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THE CROSSING NUMBER OF G� Cn

FOR THE GRAPH G ON SIX VERTICES

Eḿılia Draženská

(Communicated by Anatolij Dvurečenskij )

ABSTRACT. The crossing numbers of Cartesian products of paths, cycles or
stars with all graphs of order at most four are known. The crossing numbers of
G�Cn for some graphs G on five and six vertices and the cycle Cn are also given.
In this paper, we extend these results by determining the crossing number of the

Cartesian product G �Cn, where G is a specific graph on six vertices.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. The crossing
number cr(G) of a graph G is the minimum number of crossings of edges in
a drawing of G in the plane such that no three edges cross in a point. It is
easy to verify that a drawing with minimum number of crossings (an optimal
drawing) is always a good drawing, meaning that no edge crosses itself, no two
edges cross more than once, and no two edges incident with the same vertex
cross. Computing the crossing number of a given graph is in general a very
difficult problem, and crossing numbers of few families of graphs are known.
Most of these graphs are Cartesian products of special graphs. (For a definition
of Cartesian product, see [4].)

Let Cn be the cycle of length n, Pn be the path of length n, and Sn be the
star isomorphic to K1,n. Beineke and Ringeisen in [4], Jendrol’ and Ščerbová in
[9] determined the crossing numbers of the Cartesian products of all graphs on
four vertices with cycles. Klešč in [10], [12], [13], [14], Klešč, Richter and Stobert
in [15], and Klešč and Kocúrová in [16] gave the crossing numbers of G � Cn
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for several graphs of order five. Harary et al. [8] conjectured that the crossing
number of Cm � Cn is (m − 2)n, for all m, n satisfying 3 ≤ m ≤ n. This has
been proved only for m,n satisfying n ≥ m, m ≤ 7 ([1], [2], [3], [4], [5], [15],
[17], [18]). It was recently proved by Glebsky and Salazar [7] that the crossing
number of Cm �Cn equals its long-conjectured value at least for n ≥ m(m+1).

In [12] and [14], all known values of crossing numbers for the Cartesian prod-
ucts of cycles and graphs of order five are presented. We are interested in the
crossing numbers of Cartesian products of graphs on six vertices with cycles.
Except for the star S5, in [6] there are given the crossing numbers of G � Cn

for all trees G on six vertices. For the star on six vertices an upper bound
is presented. It seems natural to enquire about crossing numbers of Cartesian
products for other 6-vertex graphs with cycles. In this paper, we give the cross-
ing number of the Cartesian product G � Cn for the specific 6-vertex graph
shown in Figure 1. This result can help to establish crossing numbers for some
other suitable Cartesian products of cycles with graphs of order at least six.

Figure 1. The graph G

Let D be a good drawing of the graph G. We denote the number of crossings
in D by crD(G). Let Gi and Gj be edge disjoint subgraphs of G. We denote by
crD(Gi, Gj) the number of crossings between edges of Gi and edges of Gj, and
by crD(Gi) the number of crossings between edges of Gi in D.

2. The crossing numbers of G� Cn

Assume n ≥ 3, and consider the graph G�Cn in the following way: it has 6n
vertices and edges that are the edges in the n copies Gi, i = 0, 1, . . . , n− 1, and
in the six cycles of length n. For i = 0, 1, . . . , n− 1, let ai and bi be the vertices
of Gi of degree one, ci the vertex of degree four and let di and ei be the vertices
of Gi of degree three, fi the vertex of degree two (see Figure 2). Thus, for
x ∈ {a, b, c, d, e, f}, the n-cycle Cx

n is induced by the vertices x0, x1, . . . , xn−1.
For i = 0, 1, . . . , n − 1, let P i denote the subgraph of G � Cn containing the
vertices of Gi and Gi+1 and six edges joining Gi to Gi+1, i taken modulo n. Let
T x, x ∈ {a, b, d, e}, be the subgraph of the graph G�Cn consisting of the cycle
Cx

n together with the vertices of Cc
n and of the edges joining Cx

n with Cc
n. For
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i = 0, 1, . . . , n − 1, let Ki be the subgraph of Gi induced by the vertices ci, di,
ei, and fi. We denote by P i

