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ABSTRACT. Let α be a cardinal. The notion of α-complete retract of a Boolean

algebra has been studied by Dwinger. Specker lattice ordered groups were inves-

tigated by Conrad and Darnel. Assume that G is a Specker lattice ordered group

generated by a Boolean algebra B(G). The notion of α-complete retract of G can

be defined analogously as in the case of Boolean algebras. In the present paper we

deal with the relations between α-complete retracts of G and α-complete retracts

of B(G).

c©2012
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

Dwinger [4] introduced and studied α-complete retracts of Boolean algebras,

where α is a cardinal. In particular, he proved that the classical Skolem’s theo-

rem is a consequence of his result on ℵ0-complete retracts.

Specker lattice ordered groups were investigated by Conrad and Darnel [3];

cf. also the author [8], [11]. For each Specker lattice ordered group G there

exists a generalized Boolean algebra B(G) such that G is generated by B(G).

In the present paper we restrict ourselves to take case when B(G) is a Boolean

algebra.

The notion of α-complete retract of Specker lattice ordered groups can be
defined analogously as in the case of Boolean algebras.
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Let G and B(G) be as above. We show that there exists a one-to-one corre-
spondence between retract mappings of G and retract mappings of B(G). Fur-

ther, we prove that if B(G) is α-complete, then there exists a bijection between

the system of all α-complete retracts of G and the system of all α-complete

retracts of B(G).

Retracts of lattice ordered groups have been investigated in [5], [6], [7], [9].

2. Preliminaries

For lattice ordered groups we apply the notation as in Birkhoff [1].

The symbol 0 denotes the zero real, the neutral element of a lattice ordered

group or the least element of a Boolean algebra; the meaning of this symbol will
be clear from the context.

We start by recalling the notion of Specker lattice ordered group correspond-

ing to a Boolean algebra B (cf. [2], [3], [8], [11]). To avoid the trivial case, we

always assume that B has more than one element.

We denote by Λ the set of all maximal proper filters of B. If b ∈ B, then b

will be identified with the set Λ(b) of all λ ∈ Λ such that b ∈ λ. Let Z be the

additive group of all integers with the natural linear order.

Consider the direct product

G0 =
∏
λ∈Λ

Aλ,

where Aλ = Z for each λ ∈ Λ. For a ∈ Z and b ∈ B we denote by a[b] the

element of G0 such that

a[b](λ) =

{
a, if λ ∈ b,

0, otherwise.

Further, we denote by ZB the set of all elements g of G0 such that either

g = 0 or g can be expressed in the form

g = a1[c1] + · · ·+ an[cn], (1)

where a1, . . . , an are nonzero elements of Z and c1, . . . , cn are nonzero elements

of B such that ci(1) ∧ ci(2) = 0 whenever i(1) and i(2) are distinct elements of

the set {1, 2, . . . , n}. It is clear that ZB is an �-subgroup of G0.

Without loss of generality we can assume that the elements a1, . . . , an are

mutually distinct. In such a case, the expression (1) is said to be a standard

Specker representation of g. Each nonzero element of G has a unique standard

Specker representation. Put ZB = G.
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If a1[c1] is as in (1) and a1 = 1 then we write a1[c1] = c1. Thus we have

g = a1c1 + · · ·+ ancn.

Put B(G) = {b : b ∈ B}. Hence B(G) ⊆ G; the partial order on G induces a

partial order on B(G). It is obvious that B(G) is isomorphic to B; hence B(G)
is a Boolean algebra. It is well-known that B(G) is a convex sublattice of the

underlying lattice of G.

We say that G is the Specker lattice ordered group generated by the Boolean

algebra B.

A non-zero �-subgroup G1 of G is said to be a Specker �-subgroup of G if,
whenever {b1, . . . , bn} is an orthogonal system of elements of B(G) and a1, . . . , an
are mutually distinct nonzero integers such that a1b1 + · · · + anbn ∈ G1, then

for each i ∈ {1, 2, . . . , n} we have bi ∈ G1 and b
′
i ∈ G1 (b

′
i is the complement of

bi in B(G)).

