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THE CROSSING NUMBER OF G U,
FOR THE GRAPH G ON SIX VERTICES

EMILIA DRAZENSKA

(Communicated by Anatolij Dvureéenskij)

ABSTRACT. The crossing numbers of Cartesian products of paths, cycles or
stars with all graphs of order at most four are known. The crossing numbers of
GOC), for some graphs G on five and six vertices and the cycle C), are also given.
In this paper, we extend these results by determining the crossing number of the
Cartesian product G O C),, where G is a specific graph on six vertices.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. The crossing
number cr(G) of a graph G is the minimum number of crossings of edges in
a drawing of G in the plane such that no three edges cross in a point. It is
easy to verify that a drawing with minimum number of crossings (an optimal
drawing) is always a good drawing, meaning that no edge crosses itself, no two
edges cross more than once, and no two edges incident with the same vertex
cross. Computing the crossing number of a given graph is in general a very
difficult problem, and crossing numbers of few families of graphs are known.
Most of these graphs are Cartesian products of special graphs. (For a definition
of Cartesian product, see [4].)

Let C), be the cycle of length n, P, be the path of length n, and S,, be the
star isomorphic to K ,. Beineke and Ringeisen in [4], Jendrol’ and Scerbovd in
[9] determined the crossing numbers of the Cartesian products of all graphs on
four vertices with cycles. Klesé in [10], [12], [13], [14], Kles¢, Richter and Stobert
in [15], and Kles¢ and Kocirova in [16] gave the crossing numbers of G O C,
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for several graphs of order five. Harary et al. [8] conjectured that the crossing
number of Cp,, 0 C,, is (m — 2)n, for all m, n satisfying 3 < m < n. This has
been proved only for m,n satisfying n > m, m < 7 ([1], [2], [3], [4], [5], [15],
[17], [18]). Tt was recently proved by Glebsky and Salazar [7] that the crossing
number of C,, JC,, equals its long-conjectured value at least for n > m(m +1).
In [12] and [14], all known values of crossing numbers for the Cartesian prod-
ucts of cycles and graphs of order five are presented. We are interested in the
crossing numbers of Cartesian products of graphs on six vertices with cycles.
Except for the star S5, in [6] there are given the crossing numbers of G O C,,
for all trees G on six vertices. For the star on six vertices an upper bound
is presented. It seems natural to enquire about crossing numbers of Cartesian
products for other 6-vertex graphs with cycles. In this paper, we give the cross-
ing number of the Cartesian product G O C,, for the specific 6-vertex graph
shown in Figure 1. This result can help to establish crossing numbers for some
other suitable Cartesian products of cycles with graphs of order at least six.

Q O

FiGure 1. The graph G

Let D be a good drawing of the graph G. We denote the number of crossings
in D by crp(G). Let G; and G; be edge disjoint subgraphs of G. We denote by
crp(Gi, Gj) the number of crossings between edges of G; and edges of G, and
by crp(G;) the number of crossings between edges of G; in D.

2. The crossing numbers of G [J (),

Assume n > 3, and consider the graph G C), in the following way: it has 6n
vertices and edges that are the edges in the n copies G%,i=0,1,...,n— 1, and
in the six cycles of length n. For ¢ =0,1,...,n— 1, let a; and b; be the vertices
of G of degree one, c; the vertex of degree four and let d; and e; be the vertices
of G of degree three, f; the vertex of degree two (see Figure 2). Thus, for
x € {a,b,c,d,e, f}, the n-cycle C¥ is induced by the vertices zg, 1, ..., Tp_1.
For i = 0,1,...,n — 1, let P denote the subgraph of G O C,, containing the
vertices of G* and G**! and six edges joining G to G**!, i taken modulo n. Let
T*, x € {a,b,d, e}, be the subgraph of the graph G O C,, consisting of the cycle
C¥ together with the vertices of C; and of the edges joining C¥ with CS. For
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i=0,1,...,n — 1, let K’ be the subgraph of G* induced by the vertices ¢;, d;,
ei, and f;. We denote by P} the subgraph of P’ consisting only of the edges
joining K to K**t!. Let us denote by I the subgraph of G[JC,, consisting of the
vertices in C¢ and C¢ and of the edges {d;, e;} foralli =0,1,...,n—1, and let
X7 be the subgraph of G 0 C,, induced by the edges incident with the vertices
of CI. Tt is easy to see that T T° T9 T¢ C¢, I, and X/ are edge-disjoint
subgraphs and that