K the subgraph of P i consisting only of the edges
joining Ki to Ki+1. Let us denote by I the subgraph of G�Cn consisting of the
vertices in Cd

n and Ce
n and of the edges {di, ei} for all i = 0, 1, . . . , n− 1, and let

Xf be the subgraph of G � Cn induced by the edges incident with the vertices
of Cf

n . It is easy to see that T a, T b, T d, T e, Cc
n, I, and Xf are edge-disjoint

subgraphs and that

G� Cn = T a ∪ T b ∪ Cc
n ∪ T d ∪ T e ∪ I ∪Xf .
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Figure 2. The drawing of the graph G � Cn

We say that a good drawing of G�Cn is coherent if for each Ki the vertices
of the subgraph (G � Cn) − V (Gi) lie in the same region in the view of the
subdrawing of Ki. In the proofs of the paper, we will often use the term “region”
also in nonplanar drawings. In this case, crossings are considered to be vertices
of the “map”.

Consider the subgraph T a ∪ T b ∪Cc
n ∪ T d ∪ T e of the graph G�Cn. Clearly,

the subgraph T a ∪ T b ∪ Cc
n ∪ T d ∪ T e is isomorphic to the graph S4 � Cn. The

next two lemmas will be very helpful in some proofs of the paper.

����� 2.1� Let D be a good drawing of the graph T a ∪ T b ∪ Cc
n ∪ T d ∪ T e,

n ∈ {4, 5, 6}, in which crD(T x ∪ T y) = 1 for some x, y ∈ {a, b, d, e}. Then
crD(T x ∪T y, Cc

n) ≥ 2 and crD(T x ∪T y, T z) ≥ 2 for every z ∈ {a, b, d, e}, z �= x,
z �= y.

P r o o f. For the graph Cn � P1, n ≥ 4, there is no good drawing with exactly
one crossing, because for any two edges which cross each other one can find
two vertex-disjoint cycles such that crossed edges are in different cycles. Two
vertex-disjoint cycles cannot cross only once. The subgraph T x ∪T y is obtained
from Cn � P1 by an elementary subdivision of every edge joining two n-cycles
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Cx
n and Cy

n. Consider now the subdrawing D′ induced from D by the subgraph
T x ∪ T y. The only one crossing in D′ appears between an edge incident with a
vertex of degree two and an edge of the cycle Cx

n or the cycle Cy
n. In this case,

the cycle Cx
n or the cycle Cy

n separates in D a vertex ci of the cycle Cc
n from

the other vertices of Cc
n. Hence, the cycle Cc

n crosses in D the edges of T x ∪ T y

at least twice. The removing of the separated vertex ci of the cycle Cc
n from

D′ results in the drawing without crossings. This drawing divides the plane in
such a way that there are at most two vertices of Cc

n on the boundary of every
region. As the vertex ci is in D′ separated from the other vertices of Cc

n, in the
subdrawing D′ of T x ∪ T y with one crossings there are at most two vertices of
Cc

n on the boundary of a region. If the cycle Cz
n of T z crosses the 2-connected

subgraph T x ∪ T y, it crosses T x ∪ T y at least two times. Otherwise Cz
n is in D

placed in one region in the view of the subdrawing of T x ∪ T y and at least two
edges of T z joining Cz

n with the vertices of Cc
n cross the edges of T x ∪ T y. This

completes the proof. �

����� 2.2� Let D be a good drawing of the graph T a ∪ T b ∪ Cc
n ∪ T d ∪ T e,

n ∈ {5, 6}, in which crD(T x, T y) = 0 for some x, y ∈ {a, b, d, e}. Then for
every z ∈ {a, b, d, e}, z �= x, z �= y, crD(T x ∪ T y, T z) ≥ 4 for n = 5, and
crD(T x ∪ T y, T z) ≥ 6 if n = 6.

