

DOI: 10.2478/s12175-011-0026-1 Math. Slovaca **61** (2011), No. 4, 523–538

COMMUTATIVE EXTENDED BCK-ALGEBRAS

N. V. Subrahmanyam

(Communicated by Jiří Rachůnek)

ABSTRACT. We introduce an extended cone algebra, which generalises a Bosbach's cone algebra within the framework of extended BCK-algebras and show that every such an algebra is a direct product of an ℓ -group and a cone algebra of Bosbach.

©2011 Mathematical Institute Slovak Academy of Sciences

Introduction

The aim of this paper is to generalise Bosbach's cone algebra [2] within the framework of extended BCK-algebras [10] which were recently introduced. An extended BCK-algebra is a generalisation of a pseudo BCK-algebra of Georgescu and Iorgulescu [6], which itself is an extension of a BCK-algebra due to Imai and Iséki [7]. An integral extended BCK-algebra is equivalent to a pseudo BCK-algebra [10, Corollary 1.15] and a symmetric pseudo BCK-algebra is a BCK-algebra of Imai and Iséki ([6, Remark 1.2]).

From [2], we gather that a cone algebra of Bosbach, is an algebra (C; *, :) of type (2,2) satisfying the following equations: (a*a)*b=b=b:(a:a); (a*b):c=a*(b:c); a:(b*a)=(b:a)*b; (a*b)*(a*c)=(b*a)*(b*c) and (c:b):(a:b)=(c:a):(b:a). If $(G; \le, \cdot, e)$ is an ℓ -group and G^+ is its positive cone, then it is easily verified that $(G^+; *, :)$ is a cone algebra (called the cone algebra of the ℓ -group cone G^+) if we define $a*b:=(a^{-1}b)\vee e$ and $a:b:=(ab^{-1})\vee e$. Further, Bosbach has proved that every cone algebra is a subalgebra of the cone algebra of some ℓ -group cone [2].

BCK-algebras were called *commutative* [8] if they are meet semilattices under a *specified* operation and Kühr [9] has extended this definition to pseudo BCK-algebras ([9, Section 3]). Also see [6, Remark 1.19, Corollary 1.20]. In this paper,

2010 Mathematics Subject Classification: Primary 03B50, 06D35. Keywords: extended BCK-algebra, extended cone algebra.

we define a commutative extended BCK-algebra by adopting the approach of Kühr [9].

A certain (relative) cancellation property for a commutative BCK-algebra [3] has been of immense use to obtain a representation of a commutative BCK-algebra in terms of the positive cone of a commutative ℓ -group. This result has been generalised to a commutative pseudo BCK-algebra by Kühr [9, Section 6].

A commutative pseudo BCK-algebra is known to be equivalent to a precone algebra ([12, Definition 1.1] and [9, Theorem 4.3] and comments following Lemma 1.2 in [12]); and hence by [12, Theorem 1.5], a commutative pseudo BCK-algebra with relative cancellation property is a cone algebra of Bosbach [2]. We generalise the notion of relative cancellation to a commutative extended BCK-algebra and introduce the concept of an extended cone algebra; and prove the following theorem:

DECOMPOSITION THEOREM. Every extended cone algebra is a direct product of an ℓ -group and a cone algebra of Bosbach.

This paper is organised as follows: in Section 1, we present the basic preliminaries, together with the notion of a commutative extended BCK-algebra and some of its elementary properties. The second section contains a discussion on the relative cancellation properties of a commutative extended BCK-algebra and the notion of an extended cone algebra. Finally, in the last Section 3, we prove a decomposition theorem for extended cone algebras.

1. Commutative extended BCK-algebras

We now recall from [10], the definition of an extended BCK-algebra and some of its basic properties, which we need in the sequel.

