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ABSTRACT. In this paper we add one more characterization of intra-regular

ordered semigroups in the existing bibliography by proving that the ordered semi-

groups whose elements are separated by prime ideals are actually the intra-regular

ordered semigroups, a result which generalizes the corresponding result of semi-

groups (without order).
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1. Introduction and prerequisites

A well known result by Stone [8] referring to the elements of a Boolean ring A

separated by prime ideals of A is the following: If A is a Boolean ring containing

elements a and b such that ab �= a or, equivalently, such that a < b is false,

then there exists a prime ideal P of A which contains b and not a; and, if A

is a Boolean ring containing ideals A and B such that B is not a divisor of

A, then there exists a prime ideal P in A which is a divisor of A but not of

B (cf. [8, Theorem 64]). According to G. Szász, his paper in [9] has been

inspired by the paper by Stone [8]. It is arguably the above mentioned theorem

by Stone who let Szász to study semigroups whose elements are separated by

prime ideals in [9] where he proved that these semigroups are actually the intra-
regular semigroups. In the present paper we examine the result by Szász for

ordered semigroups and we prove that the elements of an ordered semigroup S
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are separated by prime ideals if and only if (the ordered semigroup) S is intra-
regular. Our result generalizes the corresponding result of semigroup (without

order) given in [9].

A semigroup S is called regular if for each a ∈ S there exists x ∈ S such that

a = axa, that is, if a ∈ aSa for all a ∈ S. A semigroup S is called intra-regular

if for every a ∈ S there exist x, y ∈ S such that a = xa2y, which is equivalent

to saying that a ∈ Sa2S for all a ∈ S [1]. These conditions are also expressible

as follows: S is regular (resp. intra-regular) if and only if A ⊆ ASA (resp.

A ⊆ SA2S) for every A ⊆ S.

A subset T of an ordered semigroup (resp. semigroup) S is called prime [1, 3]

if the complement S\T of T to S is either empty or it is a subsemigroup of S

(that is either S\T = ∅ or S\T �= ∅ and a, b /∈ T implies ab /∈ T ). Equivalent
definitions are the following three definitions:

(1) If a, b ∈ S such that a, b /∈ T , then ab /∈ T .

(2) If a, b ∈ S such that ab ∈ T , then a ∈ T or b ∈ T .

(3) If A,B ⊆ S such that AB ⊆ T , then A ⊆ T or B ⊆ T [3].

A subset T of S is called semiprime [1, 4] if for every a ∈ S such that a2 ∈ T ,

we have a ∈ T ; equivalently if A ⊆ S such that A2 ⊆ T , then A ⊆ T [4]. An

element a of an ordered semigroup (resp. semigroup) S is called idempotent if
a2 = a. An ordered semigroup (resp. semigroup) S is called idempotent [1, 2] if

every element of S is so. An idempotent semigroup is also called a band. Bands

were introduced by Klein-Barmen in 1940 who used the term “Schief”.

If (S, ·,≤) is an ordered semigroup, we denote by (H] the subset of S defined

as follows:

(H] :=
{
t ∈ S | t ≤ h for some h ∈ H

}
.

A nonempty subset T of S is called an ideal of S [3] if

(1) TS ⊆ T , ST ⊆ T and

(2) if a ∈ T and S � b ≤ a, then b ∈ T .

If T is an ideal of S, then (T ] = T . For a nonempty subset A of S, we denote by
I(A) the ideal of S generated by A. Clearly, if A is an ideal of S, then I(A) = A.

For A = {a} we write I(a) instead of I({a}). We have I(a) = (a∪aS∪Sa∪SaS]

[3]. S is called intra-regular [6, 7] if for every a ∈ S there exist x, y ∈ S such

that a ≤ xa2y. Equivalent are the two definitions below:

(1) a ∈ (Sa2S] for every a ∈ S.

(2) A ⊆ (SA2S] for every A ⊆ S.
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S is called regular [5] if for every a ∈ S there exist x ∈ S such that a ≤ axa.
This is equivalent to saying that a ∈ (aSa] for all a ∈ S or A ⊆ (ASA] for all

A ⊆ S.

The concepts of intra-regular, regular ordered semigroups generalize the cor-

responding concepts of intra-regular, regular semigroups as each intra-regular

(resp. regular) semigroup endowed with the order ≤ :=
{
(x, y) | x = y

}
(: the

equality relation) is an intra-regular (resp. regular) ordered semigroup. Simi-
larly, the concepts of ideals, prime ideals, semiprime ideals of ordered semigroups

etc. generalize the corresponding concepts of semigroups. We denote by N the

set {1, 2, . . .} of natural numbers.