P r o o f. As T x∪T y is the subdivision of the 3-connected planar graph P1�Cn,
the subdrawing D′ of T x ∪ T y induced from D divides the plane into several
regions without vertices of Cc

n on their boundaries and into five or six regions,
respectively, having exactly two vertices of Cc

n on the boundary of one region.
For n = 6, Figure 3 shows the drawing D′ in which possible crossings among
the edges of T x are inside the left disc bounded by the dotted cycle and possible
crossings among the edges of T y are inside the right disc bounded by the dotted
cycle. A similar drawing we consider for the case n = 5. We can suppose that
if, in D, an edge not incident with a vertex of Cx

n or Cy
n passes through one of

these two discs, then it crosses the edges of T x ∪ T y at least twice. Consider
now a subgraph T z , z ∈ {a, b, d, e}, z �= x, z �= y. Both Cz

n and T x ∪ T y are
2-connected graphs and hence, crD(Cz

n, T
x ∪ T y) �= 1. If, in D, the cycle Cz

n

is placed in a region of D′ with fewer than two vertices of Cc
n on its boundary,

then crD(T x ∪ T y, T z) ≥ n. If Cz
n is placed in a region with two vertices of Cc

n

on the boundary, then one vertex of Cc
n is separated from Cz

n by at least two
vertex-disjoint cycles for n = 5, and in the case n = 6 there are at least two such
vertices of Cc

n. Hence, crD(T x∪T y, T z) ≥ 4 for n = 5, and crD(T x∪T y, T z) ≥ 6
if n = 6. If the cycle Cz

n crosses in D the edges of T x ∪ T y two or three times,
then it is placed in two regions of D′ with at most three vertices of Cc

n on their
boundaries and the edges joining Cz

n with Cc
n cross in D the edges of T x ∪T y at

least four times when n = 5, and at least six times for n = 6. If there are four
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vertices of Cc
n on the boundaries of the regions in D′ in which Cz

n is placed in
D, at least four crossings between the edges of Cz

n and the edges of T x ∪ T y are
necessary. For n = 6, the edges joining Cz

6 to Cc
6 cross the subgraph T x ∪ T y at

least twice, and crD(T x ∪ T y, T z) ≥ 6. If Cz
6 crosses in D the edges of D′ five

times, then there is at least one vertex of Cc
6 separated in D′ from the cycle Cz

6

and crD(T x ∪ T y, T z) ≥ 6 again. This completes the proof. �

x
T

y
T

Figure 3. The subdrawing of the subgraph Tx ∪ Ty

������� 2.1� cr(G� C3) = 7.

P r o o f. In Figure 4 it is easy to see that the removing the edges of two subgraphs
Gi in the left results in the drawing of a subdivision of the graph G � C3 with
seven crossings. Hence, cr(G � C3) ≤ 7. Assume that there is a good drawing
of G�C3 with at most 6 crossings and let D be such a drawing. The subgraph
T d ∪ T e ∪ I ∪Xf of the graph G�C3 is isomorphic to the graph (K4 − e)�C3

and it is proved in [11] that cr((K4 − e) � C3) = 6. Thus, in D there is no
crossing on the edges of T a ∪ T b. The planar subdrawing of T a ∪ T b induced by
D is the unique within isomorphism and divides the plane into 5 regions with
at most two vertices of Cc

3 on the boundary of a region. Then, in D, an edges
of T d cross the edges of T a ∪ T b at least once. This ontradiction completes the
proof. �

������� 2.2� cr(G� C4) = 10.

P r o o f. By deleting the edges of the left subgraph Gi in Figure 4, the drawing
of a subdivision of the graph G � C4 with ten crossings is obtained. Hence,
cr(G� C4) ≤ 10. Assume that there is a good drawing of G� C4 with at most
9 crossings and let D be such a drawing. The graph G�C4 contains the graph
(K4 − e) � C4 as a subgraph and cr((K4 − e) � C4) = 8 (see [4]). Thus, in D
there is at most one crossing on the edges of T a ∪ T b.

Consider now the subgraph T a ∪ T b of the graph G � C4 and let D′ be its
subdrawing induced by D. Assume first, that crD(T a ∪ T b) = 0. As T a ∪ T b is
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Figure 4. The drawing of the graph G � C5

the subdivision of the 3-connected planar graph P1�C4, the planar subdrawing
of T a ∪ T b induced from D is the unique within isomorphism and it divides
the plane into two quadrangular and four hexagonal regions in such a way that
there are at most two of the vertices c0, c1, c2, and c3 on the boundary of a
region. Consider now the cycle Cd

4 . As in D there is at most one crossing on the
edges of T a ∪ T b, the cycle Cd

4 is placed in D in one region in the view of the
subdrawing D′. So, in D, the edges joining the vertices of Cd

4 cross the edges of
T a ∪ T b at least twice, which is a contradiction.