Now, let us put B1 = {b ∈ B : b ∈ G1}. It is easy to verify that G1 is

isomorphic to ZB1
; hence G1 is a Specker lattice ordered group.

We denote by B(G1) the set of all b ∈ B(G) such that b ∈ G1. Hence B(G1)
is a Boolean algebra isomorphic to B1. The relation between G1 and B(G1) is

analogous to that between G and B(G).

Now, we recall the notion of α-complete retract of a Boolean algebra defined

in [4].

Let α be a cardinal. Assume that A and X are α-complete Boolean algebras
and that X is a subalgebra of A. We denote by X∗ the α-complete subalge-

bra of A generated by X. (For a detailed definition of this notion and of the

corresponding notion concerning Specker lattice ordered groups cf. Section 5

below.) The Boolean algebra X is called α-complete retract of A if there exists

an α-complete homomorphic mapping of X∗ onto X which leavesX elementwise

fixed.

The definition of α-complete retract of a Specker lattice ordered group is

analogous; for the sake of completeness, we formulate it in detail.

Let A and X be α-complete Specker lattice ordered groups such that X is a

Specker �-subgroup of A. Let X∗ be the α-complete �-subgroup of A which is

generated by X. Suppose that there exists and α-complete homomorphism of

X∗ onto X which leaves X elementwise fixed. Then X is an α-complete retract
in A.

We recall that a lattice ordered group A is α-complete if each upper-bounded

subset A1 of A with 0 �= cardA1 � α has the supremum in A. In such a case,

the corresponding dual condition is also valid. An �-subgroup X of A is an α-

complete �-subgroup of A if, whenever X1 is a subset of X with cardX1 � α and
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the relation supX1 = x1 is valid in A, then x1 ∈ X. A homomorphic mapping ϕ
of a lattice ordered group A into a lattice ordered group B is called α-complete

if it satisfies the following condition (∗) and the corresponding dual condition:

(∗) Whenever {xi}i∈I ⊆ A, card I � α and the relation x =
∨
i∈I

xi is valid in

A, then the relation ϕ(x) =
∨
i∈I

ϕ(xi) is valid in B.

An analogous terminology is applied for Boolean algebras.

3. Retracts and retract mappings

Let B be a Boolean algebra. A homomorphism ϕ : B → B is a retract mapping

if ϕ(ϕ(x)) = ϕ(x) for each x ∈ B. Then the set ϕ(B) is said to be a retract

in B.

Let G1 be a Specker �-subgroup of a Specker lattice ordered group G and let

ψ be a homomorphism of G onto G1 such that ψ(ψ(x)) = ψ(x) for each x ∈ G;

then ψ is a retract mapping and G1 is a retract in G.

In the present section we prove that there exists a one-to-one correspondence

between retract mappings of the Specker lattice ordered group G = ZB and

retract mappings of the Boolean algebra B. Further, some results of this section
will be applied by the investigation of α-complete retracts.

����� 3.1� Let ψ be a retract mapping on a Specker lattice ordered group

G = ZB. Then ψ(B(G)) ⊆ B(G).

P r o o f. Let b ∈ B(G). It suffices to deal with the case ψ(b) �= 0. Put ψ(b) = x

and let

x = a1b1 + · · ·+ anbn (1)

be the standard Specker representation of x. Then either there exists i ∈
{1, 2, . . . , n} with ai �= 1 or n = 1, a1 = 1. In the latter case, ψ(b) = x

= b1 ∈ B(G). Consider the former case. Since b > 0, we must have x > 0, and

thus, ai > 1. Without loss of generality, we can suppose that i = 1.

The set ψ(G) is a retract in G and hence it is a Specker �-subgroup of G.

Since x ∈ ψ(G), we conclude that b1 and b1
′
belong to ψ(G). Hence ψ(b

′
1) = b

′
1.