2. Main result

���������� 1� Let (S, ·,≤) be an ordered semigroup. We say that the elements

of S are separated by prime ideals (of S) if the following assertion is satisfied:

If a, b ∈ S such that b /∈ I(a), then there exists a prime ideal P of S such that

a ∈ P and b /∈ P .

��		
 2� An ordered semigroup S is intra-regular if and only if the ideals of

S are semiprime.

P r o o f.

=⇒: Let T be an ideal of S and a ∈ S such that a2 ∈ T . Since S is intra-

regular, we have a ∈ (Sa2S] ⊆ (STS] ⊆ (T ] = T , thus T is semiprime.

⇐=: Let a ∈ S. Since (Sa2S] is an ideal of S, (a2)2 = a4 ∈ (Sa2S] and (Sa2S]

is semiprime, we have a2 ∈ (Sa2S], and a ∈ (Sa2S], so S is intra-regular. �

���
���� 3� We denote by 〈b〉 the subsemigroup of S defined by

〈b〉 := {bn | n ∈ N}
(i.e. the cyclic subsemigroup of S generated by b).

��		
 4� Let S be an ordered semigroup, T a semiprime ideal of S and a ∈ S.

If an ∈ T for some n ∈ N, then a ∈ T .

P r o o f. For n = 1, 2 it is clear. Assume that am ∈ T implies a ∈ T for some

m ≥ 3, and let am+1 ∈ T . Then a ∈ T . Indeed: Since m ≥ 3, we have am−1 ∈ S.

Then we have (am)2 = a2m = am+1+m−1 = am+1am−1 ∈ TS ⊆ T . Since T is

semiprime and am ∈ S such that (am)2 ∈ T , we have am ∈ T . Then, by our

assumption, we have a ∈ T . �
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��		
 5� Let S be an ordered semigroup, T a semiprime ideal of S and b ∈ S
such that b /∈ T . Then T ∩ 〈b〉 = ∅.
P r o o f. Let x ∈ T ∩ 〈b〉. Then T � x = bn for some n ∈ N. Since T is a

semiprime ideal of S, b ∈ S, n ∈ N, and bn ∈ T , by Lemma 4, we have b ∈ T

which is not possible. �

��		
 6� If (S, ·,≤) is an ordered semigroup and B a nonempty family of ideals

of S, then the union
⋃

B∈B
B is an ideal of S.

P r o o f. First of all the set
⋃

B∈B
B is a nonempty subset of S since each ideal of

S is nonempty. Moreover we have( ⋃
B∈B

B

)
S =

⋃
B∈B

BS ⊆
⋃
B∈B

B, S

( ⋃
B∈B

B

)
=

⋃
B∈B

SB ⊆
⋃
B∈B

B.

Let now x ∈ ⋃
B∈B

B and S � y ≤ x. Suppose x ∈ B for some B ∈ B. Since B is

an ideal of S, we have y ∈ B ⊆ ⋃
B∈B

B. �

As a result, the union of two ideals of S is again an ideal of S.

��		
 7� If S is an intra-regular ordered semigroup, then I(a) = (SaS] for

every a ∈ S.

P r o o f. Let a ∈ S. Since S is intra-regular, we have a ∈ (Sa2S] ⊆ (SaS], and
since (SaS] is an ideal of S containing a, we have I(a) ⊆ (SaS]. On the other

hand, (SaS] ⊆ (a ∪ aS ∪ Sa ∪ SaS] = I(a). Thus I(a) = (SaS]. �

��		
 8� If S is an intra-regular ordered semigroup, then I(ab) = I(ba) for

every a, b ∈ S.

P r o o f. Let a, b ∈ S. By Lemma 7, we have (ab)2 = a(ba)b ∈ (SbaS] =

I(ba). Since S is intra-regular and I(ab) is an ideal of S, by Lemma 2, I(ab)

is semiprime, so ab ∈ I(ba), then I(ab) ⊆ I(ba). By symmetry, we get I(ba) ⊆
I(ab), thus we have I(ab) = I(ba). �

��		
 9� If S is an intra-regular ordered semigroup, then I(a) ∩ I(b) = I(ab)

for each a, b ∈ S.