Assume now that there is one crossing among the edges of T a ∪T b in D′. By
Lemma 2.1, crD(T a∪T b, Cc

4) ≥ 2 and this contradiction completes the proof. �
������� 2.3� cr(G� C5) = 14.

P r o o f. In the drawing of the graph G�C5 in Figure 4 one can easily see that
cr(G� C5) ≤ 14. Assume that there is a good drawing of G� C5 with at most
13 crossings and let D be such a drawing. The graph G�C5 contains the graph
(K4 − e)� C5 as a subgraph and cr((K4 − e)� C5) = 10 (see [4]). Thus, in D
there are at most three crossings on the edges of T a ∪ T b. Consider now the
subgraph T a ∪ T b of the graph G � C5 and let D′ be its subdrawing induced
by D. Clearly, crD(T a, T b) �= 0 otherwise, by Lemma 2.2, crD(T a∪T b, T d) ≥ 4,
a contradiction. If there is only one crossing in the subdrawing D′ of T a ∪ T b,
by Lemma 2.1, crD(T a ∪ T b, Cc

5) ≥ 2 and crD(T a ∪ T b, T d) �= 0. In this case
there are more than three crossings on the edges of T a ∪ T b again.

Consider now that there are at least two crossings in D′. Then at least one
subgraph T d or T e does not cross in D the edges of T a ∪ T b. Without loss
of generality, let crD(T a ∪ T b, T d) = 0. In this case crD(T a, T d) = 0 and, by
Lemma 2.2, crD(T a ∪ T d, T b) ≥ 4. As crD(T d, T b) = 0, all considered crossings
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appear between the edges of T a and the edges of T b. This contradiction with
the assumption that there are at most three crossings on the edges of T a ∪ T b

completes the proof. �

������� 2.4� cr(G� C6) = 18.

P r o o f. In the drawing in Figure 2 one can see that cr(G� Cn) ≤ 18. Assume
that there is a good drawing of G� C6 with fewer than 18 crossings and let D
be such a drawing. The graph G�C6 contains (K4− e)�C6 as a subgraph and
cr((K4 − e)� C6) = 12 (see [4]). Thus, in D there are at most five crossings on
the edges of the subgraph T a ∪ T b.

Let us consider the subgraph T a ∪ T b. If crD(T a ∪ T b) = 0, then crD(T a, T b)
= 0, too, and Lemma 2.2 implies that crD(T a ∪ T b, T d) ≥ 6. This contradicts
the assumption that there are at most five crossings on the edges of T a ∪ T b.
Assume now a subdrawing of T a ∪ T b with one crossing. By Lemma 2.1,
crD(T a∪T b, Cc

6) ≥ 2, crD(T a∪T b, T d) ≥ 2 and crD(T a∪T b, T e) ≥ 2, and on the
edges of T a∪T b there are more than five crossings again. If crD(T a∪T b) ≥ 2, one
of the subgraphs T d and T e crosses the edges of T a ∪ T b at most once. Assume
that crD(T a∪T b, T d) ≤ 1. This implies that crD(T a, T d) = 0 or crD(T b, T d) = 0.
Without loss of generality, let crD(T a, T d) = 0. It follows from Lemma 2.2 that,
in this case, crD(T a ∪ T d, T b) ≥ 6 and in D there are more than five crossings
on the edges of T b. This contradiction completes the proof. �

����� 2.3� If D is a good drawing of G � Cn, n ≥ 6, in which every Gi has
at most two crossings on its edges, then D has at least 3n crossings.

P r o o f. Note that in the whole proof the indices are considered modulo n. By
hypothesis, the following Claim 2.1 holds.

	
��� 2.1� The drawing D is coherent and two different subgraphs Ki and Kj

do not cross each other.