We have b � b1 ∨ b′1. Then
a1b1 � x ≤ ψ(b) ≤ ψ(b1) ∨ ψ(b′1) = b1 ∨ b′1.

Since b1 ∧ b
′
1 = 0 we get (a1b1) ∧ b

′
1 = 0, thus a1b1 � b1. We arrived at a

contradiction. �
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Let ψ be as above. For each b ∈ B(G) we put ψ0(b) = ψ(b). From Lemma 3.1
we immediately obtain:

����� 3.2� For each retract mapping ψ on G, ψ0 is a retract mapping on

B(G).

Now let ϕ be a retract mapping on the Boolean algebra B(G). We define a

mapping ϕ0 : G → G as follows. We set ϕ0(0) = 0. If 0 �= x ∈ G and if (1) is

the standard Specker representation of x, then we put

ϕ0(x) = a1ϕ(b1) + · · ·+ anϕ(bn).

We need an auxiliary result concerning the representation of elements of G. Let
x and (1) be as above; further, let

x1 = a11b11 + · · · = a1mb1m

be a standard Specker representation of an element x1 ∈ G.

If a ∈ Z, b ∈ B(G) and either a = 0 or b = 0, then we put ab = 0.

We set an+1 = 0, bn+1 = (b1 ∨ · · · ∨ bn)′, I = {1, 2, . . . , n + 1}, and similarly

a1,m+1 = 0, b1,m+1 = (b1,1 ∨ · · · ∨ b1,m)′, J = {1, 2, . . . ,m+ 1}. Then we have

x =
∑
i∈I

aibi =
∨
i∈I

aibi,

x1 =
∑
j∈J

a1jb1j =
∨
j∈J

a1jb1j .

Let i ∈ I and j ∈ J . We put

cij = bi ∧ bj , aij = ai, a1,ij = a1j.

By a simple calculation (using the fact that the underlying lattice of G is dis-

tributive) we obtain

x =
∑

(ij)∈I×J

aijbij =
∨

(i,j)∈I×J

aijbij,

x1 =
∑

(i,j)∈I×J

a1,ijbij =
∨

(i,j)∈I×J

a1,ijbij .

Therefore we have the following result (using a modified notation):

����� 3.3� Let x and x1 be elements of G. Then they can be expressed in the

form
x = a1b1 + · · ·+ anbn,

x1 = a11b1 + · · ·+ a1nbn,

such that b1, . . . , bn are mutually orthogonal elements of B(G) and a1, . . . , an,

a11, . . . , a1n are elements of Z.
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����� 3.4� For each retract mapping ϕ on B(G), ϕ0 is a retract mapping
on G.

P r o o f.

a) Let us remark that to calculate ϕ0(x), we can use any representation of x,

not necessarily a standard one. It is easy to verify that whenever x, x1 are

elements of G and if they are represented as in Lemma 3.3, then

ϕ0(x) = a1ϕ(b1) + · · ·+ anϕ(bn),

ϕ0(x1) = a11ϕ(b1) + · · ·+ a1,nϕ(bn),

x+ x1 = (a1 + a11)b1 + · · ·+ (ana+ a1,n)bn,

ϕ0(x+ x1) = ϕ0(x) + ϕ0(x1).

Thus ϕ0 is an endomorphism with respect to the operation +.

b) Now, let us deal with an analogous question concerning the operation ∨.
Let us apply the notation as above.

We have

x =

n∨
i=1

aibi, x1 =

n∨
i=1

a1,ibi.

We also obtain

ϕ0(x) =

n∨
i=1

(aiϕ(bi), ϕ0(x1) =

n∨
i=1

(a1,iϕ(bi)),

x ∨ x1 =

n∨
i=1

(sup(ai, a1,i)bi),

ϕ0(x ∨ x1) = ϕ0(x) ∨ ϕ0(x1).

Therefore ϕ0 is an endomorphism with respect to the operation ∨. Further,

since the operation ∧ can be calculated by applying the operations ∨ and −, we

conclude that ϕ0 is also an endomorphism with respect to the operation ∧.
c) We obviously have ϕ0(ϕ0(x)) = ϕ0(x) for each x ∈ G.