DEFINITION 1.1. An extended BCK-algebra is a structure $(C; \leq, *, :, e)$ where \leq is a binary relation on C, *, : are binary operations on C and $e \in C$, satisfying the following axioms: for all $a, b, c \in C$,

- (i) $(a * c) : (b * c) \le a * b$,
- (ii) $(c:b) * (c:a) \le b:a$,
- (iii) $a:(b*a) \leq b$,
- (iv) $(a:b) * a \le b$,
- (v) $a \le a$,
- (vi) if $a \le b$ and $b \le a$, then a = b,
- (vii) if $a \le b$ and $b \le e$, then $a \le e$, and
- (viii) $a \le b \iff a : b \le e \iff b * a \le e$.

An extended BCK-algebra is said to be *symmetric* if it satisfies the *identity* a * b = b : a.

If $(C; \leq, *, :, e)$ is an extended BCK-algebra, then so is the structure $(C; \leq, \circledast, \odot, e)$, where $a \circledast b := b : a$ and $a \odot b := b * a$, which we call the dual of $(C; \leq, *, :, e)$. Clearly, the dual of the dual of an extended BCK-algebra C is C itself, and C is symmetric if and only if C equals its dual. We will find it useful in the following to appeal to the duality of an extended BCK-algebra for deriving similar results. The following lemma collects some basic properties of an extended BCK-algebra.

LEMMA 1.2.

- (i) $a * a \le e$ and $a : a \le e$ for all $a \in C$,
- (ii) $a \le b \Longrightarrow b * c \le a * c \text{ and } c : b \le c : a$,
- (iii) $a \le b$ and $b \le c \Longrightarrow a \le c$,
- (iv) $(C; \leq)$ is a poset,
- (v) $c: b \le a \iff a * c \le b$,
- (vi) a * (b : c) = (a * b) : c
- (vii) e * a = a = a : e, and
- (viii) $b \le c \Longrightarrow a * b \le a * c \text{ and } b : a \le c : a.$

If $(C; \leq, *, :, e)$ is an extended BCK-algebra and $a \in C$, then a is called *integral* if and only if a * e = e = e : a; and C is called *integral* if and only if every $a \in C$ is integral. By [10, Lemma 1.14], an extended BCK-algebra $(C; \leq, *, :, e)$ is integral if and only if $e \leq a$ for all $a \in C$. Also, if K = K(C) is the set of all integral elements of an extended BCK-algebra C, then K is a subalgebra of C by [10, Theorem 1.13(1)] and is an integral extended BCK-algebra by [10, Theorem 1.13(3), Lemma 1.14, Corollary 1.15]. Hence, an extended BCK-algebra C with $e \leq x$ for all $x \in C = a$ integral extended BCK-algebra = a pseudo BCK-algebra of Georgescu and Iorgulescu.

We now assume that $(C; \leq, *, :, e)$ is an extended BCK-algebra and a, b, c, ... are elements of C. If $a, b \in C$ then $\inf\{a, b\}$ and $\sup\{a, b\}$ will be denoted by $a \wedge b$ and $a \vee b$, respectively, whenever they exist, and to indicate their existence we write $a \wedge b \in C$ (respectively $a \vee b \in C$).

LEMMA 1.3. If $a \wedge b \in C$, then $(a * c) \vee (b * c) \in C$, $(c : a) \vee (c : b) \in C$ and the following identities hold:

$$(a \wedge b) * c = (a * c) \vee (b * c)$$
 and $c : (a \wedge b) = (c : a) \vee (c : b)$.

Proof. For $u \in C$, $a*c \le u$ and $b*c \le u \iff c: u \le a$ and $c: u \le b$ (Lemma 1.2(v)) $\iff c: u \le a \land b \iff (a \land b) *c \le u$ (Lemma 1.2(v)). Hence $(a \land b) *c = (a*c) \lor (b*c)$; and the other part is similar.

We now recall that a structure $(C; \leq, *, :, \cdot, e)$ is called a *BCK-monoid* [10, Lemma 2.1, Definition 2.2] if and only if

- (1) $(C; \leq, *, :, e)$ is an extended BCK-algebra and
- (2) the following equation is satisfied: (ab) * c = b * (a * c).