P r o o f. First of all, in any ordered semigroup S, for any a, b ∈ S, we have

I(ab) ⊆ I(a) ∩ I(b). In fact, let a, b ∈ S. Since a ∈ I(a), we have ab ∈
I(a)S ⊆ I(a), then I(ab) ⊆ I(a). Since b ∈ I(b), we have ab ∈ SI(b) ⊆ I(b),

then I(ab) ⊆ I(b). Thus we have I(ab) ⊆ I(a) ∩ I(b). Let now S be an intra-

regular ordered semigroup, a, b ∈ S and c ∈ I(a) ∩ I(b). By Lemma 7, we have
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c ∈ I(a) = (SaS], thus c ≤ uav for some u, v ∈ S. Since c ∈ I(b) = (SbS], we
have c ≤ xby for some x, y ∈ S. Then by Lemmas 7 and 8, we get

c2 ≤ x(byua)v ∈ S(byua)S ⊆ (S(byua)S] = I((byu)a) = I(abyu),

then c2 ∈ (I(abyu)] = I(abyu). Since S is intra-regular, by Lemma 2, the ideal
I(abyu) of S is semiprime, thus c ∈ I(abyu). Then, applying first Lemma 8 and

then Lemma 7, we obtain

c ∈ I(uaby) = (uaby ∪ uabyS ∪ Suaby ∪ SuabyS] ⊆ (SabS] = I(ab).

�

�
����	 10� The elements of an ordered semigroup S are separated by prime

ideals (of S) if and only if S is intra-regular.

P r o o f.

=⇒: Suppose S is not intra-regular. Then, by Lemma 2, there exists an ideal

T of S and an element a of S such that a2 ∈ T and a /∈ T . Since a2 ∈ T and T is

an ideal of S, we have I(a2) ⊆ I(T ) = T . Since a /∈ T , we have a /∈ I(a2). Since

a /∈ I(a2), by hypothesis, there exists a prime ideal P of S such that a2 ∈ P and
a /∈ P . P as a prime ideal, is a semiprime ideal of S as well. Since a2 ∈ P and

P is semiprime, we have a ∈ P . Impossible.

⇐=: Let a, b ∈ S such that b /∈ I(a). Then there exists a prime ideal P of S

such that a ∈ P and b /∈ P . In fact: Since S is intra-regular and I(a) an ideal

of S, by Lemma 2, I(a) is semiprime. Since I(a) is a semiprime ideal of S and

b /∈ I(a), by Lemma 5, we have I(a) ∩ 〈b〉 = ∅. We consider the set

A :=
{
T | T ideal of S such that I(a) ⊆ T and T ∩ 〈b〉 = ∅}.

Since I(a) ∈ A, the set A is nonempty, so the set A endowed with the inclusion

relation ⊆ is an ordered set. The set P :=
⋃

T∈A
T is an upper bound of A. Indeed:

By Lemma 6, the set
⋃

T∈A
T is an ideal of S. As I(a) ⊆ T for each T ∈ A, we

have I(a) ⊆ ⋃
T∈A

T . Finally,
( ⋃
T∈A

T
)
∩ 〈b〉 = ∅. Indeed: If x ∈

( ⋃
T∈A

T
)
∩ 〈b〉,

then x ∈ T for some T ∈ A and x ∈ 〈b〉. Then x ∈ T ∩ 〈b〉, where T ∈ A which

is impossible. Since (A,⊆) is an ordered set and P is an upper bound of A, P

is a maximal element of A. That is, P is an ideal of S, I(a) ⊆ P , P ∩ 〈b〉 = ∅,
and there is no element T in A such that T ⊃ P . Since a ∈ I(a) ⊆ P , we have

a ∈ P . Since b ∈ 〈b〉 and P ∩ 〈b〉 = ∅, we have b /∈ P . It remains to prove that

the ideal P of S is prime. For this purpose, let u, v ∈ S such that u, v /∈ P .

Then uv /∈ P . In fact: We consider the sets P ′ := P ∪ I(u) and P ′′ := P ∪ I(v).

Since u ∈ P ′ and u /∈ P , we have P ⊂ P ′. Since v ∈ P ′′ and v /∈ P , we have
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P ⊂ P ′′. Since P ′ is an ideal of S such that I(a) ⊆ P ⊂ P ′, we have P ′∩〈b〉 �= ∅
(otherwise A � P ′ ⊃ P which is impossible). Since P ′′ is an ideal of S such

that I(a) ⊆ P ⊂ P ′′, we have P ′′ ∩ 〈b〉 �= ∅ (otherwise A � P ′′ ⊃ P which is

impossible). Let now m,n ∈ N such that bm ∈ P ′ and bn ∈ P ′′. Since P ′, P ′′

are ideals of S and S is intra-regular, by Lemma 2, P ′ and P ′′ are semiprime.