Evidently, if x = a1b1 + · · · + anbn ∈ ϕ0(G) and a1, . . . , an are mutually

distinct, then for all i ∈ I, both bi and b
′
i belong to ϕ0(G). Summarizing, we

obtain that ϕ0 is a retract mapping on the Specker lattice ordered group G. �

From the definitions of ψ0 and ϕ0 we immediately obtain that the relations

(ψ0)0 = ψ, (ϕ0)0 = ϕ

are valid.
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Hence if we put f(ψ) = ψ0 for each retract mapping ψ on G, then f is
a bijection of the system of all retract mappings on G onto the system of all

retract mappings on B(G). Since B 
 B(G), we get

������� 3.5� Let G = ZB be a Specker lattice ordered group. Then there

eixsts a one-to-one correspondence between retract mappings of G and retract

mappings of B.

4. Specker �-subgroups

As above, let G = ZB be a Specker lattice ordered group. We denote by S(G)

the system of all Specker �-subgroups of G.

From the definition of Specker �-subgroup we immediately obtain

����� 4.1� Let H ∈ S(G). Then H ∩ B(G) is a subalgebra of the Boolean
algebra B(G).

����� 4.2� Let B1 be a subalgebra of the Boolean algebra B(G). We denote

by H1 the set of all elements x of G such that either x = 0 or x can be expressed

in the form x = a1b1 + · · · + anbn, where a1, . . . , an are nonzero integers and

{b1, . . . , bn} is an orthogonal system of elements of B1. Then H1 is a Specker

�-subgroup of G and B(H1) = B1.

P r o o f. In view of Lemma 3.3, H1 is an �-subgroup of G. From this and from

the definition of H1 we conclude that H1 is a Specker �-subgroup of G and that

B(H1) = B1. �

For a Boolean algebra B let S(B) be the system of all subalgebras of B.

For each H ∈ S(G) we put χ(H) = H ∩ B(G). Let the systems S(G) and

S(B) be partially ordered by the set-theoretical inclusion.

Lemmas 4.1 and 4.2 yield

����� 4.3� The mapping χ : S(G) → S(B(G)) is a bijection. For H1, H2 ∈
S(G) we have

H1 ⊆ H2 ⇐⇒ χ(H1) ⊆ χ(H2).

The following two assertions are easy to verify.

����� 4.4� Let α be a cardinal and let G be α-complete. Assume that {bi}i∈I ⊆
B(G), I �= ∅, card I � α, x ∈ G and that the relation x =

∨
i∈I

bi is valid in G.

Then x ∈ B(G).
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JÁN JAKUB́IK

����� 4.5� Let {bi}i∈I and x be as in Lemma 4.4 with the distinction that
now the relation x =

∧
i∈I

bi is valid in G. Then x ∈ B(G).

From Lemmas 4.4 and 4.5 we conclude:

����� 4.6� Let α be a cardinal and suppose that G is α-complete. Then

(i) B(G) is an α-complete sublattice of G;

(ii) B(G) is α-complete.

����� 4.7� Let {bi}i∈B ⊆ B(G), b ∈ B(G) and assume that the relation∨
i∈I

bi = b is valid in B(G). Then the same relation holds in G.

P r o o f. Let x ∈ G be an upper bound of the set {bi}i∈I . Then x∧b is an upper
bound of {bi}i∈I , too. Using the convexity of B(G), we obtain b ≤ x. �

����� 4.8� Assume that B(G) is α-complete. Then G is α-complete as well.

P r o o f. It suffices to verify that if {gi}i∈I is an upper bounded subset of G+

and card I � α, then this set has a supremum in G.