Hence if $(C; \leq, *, :, \cdot, e)$ is a BCK-monoid, then its reduct $(C; \leq, *, :, e)$ is an extended BCK-algebra. By [10, Theorem 2.3], a BCK-monoid is equivalent to the dual of a residuated pomonoid. An extended BCK-algebra, even if it is integral, need not occur as the reduct of some BCK-monoid. (See [10, Remark 6.5, Example 6.6].)

We now recall that a BCK-monoid $(C; \leq, *, :, \cdot, e)$ is called *semiintegral* [10, Definition 2.18] if and only if for all $a \in C$, $a \leq e$ implies a is invertible, and by [10, Lemma 2.20(i)] we have a * a = a : a = e for all a of such a monoid. We now call an *arbitrary* extended BCK-algebra $(C; \leq, *, :, e)$ *semiintegral* if and only if a * a = a : a = e for all $a \in C$ so that the reduct $(C; \leq, *, :, e)$ of a semiintegral BCK-monoid $(C; \leq, *, :, e)$ is a semiintegral extended BCK-algebra. Hence if C is a semiintegral extended BCK-algebra we also have, as in [10, Lemma 2.20(ii)],

$$a * e = a * (a : a) = (a * a) : a = e : a.$$

COROLLARY 1.4. If $a \wedge b \in C$ and C is semiintegral, then $(a \wedge b) * b = (a * b) \vee e$ and $a : (a \wedge b) = (a : b) \vee e$.

Corollary 1.5. If $a \land e \in C$ and C is semiintegral, then $a \lor e \in C$.

Proof. By Corollary 1.4 and Lemma 1.2(vii).

Theorem 1.6. Let $(C; \leq, *, :, e)$ be a semiintegral extended BCK-algebra, then the following are equivalent:

 (α) $(C; \leq)$ is a meet semilattice satisfying the equations

$$a:((a \wedge b) * a) = a \wedge b = (a:(a \wedge b)) * a.$$

 (β) $a \lor e$ exists for all $a \in C$ and

$$a \le b \Longrightarrow (b:a) * b = a = b:(a*b).$$

Proof. Assume (α) ; then, by Corollary 1.5, $a \lor e$ exists for all $a \in C$ and now $a \le b \Longrightarrow b : (a * b) = b : ((a \land b) * b) = a \land b = a$ and similarly (b : a) * b = a. Hence $(\alpha) \Longrightarrow (\beta)$.

Conversely, assume (β) ; then, by [10, Lemma 5.6], $(C; \leq)$ is a meet semilattice with $a \wedge b = ((a:b) \vee e) * a = a : ((b*a) \vee e)$. Hence, by Corollary 1.5, we have $a \wedge b = (a:(a \wedge b)) * a = a : ((a \wedge b) * a)$. Hence $(\beta) \Longrightarrow (\alpha)$.

We now introduce the following definition.

DEFINITION 1.7. A semiintegral extended BCK-algebra satisfying either of the conditions (α) and (β) of Theorem 1.6 will be called a *commutative extended BCK-algebra*.

Since e is the least element of an integral extended BCK-algebra C and $a*a \le e$, $a:a \le e$ for all $a \in C$ (by Lemma 1.2), it follows that a*a=a:a=e for all a in an integral extended BCK-algebra C. Hence an integral extended BCK-algebra is clearly semiintegral and hence an integral extended BCK-algebra (equivalently, a pseudo BCK-algebra) is commutative if and only if

$$a \le b \Longrightarrow b : (a * b) = a = (b : a) * b$$

by Theorem 1.6. (See [10, Corollary 5.8] and [12, page 3].)

By [9, Lemma 3.3], it follows that commutative extended BCK-algebras generalise commutative pseudo BCK-algebras. We now extend Lemmas 3.4 through 3.9 of [9] to commutative extended BCK-algebras. We therefore assume that $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra and $a, b, c, \ldots \in C$.