If someKi, i ∈ {0, 1, . . . , n−1}, separates vertices of the 3-connected subgraph
induced by the vertices V (Ki+1) ∪ · · · ∪ V (Ki−1), then its edges are crossed at
least three times. So, all subgraphs Kj , j �= i, lie in D in the same region in
the view of the subdrawing of Ki. Moreover, as the drawing D is good, two
different Ki and Kj do not cross each other. Assume now that some triangular
cycle of Ki, say ∆i, separates the vertices aj and cj. So, the edge {aj, cj}
crosses Ki. If j /∈ {i−1, i+1}, then ∆i is crossed by both paths ajaj+1cj+1 and
ajaj−1cj−1, and there are at least three crossings on the edges of Ki. Assume,
without loss of generality, that aj = ai+1. Then the edges of ∆i are crossed by
the edge {ai, ai+1} and by the path ai+1ai+2ci+2 if ∆i separates ai from ai+1,
and Ki has its edges crossed at least three times. The last possibility is that the
edge {ai, ai+1} does not cross ∆i. In this case, the cycle ∆i is crossed by both
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paths ai+1ai+2ci+2 and aiai−1ci−1, and Ki is crossed at least three times again.
The similar consideration for the case when Ki separates the vertices bj and cj
confirms that the drawing D is coherent.

For i = 0, 1, . . . , n − 1, let Qi denote the subgraph of G � Cn induced by
V (Gi−1)∪V (Gi)∪V (Gi+1) (see Figure 2) and let Qi

K be its subgraph obtained
by deleting the vertices ai−1, ai, ai+1, bi−1, bi, and bi+1. Thus, Qi = Gi−1 ∪
P i−1 ∪Gi ∪ P i ∪Gi+1 and Qi

K = Ki−1 ∪ P i−1
K ∪Ki ∪ P i

K ∪Ki+1.

Let us consider the following types of crossings on the edges of Qi in a drawing
of the graph G� Cn:

(1) a crossing of an edge in P i−1 ∪ P i with an edge in Gi,

(2) a crossing of an edge in Gi−1 ∪ P i−1 with an edge in Gi+1 ∪ P i,

(3) a self-intersection in Gi,

(4) a self-intersection in P i−1,

(5) a self-intersection in P i,

(6) a crossing of an edge in Gi−1 ∪Gi+1 with an edge in Gi.

It is readily seen that every crossing of types (1), (2), and (3) appears in
a drawing of the graph G � Cn only on the edges of the subgraph Qi. Every
crossing of types (4), (5), and (6) appears in Qi and in one of Qi−1 or Qi+1.

In a good drawing of G�Cn, we define the force f(Qi) of Qi in the following
way: every crossing of type (1), (2) or (3) contributes the value 1 to f(Qi) and
every crossing of type (4), (5) or (6) contributes the value 1

2 to f(Qi) (and 1
2 to

f(Qi−1) or to f(Qi+1)). The total force of the drawing is the sum of f(Qi). It
is readily seen that the number of crossings in the drawing is not less then the
total force of the drawing. So, the aim of our proof is to show that if every Gi

has at most two crossings on its edges, then f(Qi) ≥ 3 for all i = 0, 1, . . . , n− 1.

Assume that, in the drawing D, there is some i, i ∈ {0, 1, . . . , n − 1}, for
which the force f(Qi) < 3. Then for the drawing D the following Claim 2.2 and
Claim 2.3 hold.

	
��� 2.2� Let i ∈ {0, 1, . . . , n− 1}. If f(Qi) < 3, then the edges of Ki do not
cross each other in D.

If f(Qi) < 3 and crD(Ki) �= 0, then crD(Ki, P i−1
K ) = 0 or crD(Ki, P i

K) = 0.
Let D′ be the subdrawing of D induced by the subgraph Ki ∪ P i

K ∪ Ki+1. If
crD(Ki, P i

K) = 0, then the subdrawing D′ divides the plane in such a way that
Ki+1 lies in one region, say unbounded, in the view of the subdrawing of Ki

and, since the edges of P i
K do not cross Ki, every region outside Ki has at most

two vertices of Ki on its boundary. As f(Qi) < 3 and crD(Ki) �= 0, in D the
2-connected subgraph Ki−1 does not cross edges of Ki ∪ P i

K ∪Ki+1. Hence, by
Claim 2.1, Ki−1 lies in D in one region of the subdrawing D′ outside Ki with
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two vertices of Ki on its boundary. But, in this case, the edges of P i−1
K joining

Ki−1 to Ki cross the edges of Ki ∪ P i
K ∪Ki+1 at least twice. This contradicts

the assumption f(Qi) < 3. The consideration crD(Ki, P i−1
K ) = 0 gives the same

contradiction and therefore crD(Ki) = 0.