Let x ∈ G and suppose that x is an upper bound of such set {gi}i∈I . Consider

the standard Specker representation

x = a1b1 + · · ·+ anbn

of x; similarly, consider the standard Specker representations

gi = ai1bi1 + · · ·+ ain(i)bin(i)

of elements gi. We have

x = a1b1 ∨ · · · ∨ anbn,
gi = ai1bi1 ∨ · · · ∨ ain(i)bin(i).

The greatest element of the Boolean algebra B will be denoted by b0. Put

a∗ = max{a1, . . . , an}. Then x � a∗b0, hence

aijbij � a∗b0, 0 < aij � a∗

for each i ∈ I and each j ∈ {1, 2, . . . , n(i)}.
The set of all upper bounds of the system {gi}i∈I coincides with the set of all

upper bounds of the system of all elements aijbij (under the notation as above).

For each integer k with 0 < k � a∗ we denote by Pk the set of all elements

aijbij such that aij = k. If Pk = ∅, then we put pk = 0 ∈ G. In the case Pk �= ∅
we set

pk = supPk;
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this supremum in G exists, since

supPk = sup{aijbij} = sup{kbij} = k sup{bij}
(where aij = k). Namely, for each i ∈ I there exists at most one j with aij = k

and thus card{bij} � α, hence sup{bij} exists in B(G). In view of Lemma 4.6,

sup{bij} in B(G) is, at the same time, the supremum of the set {bij} in G.

Each element aijbij belongs exactly to one set Pk. Hence we obtain that the

supremum of the system of elements aijbij is equal to p1 ∨ p2 ∨ · · · ∨ pa∗ . �

If G1 ∈ S(G), then the relation between G1 and χ(G1) is the same as the

relation between G and B(G). Hence from the previous lemmas we infer

����� 4.9� Let G1 ∈ S(G). Then G1 is α-complete if and only if the Boolean
algebra χ(G1) is α-complete.

5. α-complete retracts

Let α be a cardinal and let G, B be as above. In the present section we

assume that G is α-complete. According to Section 4, this is equivalent with

the assumption that B is α-complete. Recall that the notion of α-complete

homomorphism was defined in Section 2. In the present section we will deal with

α-complete endomorphisms on Specker lattice ordered groups and on Boolean

algebras.

If ϕ : B(G) → B(G) is a retract mapping on B(G), then we define ϕ0 in the

same way as in Section 3. In view of Lemma 3.4, ϕ0 is a retract mapping on G.

Analogously we proceed when ψ is a retract mapping on G. Then according

to Lemma 3.2, ψ0 is a retract mapping on B(G).

����� 5.1� Assume that ψ is an α-complete endomorphism on G and that

it is, at the same time, a retract mapping on G. Then ψ0 is an α-complete

endomorphism on B(G).

P r o o f. It suffices to apply Lemma 4.6. �

Now, let us assume that ϕ is an α-complete endomorphism on B(G) and that

it is, at the same time, a retract mapping on B(G).

����� 5.2� Let x ∈ G+ and ∅ �= X = {gi}i∈I ⊆ G+. Let card I ≤ α. Assume

that x is an upper bound of X. Put X ′ = ϕ0(X). Then ϕ0(supX) = supX ′.
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P r o o f. We apply the notation as in the proof of Lemma 4.8 with a slight
modification. Namely, let

x = a1b1 + · · ·+ anbn

be as in the mentioned proof and let i ∈ I. Since 0 ≤ gi ≤ x, there exists a
representation of gi having the form

gi = ai1bi1 + · · ·+ ainbin

such that for each j ∈ {1, 2, . . . n} the relations

0 ≤ aij ≤ aj , 0 ≤ bij ≤ bj

are valid. Then bi,j(1)∧bi,j(2) = 0 whenever j(1) and j(2) are distinct and belong
to the set {1, 2, . . . , n}. Thus

gi = ai1bi1 ∨ · · · ∨ ainbin.
Therefore, we have∨

i∈I

gi =
∨

(aijbij), where i ∈ I and j ∈ {1, 2, . . . , n}. (1)