Lemma 1.8. If $a \le s$ and $b \le s$, then $a \lor b$ exists in C and

$$a \lor b = ((s : a) \land (s : b)) * s = s : ((a * s) \land (b * s)).$$

Proof. Since $a \le s \Longrightarrow (s:a) * s = a = s:(a*s)$, the lemma follows from Lemma 1.3.

Observe that by Lemma 1.8, $a \lor b$ exists if and only if a and b have a common upper bound. Hence $(C; \le)$ is a lattice if and only if $(C; \le)$ is directed above.

LEMMA 1.9. If $a \lor b$ exists, then $c * (a \lor b) = (c * a) \lor (c * b)$ and $(a \lor b) : c = (a : c) \lor (b : c)$.

Proof. Write $a \lor b = s$; then $a \le s$ and $b \le s$. Hence by Lemma 1.8, $c * (a \lor b) = c * (s : ((a*s) \land (b*s))) = (c*s) : ((a*s) \land (b*s)) = ((c*s) : (a*s)) \lor ((c*s) : (b*s))$ (by Lemma 1.3) = $(c * (s : (a*s))) \lor (c * (s : (b*s))) = (c*a) \lor (c*b)$. The other equation is similar.

Lemma 1.10. Let $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra, $a, b \in C$ and assume $a \lor b$ exists in C. Then

$$(a \lor b) : ((a \land b) * a) = b = (a : (a \land b)) * (a \lor b).$$

Proof. Assume $a \lor b$ exists; then $b = b \land (a \lor b) = (a \lor b) : ((b * (a \lor b)) \lor e) = (a \lor b) : ((b * a) \lor e) = (a \lor b) : ((a \land b) * a)$ by Lemma 1.9 and Corollary 1.4. Similarly, $b = (a : (a \land b)) * (a \lor b)$.

THEOREM 1.11. Let $(C; \leq, *, :, e)$ be a commutative extended BCK-algebra, then the following are equivalent:

- (α) $(C; \leq)$ is a distributive meet semilattice.
- (β) $(C; \leq)$ is directed above.
- (γ) $(C; \leq)$ is a distributive lattice.

Proof. $(\alpha) \Longrightarrow (\beta)$ since any distributive meet semilattice is directed above; and $(\beta) \Longrightarrow (\gamma)$ by Lemmas 1.8 and 1.10. Finally, $(\gamma) \Longrightarrow (\alpha)$ is clear. \square

Hence a commutative extended BCK-algebra is a lattice if it is directed above; and is a distributive lattice if it is a lattice.

Kühr [9] has shown that a commutative pseudo BCK-algebra can be equationally defined ([9, Theorem 4.2]) and whether a commutative extended BCK-algebra can be so defined is an open question.

2. Extended cone algebras

Let $(C; \leq, *, :, e)$ be a commutative extended BCK-algebra, then we say that C has relative right cancellation property (RRCP) if and only if, for $a, b, c \in C$,

(α) $c \le a \land b$ and $c * a = c * b \Longrightarrow a = b$.

Dually, if for $a, b, c \in C$,

 (β) $c \le a \land b$ and $a : c = b : c \Longrightarrow a = b$,

then we say that C has relative left cancellation property (RLCP).

If C is integral (equivalently, a commutative pseudo BCK-algebra), then it is easy to see that (α) (= RRCP) and (β) (= RLCP) are equivalent ([9, Section 6] and [12]) and C is a cone algebra; however, the equivalence of (α) and (β) for commutative extended BCK-algebras is an open question.

We now generalise [12, Theorem 1.5] to the case of commutative extended BCK-algebras.