GOC,=T*uTuCsuUT?UT UTUX.

FIGURE 2. The drawing of the graph G O C),

We say that a good drawing of G 0 C,, is coherent if for each K* the vertices
of the subgraph (G 0 C,) — V(G?) lie in the same region in the view of the
subdrawing of K. In the proofs of the paper, we will often use the term “region”
also in nonplanar drawings. In this case, crossings are considered to be vertices
of the “map”.

Consider the subgraph T¢UT® U CS UT?UT® of the graph G 0 C,,. Clearly,
the subgraph 7¢ UT? U Cec U T U Te is isomorphic to the graph S, 0 C,. The
next two lemmas will be very helpful in some proofs of the paper.

LEMMA 2.1. Let D be a good drawing of the graph T® U T® U CS U T U T®,
n € {4,5,6}, in which crp(T* UTY) = 1 for some x,y € {a,b,d,e}. Then
crp(T*UTY,CE) > 2 and crp(T*UTY, T?) > 2 for every z € {a,b,d, e}, z # x,

Proof. For the graph C),, O P;, n > 4, there is no good drawing with exactly
one crossing, because for any two edges which cross each other one can find
two vertex-disjoint cycles such that crossed edges are in different cycles. Two
vertex-disjoint cycles cannot cross only once. The subgraph 7% UTY is obtained
from C),, O P; by an elementary subdivision of every edge joining two n-cycles
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C?¥ and C¥. Consider now the subdrawing D’ induced from D by the subgraph
T® UTY. The only one crossing in D’ appears between an edge incident with a
vertex of degree two and an edge of the cycle C¥ or the cycle C¥. In this case,
the cycle C or the cycle C¥ separates in D a vertex c; of the cycle C¢ from
the other vertices of Cy. Hence, the cycle Cf crosses in D the edges of T% UTY
at least twice. The removing of the separated vertex c¢; of the cycle C¢ from
D’ results in the drawing without crossings. This drawing divides the plane in
such a way that there are at most two vertices of Cf; on the boundary of every
region. As the vertex ¢; is in D’ separated from the other vertices of C¢, in the
subdrawing D’ of T% UTY with one crossings there are at most two vertices of
C¢ on the boundary of a region. If the cycle CZ of T crosses the 2-connected
subgraph 7% UTY, it crosses T* UTY at least two times. Otherwise C7 is in D
placed in one region in the view of the subdrawing of 7% UTY and at least two
edges of T joining C7 with the vertices of Cf cross the edges of 7% UTY. This
completes the proof. O

LEMMA 2.2. Let D be a good drawing of the graph T® U T® U CS U T U T,
n € {5,6}, in which crp(T*,TY) = 0 for some x,y € {a,b,d,e}. Then for
every z € {a,b,d,e}, z # x, z # y, ccp(T* UTY,T?) > 4 forn = 5, and
crp(T*UTY, T?) > 6 if n =6.