Let a∗ be as in the proof of Lemma 4.8. For each integer k with 1 ≤ k ≤ a∗

we denote by Qk the set of all elements bij such that aij = k. Each element bij
belongs to some Qk, and this Qk is uniquely determined. Let Pk be as in the

proof of Lemma 4.8. If Qk �= ∅, then the elements of Pk have the form kbij with

bij ∈ Qk. In this case, we have

supPk =
∨

bij∈Qk

(kbij) = k
∨

bij∈Qk

bij; (2)

we set supPk = pk. If Qk = ∅, then we set pk = 0. Therefore, in view of (1), we

obtain ∨
i∈I

gi = p1 ∨ p2 ∨ · · · ∨ pa∗ ,

ϕ0

(∨
i∈I

gi

)
= ϕ0(p1) ∨ ϕ0(p2) ∨ · · · ∨ ϕ0(pa∗). (3)

If k ∈ {1, 2, . . . , a∗} and Qk �= ∅, then in view of (2), we have

ϕ0(pk) = ϕ0

(
k

∨
bij∈Qk

bij

)
= kϕ

( ∨
bij∈Qk

bij

)
.

According to the assumption, ϕ is an α-complete endomorphism on B(G) and
therefore

ϕ
( ∨
bij∈Qk

bij

)
=

∨
bij∈Qk

ϕ(bij). (4)
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Further, for each i ∈ I, we have

ϕ0(gi) = ai1ϕ(bi1) + · · ·+ ainϕ(bin).

If j(1) and j(2) are distinct elements of the set {1, 2, . . . , n}, then from

bi,j(1) ∧ bi,j(2) = 0 we get ϕ(bi,j(1)) ∧ ϕ(bi,j(2)) = 0 and hence

ϕ0(gi) = ai1ϕ(bi1) ∨ · · · ∨ ainϕ(bin).
Therefore∨

i∈I

ϕ0(gi) =
∨

(aijϕ(bij)), where i ∈ I and j ∈ {1, 2, . . . , n}. (5)

From (3), (4) and (5) we conclude that the relation

ϕ0

(∨
i∈I

gi

)
=

∨
i∈I

ϕ0(gi)

is valid. �

The following assertion is easy to verify.

����� 5.3� Let ∅ �= X = {gi}i∈I be an upper bounded subset of G and i(0) ∈ I.

Let card I ≤ α. Put {gi ∨ gi(0)}i∈I = X0. Then, supX = supX0.

����� 5.4� Let X be as in Lemma 5.3. Put X ′ = ϕ0(X). Then ϕ0(supX) =

supX ′.

P r o o f. We choose any i(0) ∈ I. Let X0 be as in Lemma 5.3. In view of

Lemma 5.3, supX = supX0.

Similarly, we set {ϕ0(gi)∨ϕ0(gi(0))}i∈I = X ′
0. Again, by Lemma 5.3 we have

supX ′ = supX ′
0.

Further, we put{
t− gi(0) : t ∈ Xo

}
= X01,

{
t− ϕ0(gi(0)) : t ∈ X ′

0

}
= X ′

01.

Then we have

ϕ0(X01) = X ′
01. (6)

Moreover, we get

supX01 = supX0 − gi(0), supX ′
01 = supX ′

0 − ϕ0(gi(0)).

Obviously, X01 ⊆ G+ and cardX01 ≤ α. According to Lemma 5.2 and (6), the

relation

ϕ0(supX01) = supX ′
01

is valid. We obtain

ϕ0(supX) = ϕ0(supX0) = ϕ0(supX01 + gi(0)) = ϕ0(supX01) + ϕ0(gi(0))

= supX ′
01 + ϕ0(gi(0)) = supX ′

0 − ϕ0(gi(0)) + ϕ0(gi(0)) = supX ′. �
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JÁN JAKUB́IK

����� 5.5� Assume that ϕ is an α-complete endomorphism on B(G) and that
it is, at the same time, a retract mapping on B(G). Then ϕ0 is an α-complete

endomorphism on G.