THEOREM 2.1. If $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra, then C has RRCP if and only if C satisfies any of the following identities:

- $(\alpha) ((a * b) \lor e) \land ((b * a) \lor e) = e,$
- (β) $c * (a \wedge b) = (c * a) \wedge (c * b)$, and
- $(\gamma) \ \left(\left(\left(a * b \right) \land \left(a * c \right) \right) \lor e \right) * \left(\left(a * c \right) \lor e \right) = \left(\left(\left(b * a \right) \land \left(b * c \right) \right) \lor e \right) * \left(\left(b * c \right) \lor e \right).$

Proof. Observe that if $(C; \leq, *, :, e)$ is a semiintegral extended BCK-algebra, $a,b \in C$ and $a \leq b$, then by Lemma 1.2(viii), $e = a * a \leq a * b$ and similarly $e \leq b : a$. Now assume that C is a commutative extended BCK-algebra having RRCP, $a,b,c \in C$ and $c = a \wedge b$; then by above remark, $e \leq (c*a) \wedge (c*b)$ and hence $((c*a) \wedge (c*b)) * (c*a) \leq e * (c*a) = c*a$. Hence if $x = a : (((c*a) \wedge (c*b)) * (c*a))$ then $c*x = (c*a) : (((c*a) \wedge (c*b)) * (c*a)) = (c*a) \wedge (c*b)$. Also $c \leq a$ and hence $c = a : (c*a) \leq x$ by Lemma 1.2(ii). Further, $e \leq ((c*a) \wedge (c*b)) * (c*a)$ and hence $x = a : (((c*a) \wedge (c*b)) * (c*a)) \leq a : e$ (by Lemma 1.2(ii)) = a. Thus $c \leq x \leq a$. Similarly, if $y = b : (((c*a) \wedge (c*b)) * (c*b))$, then $c*y = (c*a) \wedge (c*b)$ and $c \leq y \leq b$. Hence by RRCP, x = y (since c*x = c*y) and hence $c \leq x \leq a \wedge b = c$ so that c = x. Hence $(c*a) \wedge (c*b) = c*x = e$, and thus

$$((a*b)\vee e)\wedge((b*a)\vee e)=(c*a)\wedge(c*b)=c*x=e.$$

Hence RRCP \Longrightarrow (α). Now assume (α). By Lemma 1.2(viii), we have

$$c * (a \wedge b) \leq (c * a) \wedge (c * b).$$

Hence

$$(c * (a \land b)) * ((c * a) \land (c * b))$$

$$\leq ((c * (a \land b)) * (c * a)) \land ((c * (a \land b)) * (c * b))$$

$$= [(c * (a : ((b * a) \lor e))) * (c * a)] \land [(c * (b : ((a * b) \lor e))) * (c * b)]$$

$$= [((c * a) : ((b * a) \lor e)) * (c * a)] \land [((c * b) : ((a * b) \lor e)) * (c * b)]$$

$$\leq ((b * a) \lor e) \land ((a * b) \lor e)$$
 (by Definition 1.1(iv))
$$= e$$
 (by (α)).

Hence $(c * a) \land (c * b) \le c * (a \land b)$ and hence

$$c * (a \wedge b) = (c * a) \wedge (c * b).$$

Thus $(\alpha) \Longrightarrow (\beta)$; and now assume (β) .

If $a \le c$ and $b \le c$, then $(a * c) \land (b * c) = (((a * c) : (b * c)) \lor e) * (a * c) = [(a * (c : (b * c))) \lor e] * (a * c) = ((a * b) \lor e) * (a * c)$. Hence if $a, b, c \in C$ are arbitrary, then

$$((a \wedge c) * c) \wedge ((b \wedge c) * c) = (((a \wedge c) * (b \wedge c)) \vee e) * ((a \wedge c) * c)$$
$$= (((a \wedge c) * (b \wedge c)) \vee e) * ((a * c) \vee e).$$
(A)

Now

$$(a \wedge c) * (b \wedge c) = (a * (b \wedge c)) \vee (c * (b \wedge c))$$
$$= ((a * b) \wedge (a * c)) \vee ((c * b) \wedge e) \qquad (by (\beta))$$

Hence

$$((a \wedge c) * (b \wedge c)) \vee e = ((a * b) \wedge (a * c)) \vee ((c * b) \wedge e) \vee e$$
$$= ((a * b) \wedge (a * c)) \vee e.$$