	
��� 2.3� Let i ∈ {0, 1, . . . , n − 1}. If f(Qi) < 3, then the edges of Ki are
crossed by both P i−1

K and P i
K .

Assume that f(Qi) < 3 and let crD(Ki, P i
K) = crD(Ki, P i−1

K ) = 0. The
similar consideration as in the proof of Claim 2.2 shows that the subdrawing
D′ of the subgraph Ki ∪ P i

K ∪ Ki+1 induced by D divides the plane in such
a way that, say outside Ki, there are four regions such that every region has
two vertices of Ki on its boundary. By Claim 2.2, crD(Ki) = 0 and the unique
subdrawing D′ is shown in Figure 5(a). The assumption f(Qi) < 3 enforces that
crD(Ki−1, P i

K) < 3. So, by Claim 2.1, if Ki−1 crosses Ki∪P i
K ∪Ki+1, it crosses

P i
K exactly twice and the vertices of Ki−1 are placed in at most two regions

of the subdrawing shown in Figure 5(a). But, in this case, at least one edge of
P i−1
K crosses in D the edges of P i

K ∪Ki+1. This contradiction with f(Qi) < 3
implies that crD(Ki−1, Ki ∪ P i

K ∪ Ki+1) = 0 and that the subgraph Ki−1 lies
in D in only one region of D′. Moreover, it lies in one of two regions, say α,
having the vertex ci on its boundary. Otherwise, if the vertex ci does not lie on
the boundary of α, then in D both paths ciaiai−1ci−1 and cibibi−1ci−1 and at
least two edges of P i−1

K joining Ki−1 with Ki cross the boundary of the region
α. This contradicts the assumption f(Qi) < 3. So, Ki−1 lies in D in the region
α of D′ with the vertex ci on its boundary and at least two edges of P i−1

K joining

Ki−1 to Ki cross the edges of P i
K ∪Ki+1. As none of the edges of P i−1

K can cross

Ki+1 only once, the unique possibility is that P i−1
K crosses P i

K twice. Moreover,
in D′ the vertices ci and ci+1 are separated by the cycle dieiei−1di−1di (see
Figure 5(b)). In this case, the cycle dieiei−1di−1di is crossed in D by both paths
ciaiai+1ci+1 and cibibi+1ci+1. This contradiction with f(Qi) < 3 determines
that Ki is crossed in D by at least one of P i

K and P i−1
K .

Let us assumed that, without loss of generality, P i
K does not cross Ki. Then

Ki is crossed by P i−1
K . It is shown above that if crD(Ki, P i

K) = 0, then Ki−1 is
placed in D in the region of D′ with the vertex ci on its boundary. In Figure 5(c)
one can see that the condition f(Qi) < 3 enforces that, in D, the edge {fi, fi−1}
does not crossKi norKi+1. Hence, the edge {fi, fi−1} crosses an edge of P i

K and
Ki is crossed once by the edge {di, di−1} or by the edge {ei, ei−1}. IfKi is crossed
by the edge {di, di−1}, then the cycle ci−1cidififi−1ci−1 separates the vertices
ei and ei−1 and the edge {ei, ei−1} crosses in D the cycle ci−1cidififi−1ci−1.
These three crossings give f(Qi) ≥ 3. The same we obtain if Ki is crossed by
the edge {ei, ei−1} crosses Ki. This proofs Claim 2.3.

For the drawing D the following Claim 2.4 also holds.
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Figure 5. The subdrawing of Ki ∪ P i
K ∪Ki+1 and placements of Ki−1 ∪ P i−1

K

	
��� 2.4� If both P i
K and P i−1

K cross Ki, then f(Qi) ≥ 3.

The assumption crD(Ki, P i−1
K ) �= 0 and crD(Ki, P i

K) �= 0 enforces f(Qi) ≥ 2.

