+x1 = (a1 +a11)bs + -+ (ana + a1,,)by,
wo(z + 21) = po(x) + po(21).

Thus ¢g is an endomorphism with respect to the operation +.
b) Now, let us deal with an analogous question concerning the operation V.
Let us apply the notation as above.

We have
n n
xr = \/ aibi, r, = \/ al’ibi.
i=1 i=1

We also obtain

po(x) = _\/(aisﬁ(bz‘)a po(w1) = _\/(al,z‘@(bi));
TV = \/(sup(ai, ai,;)bi),

wo(z V1) = o)V @o(z1).

Therefore g is an endomorphism with respect to the operation V. Further,
since the operation A can be calculated by applying the operations V and —, we
conclude that ¢q is also an endomorphism with respect to the operation A.

¢) We obviously have ¢q(¢o(x)) = ¢o(z) for each z € G.

Evidently, if x = a1by + -+ + anb, € ¢o(G) and aq,...,a, are mutually
distinct, then for all ¢ € I, both b; and b; belong to ¢¢(G). Summarizing, we
obtain that g is a retract mapping on the Specker lattice ordered group G. [

From the definitions of 1)y and ¢¢ we immediately obtain that the relations

(Y0)o = 7, (po)o =

are valid.
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Hence if we put f(¢) = 1 for each retract mapping ¢ on G, then f is
a bijection of the system of all retract mappings on G onto the system of all
retract mappings on B(G). Since B ~ B(G), we get

THEOREM 3.5. Let G = Zp be a Specker lattice ordered group. Then there
eixrsts a one-to-one correspondence between retract mappings of G and retract
mappings of B.

4. Specker /-subgroups

As above, let G = Zp be a Specker lattice ordered group. We denote by S(G)
the system of all Specker ¢-subgroups of G.
From the definition of Specker /-subgroup we immediately obtain

LEMMA 4.1. Let H € S(G). Then H N B(G) is a subalgebra of the Boolean
algebra B(G).

LEMMA 4.2. Let By be a subalgebra of the Boolean algebra B(G). We denote
by Hy the set of all elements x of G such that either x = 0 or x can be expressed
in the form x = a1by + -+ + anby, where ay,...,a, are nonzero integers and

{b1,...,bn} is an orthogonal system of elements of By. Then Hy is a Specker
l-subgroup of G and B(Hy) = B;.

Proof. In view of Lemma 3.3, H; is an f-subgroup of G. From this and from
the definition of H; we conclude that H; is a Specker ¢-subgroup of G and that
B(Hy) = Bs. d

For a Boolean algebra B let S(B) be the system of all subalgebras of B.

For each H € S(G) we put x(H) = HN B(G). Let the systems S(G) and
S(B) be partially ordered by the set-theoretical inclusion.

Lemmas 4.1 and 4.2 yield

LEMMA 4.3. The mapping x: S(G) — S(B(G)) is a bijection. For Hy,Hy €
S(G) we have
Hy C Hy <= x(H1) C x(H2).

The following two assertions are easy to verify.

LEMMA 4.4. Let a be a cardinal and let G be a-complete. Assume that {b;}ier C
B(G), I #0, cardI £ «a, © € G and that the relation x = \/ b; is valid in G.

iel
Then x € B(G).
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LEMMA 4.5. Let {b;};er and z be as in Lemma 4.4 with the distinction that

now the relation x = M b; is valid in G. Then x € B(G).
iel

From Lemmas 4.4 and 4.5 we conclude:
LEMMA 4.6. Let o be a cardinal and suppose that G is a-complete. Then
(i) B(G) is an a-complete sublattice of G;
(ii) B(G) is a-complete.

LEmMMA 4.7. Let {b;},ep C B(G), b € B(G) and assume that the relation

\ b; = b is valid in B(G). Then the same relation holds in G.
iel

Proof. Let z € G be an upper bound of the set {b;};c;. Then x Ab is an upper
bound of {b;};cr, too. Using the convexity of B(G), we obtain b < z. O

LEMMA 4.8. Assume that B(G) is a-complete. Then G is a-complete as well.

Proof. It suffices to verify that if {g;}:cs is an upper bounded subset of G+
and card I < «, then this set has a supremum in G.

Let z € G and suppose that x is an upper bound of such set {g; };c;. Consider
the standard Specker representation

T =aib; + -+ anb,

of x; similarly, consider the standard Specker representations

9i = ainbin + -+ Qin(i)bing)
of elements g;. We have

T =a1by V- Va,b,,

9i = ai1bit V- -V Qi) bin i) -
The greatest element of the Boolean algebra B will be denoted by b°. Put
a* = max{ay,...,an}. Then x < a*b%, hence

aijbij é a*bo, 0< Qjj é a*
for each i € I and each j € {1,2,...,n(i)}.