P r o o f.

a) First, let us consider the condition concerning the operation ∨. The va-

lidity of this condition follows from Lemma 5.4.

b) Secondly, considering the operation ∧ it suffices to take into account that

the operation ∧ can be expressed by means of the operation − and ∨, and to

apply the result from a). �

Analogously we verify (using 4.9)

����� 5.5.1� Let G1 ∈ S(G). Assume that ψ is an α-complete homomorphism
on G1 and a retract mapping on G1. Then ψ0 is an α-complete homomorphism

on χ(G1).

����� 5.5.2� Let B1 ∈ S(B(G)). Assume that ϕ is an α-complete homo-

morphism and, at the same time, a retract mapping on B1. Then ϕ0 is an

α-complete homomorphism on χ−1(B1).

Let X be a subalgebra of B. Further, let X∗ be an α-complete subalgebra of

B such that

(i) X ⊆ X∗;

(ii) if X1 is a subalgebra of B with X ⊆ X1 ⊂ X∗, then X1 fails to be

α-complete subalgebra of B.

Then X∗ is said to be α-complete subalgebra of B generated by X.

For Specker lattice ordered groups we apply the following analogous definition.

Let Y be a Specker �-subgroup of G; further, let Y be an α-complete Specker

�-subgroup of G such that

(i) Y ⊆ Y ∗;

(ii) if Y1 is a Specker �-subgroup of G such that Y ⊆ Y1 ⊂ Y ∗, then Y1 is not

an α-complete Specker �-subgroup of G.

Then Y ∗ is said to be the α-complete Specker �-subgroup of G generated by Y .

It is obvious that X∗ is uniquely determined by X; simlarly, Y ∗ is uniquely

determined by Y .

Let the mapping χ : S(G) → S(B(G)) be as in Section 4.
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����� 5.6� Let Y ∈ S(G) and X = χ(Y ). Then X∗ = χ(Y ∗).

P r o o f. LetM1 be the set of all P ∈ S(G) such that P is an α-complete Specker

�-subgroup of G with Y ⊆ P . Similarly, let M2 be the set of all Q ∈ S(B(G))
such that Q is an α-complete subalgebra of B(G) with X ⊆ Q. Then Y ∗ is the

intersection of all P belonging to M1, and analogously, X∗ is the intersection of

all Q belonging to M2.

If Y1 ∈ S(G) and X1 = χ(Y1), then in view of Lemma 4.9, Y1 is an α-complete

Specker �-subgroup of G if and only if X1 is an α-complete subalgebra of B(G).

Hence ψ(M1) =M2. Therefore according to Lemma 4.3 we obtain χ(Y ∗) = X∗.
�

����� 5.7� Assume that Y is an α-complete retract of G. Put X = χ(Y ).

Then X is an α-complete retract of B(G).

P r o o f. Let Y ∗ and X∗ be as above. Then there exists α-complete endomor-

phism ψ on Y ∗ which leaves Y elementwise fixed. Put ϕ = ψ0. Then in view of

Lemma 5.5.1 we infer that X is an α-complete retract of B(G). �

����� 5.8� Assume that X is an α-complete retract in B(G). We set Y =

χ−1(X). Then Y is an α-complete retract in G.

P r o o f. We proceed analogously as in the proof of Lemma 5.7 with the distinc-

tion that instead of Lemma 5.5.1 we now apply Lemma 5.5.2. �

In view of Lemmas 5.7, 5.8 and 4.3 we conclude

������� 5.9� Let G = ZB be a Specker lattice ordered group and let α be a

cardinal. Assume that the Boolean algebra B is α-complete. There exists a one-

to-one correspondence between α-complete retracts of G and α-complete retracts

of B(G).
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SLOVAKIA

E-mail : kstefan@saske.sk

438


	Abstract
	1. Introduction
	2. Preliminaries
	3. Retracts and retract mappings
	4. Specker -subgroups
	5. -complete retracts
	REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldMT
    /ArialMT
    /Times
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
    /CZE ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [498.898 708.661]
>> setpagedevice