Hence from the symmetry of a and b in the left side of (A) and the equality (A) we obtain

$$(((a*b) \land (a*c)) \lor e) * ((a*c) \lor e) = (((b*a) \land (b*c)) \lor e) * ((b*c) \lor e).$$

Hence $(\beta) \Longrightarrow (\gamma)$ and now assume (γ) . Let $c \le a \land b$ and c * a = c * b; then by the equation (γ) ,

$$(((c*a) \land (c*b)) \lor e) * ((c*b) \lor e) = (((a*c) \land (a*b)) \lor e) * ((a*b) \lor e)$$

This implies, $e = e * ((a * b) \lor e)$ (since $a * c \le e$), so that $e = (a * b) \lor e$. Hence $a * b \le e$ and by symmetry $b * a \le e$. Hence a = b and $(\gamma) \Longrightarrow RRCP$. Thus RRCP, (α) , (β) and (γ) are all equivalent.

Dually, we have the following theorem.

THEOREM 2.2. If $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra, then C has RLCP if and only if C satisfies any of the following identities:

- (α) $((a:b) \lor e) \land ((b:a) \lor e) = e$,
- (β) $(a \wedge b) : c = (a : c) \wedge (b : c)$, and
- $(\gamma) ((c:a) \lor e) : (((c:a) \land (b:a)) \lor e) = ((c:b) \lor e) : (((c:b) \land (a:b)) \lor e).$

This theorem follows from Theorem 2.1 by duality. We now assume that $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra enjoying both RRCP and RLCP. Now we prove

Lemma 2.3. If a * x = b = a * y and x : b = a = y : b, then x = y.

Proof. Since C has RRCP, the equation (γ) of Theorem 2.1 holds in C; hence

$$(((a*x) \land (a*y)) \lor e) * ((a*y) \lor e) = (((x*a) \land (x*y)) \lor e) * ((x*y) \lor e)$$

$$\implies e = (((x*a) \land (x*y)) \lor e) * ((x*y) \lor e)$$

$$\implies (x*y) \lor e \le ((x*a) \land (x*y)) \lor e$$

$$\le (x*y) \lor e$$
(B)

$$\implies$$
 $(x * y) \lor e = ((x * a) \land (x * y)) \lor e$

Now x * a = x * (x : b) = e : b = b * e and also, x * a = x * (y : b) = (x * y) : b. Hence

$$((x*a) \land (x*y)) \lor e = [(x*a) : (((x*y) * (x*a)) \lor e)] \lor e$$

$$= [(b*e) : (((x*y) * ((x*y) : b)) \lor e)] \lor e$$

$$= [(b*e) : ((e:b) \lor e)] \lor e$$

$$= [(b*e) : ((b*e) \lor e)] \lor e = e$$

since $b * e \le (b * e) \lor e$ and hence $(b * e) : ((b * e) \lor e) \le e$. Hence $(x * y) \lor e = e$ by (B) and hence $x * y \le e$. By symmetry, $y * x \le e$ and hence x = y.

By means of this Lemma 2.3, we can define a partial "multiplicative structure" on C with domain

$$D = \{(a,b) \in C \times C \mid a * x = b \text{ and } x : b = a \text{ for some } x \in C\}.$$

For $a, b \in D$, we define ab to be the unique solution of the pair of equations a * x = b and x : b = a.

Suppose now that $(C; \leq, *, :, \cdot, e)$ is a BCK-monoid, $a, b \in C$ and there exists a unique $x \in C$ such that a * x = b and x : b = a. Then $x \leq ab$ and hence by [10, Lemma 1.11] $b = a * x \leq a * ab$ [10, Lemma 2.4] $\leq b$ and hence a * x = a * ab = b; and dually, x : b = ab : b = a. Hence x = ab.