The set of all upper bounds of the system {g;};c; coincides with the set of all

upper bounds of the system of all elements a;;b;; (under the notation as above).

For each integer k£ with 0 < k < a* we denote by Py the set of all elements
a;jb;j such that a;; = k. If P, = 0, then we put p =0 € G. In the case P, # ()
we set

Pr = sup Py;
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this supremum in G exists, since

sup Pk = sup{aijbij} = Sup{kbij} = ksup{bij}

(where a;; = k). Namely, for each ¢ € I there exists at most one j with a;; = k
and thus card{b;;} < «, hence sup{b;;} exists in B(G). In view of Lemma 4.6,
sup{b;;} in B(G) is, at the same time, the supremum of the set {b;;} in G.
Each element a;;b;; belongs exactly to one set P;. Hence we obtain that the
supremum of the system of elements a;;b;; is equal to p; Vpa V-V pg-. (]

If G; € S(G), then the relation between G; and x(G;) is the same as the
relation between G and B(G). Hence from the previous lemmas we infer

LEMMA 4.9. Let G1 € S(G). Then Gy is a-complete if and only if the Boolean
algebra x(G1) is a-complete.

5. a-complete retracts

Let a be a cardinal and let G, B be as above. In the present section we
assume that G is a-complete. According to Section 4, this is equivalent with
the assumption that B is a-complete. Recall that the notion of a-complete
homomorphism was defined in Section 2. In the present section we will deal with
a-complete endomorphisms on Specker lattice ordered groups and on Boolean
algebras.

If o: B(G) — B(G) is a retract mapping on B(G), then we define g in the
same way as in Section 3. In view of Lemma 3.4, ¢ is a retract mapping on G.

Analogously we proceed when v is a retract mapping on GG. Then according
to Lemma 3.2, ¢y is a retract mapping on B(G).

LeEMMA 5.1. Assume that 1 is an a-complete endomorphism on G and that
it is, at the same time, a retract mapping on G. Then g is an a-complete
endomorphism on B(G).

Proof. It suffices to apply Lemma 4.6. (I

Now, let us assume that ¢ is an a-complete endomorphism on B(G) and that
it is, at the same time, a retract mapping on B(G).

LEMMA 5.2. Let z € G and 0 # X = {g;}ic1 C GT. Let cardI < . Assume
that x is an upper bound of X. Put X' = ¢o(X). Then po(sup X) = sup X'.
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Proof. We apply the notation as in the proof of Lemma with a slight
modification. Namely, let

r=aiby +---+apby

be as in the mentioned proof and let ¢ € I. Since 0 < g; < z, there exists a
representation of g; having the form

gi = ai1bi1 + -+ + ainbin
such that for each j € {1,2,...n} the relations
0<ajy <aj, 0<by; <b;

are valid. Then b; j(1)Ab; j(2) = 0 whenever j(1) and j(2) are distinct and belong
to the set {1,2,...,n}. Thus

gi = ai1bin V -+ V @inbig.
Therefore, we have
\/gi = \/(aijbij), where i€l and je{1,2,...,n}. (1)
iel
Let a* be as in the proof of Lemma 8 For each integer k with 1 < k < a*
we denote by @)y the set of all elements b;; such that a;; = k. Each element b;;
belongs to some Q, and this () is uniquely determined. Let P, be as in the

proof of Lemma .8 If Q) # (), then the elements of Py, have the form kb;; with
bij € Q. In this case, we have

supPe = \/ (kbij) =k \/ bij; (2)
bij €EQk bij €EQk

we set sup P = pg. If Qr = 0, then we set p = 0. Therefore, in view of (1), we
obtain

\/gi:pl Vp2 V-V pgs,
iel

<P0<\/9i> =o(p1) V ¢o(p2) V-V po(pa-)- (3)
iel
If ke{1,2,...,a"} and Qp # 0, then in view of (2), we have
®o(Pr) 2900(16 \/ bij) ZkSO( \/ bij)-
bij €EQk bi; €EQk

According to the assumption, ¢ is an a-complete endomorphism on B(G) and
therefore
@( \V bij) = \/ elby). (4)
bij €EQxk bij €EQxk
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Further, for each ¢ € I, we have

®o(gi) = ainp(bin) + - + ainp(bin).
If j(1) and j(2) are distinct elements of the set {1,2,...,n}, then from
bi,j(l) A bz,](2) =0 we get (P(bz,j(l)) A gﬁ(b%](g)) =0 and hence
®o(gi) = ainp(bin) V-V aingp(bin).
Therefore
\/ volgi) = \/(aij(,O(bij))’ where i€l and je{l1,2,...,n}. (5)
iel
From (3), (4) and (5) we conclude that the relation
%(\/ 9i> =\/ ¢o(9:)
iel i€l
is valid. (]

The following assertion is easy to verify.