Proof. AsT*UTY is the subdivision of the 3-connected planar graph P, JC),,,
the subdrawing D’ of T% U TY induced from D divides the plane into several
regions without vertices of Cf on their boundaries and into five or six regions,
respectively, having exactly two vertices of C'¢ on the boundary of one region.
For n = 6, Figure 3 shows the drawing D’ in which possible crossings among
the edges of T'* are inside the left disc bounded by the dotted cycle and possible
crossings among the edges of TV are inside the right disc bounded by the dotted
cycle. A similar drawing we consider for the case n = 5. We can suppose that
if, in D, an edge not incident with a vertex of C'¥ or C¥ passes through one of
these two discs, then it crosses the edges of 7% U TY at least twice. Consider
now a subgraph 7%, z € {a,b,d,e}, z # z, z # y. Both C? and T* UTY are
2-connected graphs and hence, crp(CZ, 7% UTY) # 1. If, in D, the cycle C?
is placed in a region of D’ with fewer than two vertices of C¢ on its boundary,
then crp(T* UTY,T%) > n. If C? is placed in a region with two vertices of C
on the boundary, then one vertex of Cf is separated from C; by at least two
vertex-disjoint cycles for n = 5, and in the case n = 6 there are at least two such
vertices of C%. Hence, crp(T*UTY,T%) > 4 forn =5, and crp(T*UTY,T*) > 6
if n = 6. If the cycle C? crosses in D the edges of T UTY two or three times,
then it is placed in two regions of D’ with at most three vertices of CS on their
boundaries and the edges joining C7? with C cross in D the edges of 7% UTY at
least four times when n = 5, and at least six times for n = 6. If there are four
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vertices of C on the boundaries of the regions in D’ in which C? is placed in
D, at least four crossings between the edges of C? and the edges of 7% UTY are
necessary. For n = 6, the edges joining C§ to C§ cross the subgraph 7% UTY at
least twice, and crp(T* UTY,T?) > 6. If C§ crosses in D the edges of D’ five
times, then there is at least one vertex of C§ separated in D’ from the cycle C§

and crp(T* UTY,T?%) > 6 again. This completes the proof. O
O ,'. .
o Lo

O

FicURE 3. The subdrawing of the subgraph 7% UTY

THEOREM 2.1. cr(GOC5) = 7.

Proof. InFigure 4 it is easy to see that the removing the edges of two subgraphs
G in the left results in the drawing of a subdivision of the graph G O C3 with
seven crossings. Hence, cr(G O C3) < 7. Assume that there is a good drawing
of GO 3 with at most 6 crossings and let D be such a drawing. The subgraph
TYUTeUTIUXY of the graph G O C3 is isomorphic to the graph (K4 —e) 0 Cj3
and it is proved in [11] that cr((K4 —e) O C3) = 6. Thus, in D there is no
crossing on the edges of T UT?. The planar subdrawing of 7% U T? induced by
D is the unique within isomorphism and divides the plane into 5 regions with
at most two vertices of C'§ on the boundary of a region. Then, in D, an edges
of T? cross the edges of T® UT? at least once. This ontradiction completes the
proof. O

THEOREM 2.2. cr(G O Cy) = 10.

Proof. By deleting the edges of the left subgraph G? in Figure 4, the drawing
of a subdivision of the graph G O Cy with ten crossings is obtained. Hence,
cr(GOCy) < 10. Assume that there is a good drawing of G [0 Cy with at most
9 crossings and let D be such a drawing. The graph G [ Cy contains the graph
(K4 —e)0Cy as a subgraph and cr((K4 —e) 0 Cy) = 8 (see [4]). Thus, in D
there is at most one crossing on the edges of 7% U T®.

Consider now the subgraph 7% U T? of the graph G 0 Cy4 and let D’ be its
subdrawing induced by D. Assume first, that crp(T* UT®) = 0. As T* U T? is
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FIGURE 4. The drawing of the graph G [0 Cs

the subdivision of the 3-connected planar graph P, 0Cy, the planar subdrawing
of T* U T? induced from D is the unique within isomorphism and it divides
the plane into two quadrangular and four hexagonal regions in such a way that
there are at most two of the vertices cg, ¢1, ¢2, and c3 on the boundary of a
region. Consider now the cycle C¢. As in D there is at most one crossing on the
edges of T% U T", the cycle C{ is placed in D in one region in the view of the
subdrawing D’. So, in D, the edges joining the vertices of C¢ cross the edges of
T UT? at least twice, which is a contradiction.