Consequently, if $(C; \leq, *, :, \cdot, e)$ is a BCK-monoid such that its reduct $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra satisfying RRCP and RLCP, then by Lemma 2.3, the equations a*x=b and x:b=a have a unique common solution if one exists at all and hence if $(a,b) \in D$, then the partial product defined above must be the "total" product ab.

Lemma 2.4. The following are equivalent in every commutative extended BCK-algebra enjoying RRCP and RLCP:

- $(\alpha) x = ab.$
- (β) a * x = b and x : b = a.

Since $(a:(a \wedge b)) * a = a \wedge b$ and $a:(a \wedge b) = a:(a \wedge b)$ we have, by Lemma 2.4, the equation $a=(a:(a \wedge b))(a \wedge b)$. Similarly, we get the dual equation $a=(a \wedge b)((a \wedge b) * a)$. Thus we have

Lemma 2.5. Under the hypothesis of Lemma 2.4, we have the equations

$$(a \wedge b)((a \wedge b) * a) = a = (a : (a \wedge b))(a \wedge b).$$

Taking a = b in the above, we get a = a(a * a) = ae and a = (a : a)a = ea. Hence ae = ea = a for all $a \in C$.

Lemma 2.6. Under the hypothesis of Lemma 2.4,

- (1) if ab and ac exist, then $a(b \wedge c)$ exists and $a(b \wedge c) = (ab) \wedge (ac)$;
- (2) if ba and ca exist, then $(b \land c)a$ exists and $(b \land c)a = (ba) \land (ca)$.

Proof. Assume ab and ac exist; then $a*((ab)\land(ac))=(a*ab)\land(a*ac)=b\land c$. Also, by Lemma 1.3,

$$(ab \wedge ac) : (b \wedge c) = ((ab \wedge ac) : b) \vee ((ab \wedge ac) : c)$$
 (by Theorem 2.2)
=
$$((ab : b) \wedge (ac : b)) \vee ((ab : c) \wedge (ac : c))$$

=
$$(a \wedge (ac : b)) \vee ((ab : c) \wedge a)$$

$$\leq a \vee a = a$$

N. V. SUBRAHMANYAM

On the other hand, $(ab \land ac) : (b \land c)$ (by Theorem 2.2) = $(ab : (b \land c)) \land (ac : (b \land c))$ = (by Lemma 1.3) $((ab : b) \lor (ab : c)) \land ((ac : b) \lor (ac : c)) = (a \lor (ab : c)) \land ((ac : b) \lor a) \ge a$. Hence $(ab \land ac) : (b \land c) = a$; and hence by Lemma 2.4, $a(b \land c) = (ab) \land (ac)$. The second part is similarly proved.

COROLLARY 2.7. If ab and ac exist, then $ab \le ac \iff b \le c$; and if ba, ca exist, then $ba \le ca \iff b \le c$.

Proof. By Lemma 2.6, $b \le c \implies ab \land ac = a(b \land c) = ab$ and so $ab \le ac$. Conversely, if $ab \le ac$, then $b = a * ab \le a * ac = c$. The second part is dual.

Now let $(C; \leq, *, :, e)$ be as above and assume $a, b \in C$ and ab exists; then, by Lemma 1.2(viii), $c \leq ab$ implies $a*c \leq a*ab = b$ and also implies $c: b \leq ab: b = a$. If further, C is integral, then C is a cone algebra and hence $ab \in C$ and $a*c \leq b \Longrightarrow e = b*(a*c) = (a*ab)*(a*c) = (ab*a)*(ab*c) = e*(ab*c) = ab*c \Longrightarrow c \leq ab$. Hence in a cone algebra $c \leq ab \iff a*c \leq b$ whenever ab is defined. However, if $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra enjoying both RRCP and RLCP, it is an open question whether $ab \in C$ and $a*c \leq b \Longrightarrow c \leq ab$. We now assume further this happens and introduce the following definition.

DEFINITION 2.8. A commutative extended BCK-algebra $(C; \leq, *, :, e)$ having RRCP and RLCP is called an *extended cone algebra* if and only if, for $a, b, c \in C$,

(K) ab exists and $a * c \le b \Longrightarrow c \le ab$.