LEMMA 5.3. Let ) # X = {gi}icr be an upper bounded subset of G and i(0) € I.
Let card I < a. Put {g; V gi(0) yier = Xo. Then, sup X = sup Xj.

LEMMA 5.4. Let X be as in Lemma 53l Put X' = ¢o(X). Then go(sup X) =
sup X'.
Proof. We choose any i¢(0) € I. Let Xy be as in Lemma In view of
Lemma B3] sup X = sup Xj.
Similarly, we set {©0(gi) V ©o(gi(0)) }ier = X(. Again, by Lemma [5.3] we have
sup X’ = sup X|,.
Further, we put
{t—gioy: t€Xo} =Xo1, {t—olgio)): t€Xi} =X
Then we have
po(Xo1) = X1 (6)
Moreover, we get
sup Xo1 = sup Xo — gi(0), sup Xg; = sup X — ©o(gi(0))-
Obviously, Xo; € GT and card Xo; < . According to Lemma and (6), the
relation
wo(sup Xo1) = sup X{;
is valid. We obtain
wo(sup X) = wo(sup Xo) = @o(sup Xo1 + gi(0)) = wo(sup Xo1) + ©o(gi(0))
= sup X¢; + ¢0(gi(0)) = sup Xy — ©0(9i(0)) + #o(gi(0)) =supX’. O
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LEMMA 5.5. Assume that ¢ is an a-complete endomorphism on B(G) and that
it is, at the same time, a retract mapping on B(G). Then g is an a-complete
endomorphism on G.

Proof.

a) First, let us consider the condition concerning the operation V. The va-
lidity of this condition follows from Lemma .41

b) Secondly, considering the operation A it suffices to take into account that
the operation A can be expressed by means of the operation — and V, and to
apply the result from a). O

Analogously we verify (using 4.9)

LEMMA 5.5.1. Let Gy € S(G). Assume that v is an a-complete homomorphism
on G1 and a retract mapping on G1. Then gy is an a-complete homomorphism

on x(Gy).

LEMMA 5.5.2. Let By € S(B(G)). Assume that ¢ is an a-complete homo-
morphism and, at the same time, a retract mapping on Bi. Then @g s an
a-complete homomorphism on x~*(B1).

Let X be a subalgebra of B. Further, let X* be an a-complete subalgebra of
B such that

(i) X C X*;
(ii) if X; is a subalgebra of B with X C X; C X*, then X; fails to be
a-complete subalgebra of B.
Then X* is said to be a-complete subalgebra of B generated by X.
For Specker lattice ordered groups we apply the following analogous definition.
Let Y be a Specker ¢-subgroup of G; further, let Y be an a-complete Specker
f-subgroup of G such that
(i) Y C Y™
(ii) if Y7 is a Specker ¢-subgroup of G such that Y C Y3 C Y*, then Y7 is not
an a-complete Specker /-subgroup of G.
Then Y* is said to be the a-complete Specker £-subgroup of G generated by Y .

It is obvious that X* is uniquely determined by X; simlarly, Y* is uniquely
determined by Y.

Let the mapping x: S(G) — S(B(G)) be as in Section 4.
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LEMMA 5.6. LetY € S(G) and X = x(Y). Then X* = x(Y™).

Proof. Let M; be the set of all P € S(G) such that P is an a-complete Specker
¢-subgroup of G with Y C P. Similarly, let My be the set of all Q € S(B(G))
such that @ is an a-complete subalgebra of B(G) with X C @. Then Y™ is the
intersection of all P belonging to M7, and analogously, X* is the intersection of
all @ belonging to Ms.

IfY; € S(G) and X; = x(Y1), then in view of Lemma 4.9, Y7 is an a-complete
Specker ¢-subgroup of G if and only if X; is an a-complete subalgebra of B(G).
Hence (M) = My. Therefore according to Lemma 4.3 we obtain x(Y*) = X*.

d

LEMMA 5.7. Assume that Y is an a-complete retract of G. Put X = x(Y).
Then X is an a-complete retract of B(G).

Proof. Let Y* and X* be as above. Then there exists a-complete endomor-
phism % on Y* which leaves Y elementwise fixed. Put ¢ = 1¢g. Then in view of
Lemma 5.5.1 we infer that X is an a-complete retract of B(G). O

LEMMA 5.8. Assume that X is an a-complete retract in B(G). We set Y =
X YX). Then'Y is an a-complete retract in G.

Proof. We proceed analogously as in the proof of Lemma 5.7 with the distinc-
tion that instead of Lemma 5.5.1 we now apply Lemma 5.5.2. O

In view of Lemmas 5.7, 5.8 and 4.3 we conclude

THEOREM 5.9. Let G = Zp be a Specker lattice ordered group and let o be a
cardinal. Assume that the Boolean algebra B is a-complete. There exists a one-
to-one correspondence between a-complete retracts of G and a-complete retracts

of B(G).
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