If Ki is crossed by the edges of P i−1
K ∪ P i

K at least three times or there is a
crossing on some of the edges {ci, ai} and {ci, bi}, then f(Qi) ≥ 3 and we are
done. Assume now that crD(Ki, P i−1

K ) = crD(Ki, P i
K) = 1 and the edges {ci, ai}

and {ci, bi} are not crossed in D. For x ∈ {a, b, d, e}, let Xi, X ∈ {A,B,D,E},
be the subgraph of G � Cn induced by the vertices xi−1, xi, xi+1, ci−1, ci, and
ci+1. One can easily verify that, in this case, none of two crossings on Ki which
contribute to f(Qi) ≥ 2 is an internal crossing in some of the subgraphs Ai, Bi,
Di and Ei. Every internal crossing in Xi contributes at least 1

2 to the force of

Qi. As the edge {ci, ci−1} does not cross the edge {ci, ci+1}, the edges in at least
three of the subgraphs Xi, X ∈ {A,B,D,E}, do not cross each other. Hence,
in both pairs of subgraphs Ai, Bi and Ci, Di there is at least one subgraph
without internal crossings. Without loss of generality assume that Ai and Di

do not have internal crossings.

ci
ci

ci

ai

di di

c
i-1

c
i-1

c
i-1

ai+1 ci+1
ci+1

ci+1

�1 �2
bi

bi

(a) (b) (c)

ai-1

Figure 6. The subdrawing of Ai and possible subdrawings of the edges
{ci, bi}, {ci, di}, {ci, ci−1}, and {ci, ci+1}

The unique subdrawing of Ai induced from D is shown in Figure 6(a). The
vertex bi is not placed in D in the region β1 of the subdrawing of Ai. Other-
wise, as the edge {ci, ai} is not crossed, the path bibi+1ci+1 crosses the path
aiai−1ci−1ci in D and this crossing enforces f(Qi) ≥ 3. Due to symmetry, the
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vertex bi cannot be placed in the region β2. Assume now, that the vertex di
is placed in D in the region β1. Then the path didi+1ci+1 crosses the path
aiai−1ci−1ci in D. As none of two crossings on the edges of Ki is a crossing
between the edge {di, di+1} and the path aiai−1ci−1ci, the assumption that Gi

has at most two crossings on its edges implies that the edge {di, di+1} does not
cross the path aiai−1ci−1ci and that the path aiai−1ci−1ci is crossed by the edge
{di+1, ci+1}. This enforces f(Qi) ≥ 3 again. The similar consideration can be
repeated for the region β2 and hence, di is placed in D outside the regions β1
and β2. Since the edges {ci, bi} and {ci, di} do not cross the edges of Ai, the only
two possible subdrawings of the edges {ci, bi}, {ci, di}, {ci, ci−1}, and {ci, ci+1}
are shown in Figure 6(b) and Figure 6(c). As we have assumed above, there
is no crossing on the edge {ci, bi} and the edges of Di do not cross each other.
Thus, for the case shown in Figure 6(b), the path didi−1ci−1 separates in D the
vertices bi and ci+1 and in D there is a crossing between the paths bibi+1ci+1

and cici−1di−1di which contributes at least 1 to f(Qi). A similar considera-
tion for the situation shown in Figure 6(c) gives that the crossing between the
paths bibi−1ci−1 and cici+1di+1di contributes at least 1 to f(Qi) again. Hence,
f(Qi) ≥ 3 and Claim 2.4 is true.

The contradiction between Claim 2.3 and Claim 2.4 completes the proof. �

������� 2.5� For n ≥ 6, cr(G� Cn) = 3n.

P r o o f. The drawing in Figure 2 shows that cr(G � Cn) ≤ 3n for n ≥ 6. We
prove the reverse inequality by induction on n. By Theorem 2.4, cr(G�C6) = 18,
so the result is true for n = 6. Assume it is true for n = k, k ≥ 6, and suppose
that there is a drawing of G � Ck+1 with fewer than 3(k + 1) crossings. By
Lemma 2.3, some Gi must be crossed at least three times. By the removal of all
edges of this Gi, we obtain a subdivision of G�Ck with fewer than 3k crossings.
This contradicts the induction hypothesis. �
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