Assume now that there is one crossing among the edges of 7¢UT? in D'. By
Lemma 2.1, ch(TaUTb, C%) > 2 and this contradiction completes the proof. [

THEOREM 2.3. cr(GOC5) = 14.

Proof. In the drawing of the graph G 0 C5 in Figure 4 one can easily see that
cr(GOC5) < 14. Assume that there is a good drawing of G [0 Cy with at most
13 crossings and let D be such a drawing. The graph G C5s contains the graph
(K4 — e) 0 C5 as a subgraph and cr((K4 — e) O C5) = 10 (see [4]). Thus, in D
there are at most three crossings on the edges of 7% U T?. Consider now the
subgraph T U T? of the graph G O Cs and let D’ be its subdrawing induced
by D. Clearly, crp (T, T?) # 0 otherwise, by Lemma 2.2, crp(T°UT?, T9) > 4,
a contradiction. If there is only one crossing in the subdrawing D’ of T¢ U T?,
by Lemma 2.1, crp(T% U T? C¢) > 2 and crp(T* U T, T?) # 0. In this case
there are more than three crossings on the edges of 7% U T? again.

Consider now that there are at least two crossings in D’. Then at least one
subgraph 7% or T° does not cross in D the edges of T U T®. Without loss
of generality, let crp(7% U T? T9) = 0. In this case crp(T?,T¢) = 0 and, by
Lemma 2.2, crp(T* U T, T > 4. As crp(T9,T%) = 0, all considered crossings
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appear between the edges of 7% and the edges of T%. This contradiction with
the assumption that there are at most three crossings on the edges of 7¢ U T?
completes the proof. O

THEOREM 2.4. cr(G 0O Cq) = 18.

Proof. In the drawing in Figure 2 one can see that cr(G O C),) < 18. Assume
that there is a good drawing of G 10 Cs with fewer than 18 crossings and let D
be such a drawing. The graph G Cg contains (K4 —e) [0 Cp as a subgraph and
cr((Kq —e)dCg) = 12 (see [4]). Thus, in D there are at most five crossings on
the edges of the subgraph 7% U T®.

Let us consider the subgraph 7% UT?. If crp(T%UT®) = 0, then crp (7%, T?)
= 0, too, and Lemma 2.2 implies that crp(7® U T% T?) > 6. This contradicts
the assumption that there are at most five crossings on the edges of 7% U T?.
Assume now a subdrawing of 7% U T® with one crossing. By Lemma 2.1,
crp(TeUT?, CE) > 2, crp(T*UT?, T?) > 2 and crp(T*UT®, T¢) > 2, and on the
edges of T*UT? there are more than five crossings again. If crp(T*UT?) > 2, one
of the subgraphs T and T crosses the edges of 7% UT? at most once. Assume
that crp (TUT®, T9) < 1. This implies that crp (T, T%) = 0 or crp (T?, T%) = 0.
Without loss of generality, let crp (7%, T%) = 0. It follows from Lemma 2.2 that,
in this case, crp(T* U T, T?) > 6 and in D there are more than five crossings
on the edges of T%. This contradiction completes the proof. O

LeMMA 2.3. If D is a good drawing of GO C,, n > 6, in which every G* has
at most two crossings on its edges, then D has at least 3n crossings.

Proof. Note that in the whole proof the indices are considered modulo n. By
hypothesis, the following Claim 2.1 holds.

CLAIM 2.1. The drawing D is coherent and two different subgraphs K* and K7
do not cross each other.