Then, by Lemma 4, we have b ∈ P ′ and b ∈ P ′′. Since b ∈ P ′, we have b ∈ P

or b ∈ I(u). If b ∈ P , then b ∈ P ∩ 〈b〉 = ∅ which is impossible. Thus we have
b ∈ I(u). Similarly we get b ∈ I(v). Since S is intra-regular, by Lemma 9, we

have b ∈ I(u) ∩ I(v) = I(uv). If uv ∈ P , then I(uv) ⊆ P , and b ∈ P which is

impossible. Thus we have uv /∈ P . �

Remark 11�

(A) If the elements of an ordered semigroup (S, ·,≤) are idempotent, then S

is intra-regular. Indeed: Let a ∈ S. Then a = a2 = aa = a2a2 = aa2a, where
a ∈ S. Since ≤ is reflexive, we have (a, aa2a) ∈≤ i.e. a ≤ aa2a, where a ∈ S.

As a result, the elements of an idempotent ordered semigroup are separated by

prime ideals.

(B) A commutative ordered semigroup (S, ·,≤) is intra-regular if and only if

it is regular. In fact:

=⇒: Let a ∈ S. Since S is intra-regular, there exist x, y ∈ S such that

a ≤ xa2y = a(xy)a, where xy ∈ S, so S is regular.

⇐=: Since S is regular, there exists x ∈ S such that a ≤ axa. Again since S

is regular, there exists z ∈ S such that x ≤ xzx. Thus we have a ≤ a(xzx)a =

xa2(zx), where x, zx ∈ S, so S is intra-regular. As a result, the elements of a
commutative ordered semigroup S are separated by prime ideals if and only if S

is regular.

In the following, given a semigroup (S, ·) we denote by ≤ the order on S

defined by ≤ := {(x, y) | x = y} (: the equality relation on S). It is easy to see

that (S, ·,≤) is an ordered semigroup.

Remark 12� A semigroup (S, ·) is intra-regular if and only if the ordered semi-

group (S, ·,≤) is so. Indeed:

=⇒: Let a ∈ (S, ·,≤). Since (S, ·) is intra-regular, there exist x, y ∈ S such

that a = xa2y. Then (a, xa2y) ∈≤, so a ≤ xa2y, and (S, ·,≤) is intra-regular.

⇐=: Let a ∈ (S, ·). Since (S, ·,≤) is intra-regular, there exist x, y ∈ S such

that a ≤ xa2y. Since (a, xa2y) ∈≤, we have a = xa2y, so (S, ·) is intra-regular.
As an application of Theorem 10, we have the following

������
�� 13� ([9]) The elements of a semigroup (S, ·) are separated by prime

ideals if and only if S is intra-regular.
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P r o o f.

=⇒: As the elements of (S, ·) are separated by prime ideals of (S, ·), the

elements of (S, ·,≤) are separated by prime ideals of (S, ·,≤) as well (this is

because a prime ideal of (S, ·) is a prime ideal of (S, ·,≤)). By Theorem 10,
(S, ·,≤) is intra-regular. By Remark 12, (S, ·) is intra-regular.

⇐=: Let a, b ∈ S. Since (S, ·) is intra-regular, by Remark 12, (S, ·,≤) is
intra-regular. By Theorem 10, there exists a prime ideal P of (S, ·,≤) such that

a ∈ P and b /∈ P . Then P a prime ideal of (S, ·), a ∈ P and b /∈ P . �

Remark 14� Remark 12 remains true if we replace the word “intra-regular” by

“regular”. In the same way as in Corollary 13, applying the results mentioned

in Remark 11, we get the following results of [9, Section 4]:

The elements of a band are separated by prime ideals. The elements

of a commutative semigroup S are separated by prime ideals if and

only if S is regular (in the sense of J. von Neumann).

Remark 15� In Theorem 10 above we used the following: If p is an upper bound

of an ordered set (P,≤), then p is a maximal element of P (Clearly, if t ∈ P ,

t ≥ p then, since p is an upper bound of P , we have p ≥ t, so t = p). Using

the same in the proof of [9, Theorem], we avoid to apply Zorn’s Lemma which

is not necessary. This is because if S is a semigroup (or ordered semigroup),
I(a) the ideal of S generated by a (a ∈ S), A the set of (all) ideals T of S such

that I(a) ⊆ T and T ∩ 〈b〉 = ∅, and B a linearly ordered subset of A, then to

prove that
⋃

B∈B
B is an upper bound of B in A (and apply Zorn’s Lemma) we do

not use the fact that B is linearly ordered (that is, for each B1, B2 ∈ B, either
B1 ⊆ B2 or B2 ⊆ B1).
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