If some K¢, i € {0,1,...,n—1}, separates vertices of the 3-connected subgraph
induced by the vertices V(K1) U---UV(K*!), then its edges are crossed at
least three times. So, all subgraphs K7, j # 4, lie in D in the same region in
the view of the subdrawing of K*. Moreover, as the drawing D is good, two
different K* and K’ do not cross each other. Assume now that some triangular
cycle of K, say A, separates the vertices a; and c;. So, the edge {a;,c;}
crosses K'. If j ¢ {i—1,i+ 1}, then A’ is crossed by both paths a;a;;icjt+1 and
ajaj_1cj—1, and there are at least three crossings on the edges of K*. Assume,
without loss of generality, that a; = a;41. Then the edges of A’ are crossed by
the edge {a;,a;+1} and by the path a;11a;42¢;42 if A’ separates a; from a;;1,
and K has its edges crossed at least three times. The last possibility is that the
edge {a;,a;11} does not cross A’. In this case, the cycle A’ is crossed by both
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paths a;1a;42¢i42 and a;a;_1¢;_1, and K* is crossed at least three times again.
The similar consideration for the case when K* separates the vertices b; and c¢;
confirms that the drawing D is coherent.

For i = 0,1,...,n — 1, let Q" denote the subgraph of G OO C,, induced by
V(GTHUV(GH)UV(G™) (see Figure 2) and let Q% be its subgraph obtained
by deleting the vertices a;_1,a;, a;41,bi—1,b;, and b; 1. Thus, Q' = G~ U
P1UGIUPI UG and QY = K1 U PP UK U Pi UKL

Let us consider the following types of crossings on the edges of Q' in a drawing
of the graph GUOC,,:

1) a crossing of an edge in P*~! U P with an edge in G,
2) a crossing of an edge in G*~! U P*~! with an edge in Gt U P?,

)
3) a self-intersection in G?,
4) a self-intersection in Pi~1,
)

5) a self-intersection in P,

(
(
(
(
(
(

6) a crossing of an edge in G~ U G*T! with an edge in G".

It is readily seen that every crossing of types (1), (2), and (3) appears in
a drawing of the graph G 0 C,, only on the edges of the subgraph Q. Every
crossing of types (4), (5), and (6) appears in Q% and in one of Q*~! or Q1.

In a good drawing of G JC,,, we define the force f(Q*) of Q! in the following
way: every crossing of type (1), (2) or (3) contributes the value 1 to f(Q?) and
every crossing of type (4), (5) or (6) contributes the value } to f(Q?) (and } to
F(Q71Y) or to f(Q*Y)). The total force of the drawing is the sum of f(Q?). It
is readily seen that the number of crossings in the drawing is not less then the
total force of the drawing. So, the aim of our proof is to show that if every G*
has at most two crossings on its edges, then f(Q%) >3 foralli =0,1,...,n— 1.

Assume that, in the drawing D, there is some i, i € {0,1,...,n — 1}, for
which the force f(Q?) < 3. Then for the drawing D the following Claim 2.2 and
Claim 2.3 hold.

CLAM 2.2. Leti € {0,1,...,n—1}. If f(Q") < 3, then the edges of K' do not
cross each other in D.

If f(Q") < 3 and crp(K?) # 0, then crp (K%, Pi') =0 or erp(K*, Py) = 0.
Let D’ be the subdrawing of D induced by the subgraph K*U P}, U K1 If
crp(K*, Pi) = 0, then the subdrawing D’ divides the plane in such a way that
K™ lies in one region, say unbounded, in the view of the subdrawing of K*
and, since the edges of P} do not cross K, every region outside K’ has at most
two vertices of K' on its boundary. As f(Q!) < 3 and crp(K*®) # 0, in D the
2-connected subgraph K~! does not cross edges of K*U P U K**1. Hence, by
Claim 2.1, K*~! lies in D in one region of the subdrawing D’ outside K* with
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two vertices of K* on its boundary. But, in this case, the edges of P};l joining
K= to K' cross the edges of K" U P}, U K'*! at least twice. This contradicts
the assumption f(Q?) < 3. The consideration crp(K*, Pi ') = 0 gives the same
contradiction and therefore crp(K?) = 0.

CramM 2.3. Leti € {0,1,...,n—1}. If f(QY) < 3, then the edges of K' are
crossed by both Py ' and Pj;.

Assume that f(Q') < 3 and let crp(K%, Pj) = crp(K* Pi') = 0. The
similar consideration as in the proof of Claim 2.2 shows that the subdrawing
D’ of the subgraph K®U P U K™! induced by D divides the plane in such
a way that, say outside K, there are four regions such that every region has
two vertices of K on its boundary. By Claim 2.2, crp(K*) = 0 and the unique
subdrawing D’ is shown in Figure 5(a). The assumption f(Q?) < 3 enforces that
erp(K1, Pi) < 3. So, by Claim 2.1, if K*~! crosses K'U Pj, UK it crosses
P! exactly twice and the vertices of K'~1 are placed in at most two regions
of the subdrawing shown in Figure 5(a). But, in this case, at least one edge of
Pi- ! crosses in D the edges of Pj, U K**!. This contradiction with f(Q°) < 3
implies that crp (Kt KU Pi U K'™) = 0 and that the subgraph K*~! lies
in D in only one region of D’. Moreover, it lies in one of two regions, say a,
having the vertex c; on its boundary. Otherwise, if the vertex ¢; does not lie on
the boundary of «, then in D both paths c¢;a;a;_1¢;—1 and ¢;b;b;_1¢;—1 and at
least two edges of P};l joining K*~! with K* cross the boundary of the region
«. This contradicts the assumption f(Q?) < 3. So, K'~! lies in D in the region
a of D’ with the vertex ¢; on its boundary and at least two edges of P};l joining
K~ to K' cross the edges of Pj; UK'*!. As none of the edges of Pj; ' can cross
K1 only once, the unique possibility is that P};l crosses P% twice. Moreover,
in D’ the vertices ¢; and ¢;11 are separated by the cycle d;e;e;_1d;_1d; (see
Figure 5(b)). In this case, the cycle d;e;e;—1d;—1d; is crossed in D by both paths
cia;air1¢i+1 and c;bibii1cir1. This contradiction with f(Q%) < 3 determines
that K’ is crossed in D by at least one of P} and Pj *.

Let us assumed that, without loss of generality, Pj does not cross K*. Then
K' is crossed by Pj'. Tt is shown above that if crp(K?, Pi) = 0, then K~ ! is
placed in D in the region of D’ with the vertex ¢; on its boundary. In Figure 5(c)
one can see that the condition f(Q*) < 3 enforces that, in D, the edge {f;, fi_1}
does not cross K nor KT!. Hence, the edge { f;, fi—1} crosses an edge of P} and
K'is crossed once by the edge {d;,d;_1} or by the edge {e;, e;_1}. If K is crossed
by the edge {d;,d;_1}, then the cycle ¢;_1¢;d; f; fi—1ci—1 separates the vertices
e; and e;_; and the edge {e;,e;—1} crosses in D the cycle ¢;_1¢;d; fi fi—1¢i—1.
These three crossings give f(Q?) > 3. The same we obtain if K’ is crossed by
the edge {e;, e;—1} crosses K. This proofs Claim 2.3.

For the drawing D the following Claim 2.4 also holds.
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K

(@) )

FIGURE 5. The subdrawing of K* U P;( U K**t1 and placements of K*~1 U P;;l

CrAM 2.4. If both P}, and Pi ' cross K', then f(Q') > 3.

The assumption crp(K?, Py ') # 0 and crp(K*, Pj) # 0 enforces f(Q°) > 2.
If K% is crossed by the edges of P}{l U Pl at least three times or there is a
crossing on some of the edges {c;,a;} and {c;,b;}, then f(Q?) > 3 and we are
done. Assume now that crp(K*, Pi ') = crp(K?, Pj;) = 1 and the edges {c;, a;}
and {c;, b;} are not crossed in D. For x € {a,b,d, e}, let X*, X € {A, B, D, E},
be the subgraph of G O C,, induced by the vertices x;_1,z;, £;4+1,¢i—1, ¢;, and
ci+1. One can easily verify that, in this case, none of two crossings on K* which
contribute to f(Q*) > 2 is an internal crossing in some of the subgraphs A?, B?,
D' and E'. Every internal crossing in X* contributes at least é to the force of
Q. Asthe edge {c;, c;_1} does not cross the edge {c;, ci11}, the edges in at least
three of the subgraphs X, X € {A, B, D, E}, do not cross each other. Hence,
in both pairs of subgraphs A?, B’ and C?, D’ there is at least one subgraph
without internal crossings. Without loss of generality assume that A* and D’
do not have internal crossings.

31 a; Qi1 Oci-l G O°i+1 Oci-l Ci giﬂ
By J B,
b; b;
i1 G Cisi d; d;
(@) (b) (c)

FIGURE 6. The subdrawing of A and possible subdrawings of the edges
{cisbi}, {ciydi}; {cici—1}, and {c;,civ1}

The unique subdrawing of A* induced from D is shown in Figure 6(a). The
vertex b; is not placed in D in the region B; of the subdrawing of A*. Other-
wise, as the edge {c¢;,a;} is not crossed, the path b;b;y1c¢;y1 crosses the path
a;a;_1¢;_1¢; in D and this crossing enforces f(Q?) > 3. Due to symmetry, the
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vertex b; cannot be placed in the region (3. Assume now, that the vertex d;
is placed in D in the region B;. Then the path d;d;yiciy1 crosses the path
a;a;_1¢i—1¢; in D. As none of two crossings on the edges of K’ is a crossing
between the edge {d;,d;+1} and the path a;a;_1c¢;—1c;, the assumption that Gt
has at most two crossings on its edges implies that the edge {d;,d;+1} does not
cross the path a;a;_1c;_1¢; and that the path a;a;_1¢;_1¢; is crossed by the edge
{di;1,ciy1}. This enforces f(Q%) > 3 again. The similar consideration can be
repeated for the region f; and hence, d; is placed in D outside the regions (;
and (9. Since the edges {c;, b;} and {c;, d;} do not cross the edges of A?, the only
two possible subdrawings of the edges {c;,b;}, {ci,d;}, {ci,ci—1}, and {¢;, ciy1}
are shown in Figure 6(b) and Figure 6(c). As we have assumed above, there
is no crossing on the edge {c;,b;} and the edges of D* do not cross each other.
Thus, for the case shown in Figure 6(b), the path d;d;_1¢;—1 separates in D the
vertices b; and c¢;4+1 and in D there is a crossing between the paths b;b;41¢;4+1
and c¢;c;_1d;_1d; which contributes at least 1 to f(Q%). A similar considera-
tion for the situation shown in Figure 6(c) gives that the crossing between the
paths b;b;_1¢;—1 and c;c;41d;+1d; contributes at least 1 to f(Q’) again. Hence,
f(Q") > 3 and Claim 2.4 is true.

The contradiction between Claim 2.3 and Claim 2.4 completes the proof. [

THEOREM 2.5. Forn > 6,cr(GOC,) = 3n.

Proof. The drawing in Figure 2 shows that cr(G O C,,) < 3n for n > 6. We
prove the reverse inequality by induction on n. By Theorem 2.4, cr(GOCs) = 18,
so the result is true for n = 6. Assume it is true for n = k, k£ > 6, and suppose
that there is a drawing of G O Cj41 with fewer than 3(k + 1) crossings. By
Lemma 2.3, some G must be crossed at least three times. By the removal of all
edges of this G, we obtain a subdivision of G JC}, with fewer than 3k crossings.
This contradicts the induction hypothesis. O
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