By Lemma 1.2(v), the condition (K) is equivalent to:

ab exists and $c:b \le a \Longrightarrow c \le ab$.

Hence in an extended cone algebra $(C; \leq, *, :, e)$, for $ab \in C$,

$$c \le ab \iff a * c \le b \iff c : b \le a$$
.

We now assume that $(C; \leq, *, :, e)$ is an extended cone algebra and $a, b, \ldots \in C$.

Lemma 2.9. If $ab \in C$ and $c \in C$, then ab * c = b * (a * c) and c : ab = (c : b) : a.

Proof. $ab * c \le u \iff ab * (c : u) \le e \iff c : u \le ab \iff a * (c : u) \le b \iff (a * c) : u \le b \iff b * (a * c) \le u$. Hence (ab) * c = b * (a * c); and the other equation follows similarly.

Lemma 2.10. ab and (ab)c exist if and only if bc and a(bc) exist; and in such a case, (ab)c = a(bc).

Proof. Assume x = ab and y = (ab)c exist; then a * x = b, x : b = a, x * y = c and y : c = x. Now (a * y) : c = a * (y : c) = a * x = b and b * (a * y) = (ab) * y (Lemma 2.9) = x * y = c. Hence bc exists and a * y = bc. Also y : (bc) = (y : c) : b = x : b = a (Lemma 2.9) and hence y = a(bc). Hence (ab)c = a(bc); the converse follows similarly.

We recall that a BCK-monoid $(C; \leq, *, :, \cdot, e)$ is called a Wajsberg monoid [10, Definition 5.1] (or simply, a W-monoid) if and only if, for all $a, b \in C$,

$$a \le b \Longrightarrow b : (a * b) = a = (b : a) * b.$$

By [10, Remark 5.4] and [5, Definition 2.3(ii), Lemma 2.4], a W-monoid $(C; \leq, *, :, \cdot, e)$, where $(C; \leq)$ is a lattice, is the dual of a GMV-algebra of Galatos and Tsinakis. Hence a GMV-algebra is equivalent to the dual of a residuated lattice satisfying the equations (α) in Theorem 1.6. It now follows that if $(C; \leq, *, :, \cdot, e)$ is a W-monoid which is a lattice, then its reduct $(C; \leq, *, :, e)$ is an extended cone algebra. Conversely, assume that $(C; \leq, *, :, \cdot, e)$ is a BCK-monoid and its reduct $(C; \leq, *, :, e)$ is a commutative extended BCK-algebra. Then by Definition 1.7 and Theorem 1.6 (β) , $(C; \leq, *, :, \cdot, e)$ is a W-monoid in which $a \lor e$ exists for all $a \in C$. Hence by [10, Theorem 5.5], $(C; \leq)$ is a lattice. Hence, in particular, if $(C; \leq, *, :, \cdot, e)$ is a W-monoid and its reduct $(C; \leq, *, :, e)$ is an extended cone algebra, then $(C; \leq)$ is necessarily a lattice.

Also, every cone algebra is an (integral) extended cone algebra and an extended cone algebra which is *not* a cone algebra is given in the following example.

Example 2.11. Let $(G; \leq, \cdot, e)$ be an ℓ -group; then $(G; \leq, *, :, e)$, where $a * b = a^{-1}b$ and $a : b = ab^{-1}$ is an extended cone algebra but *not* a cone algebra.

3. Decomposition theorem for an extended cone algebra

Let $(C; \leq, *, :, e)$ be an extended cone algebra and $a, b, c, \ldots \in C$.

LEMMA 3.1. If ac exists and $b \le c$, then ab exists; and if ca exists and $b \le c$, then ba exists.

Proof. By Lemma 2.5, b(b*c) = c = (c:b)b since $b \le c$. Hence if ac exists, then ac = a(b(b*c)) = (ab)(b*c) by Lemma 2.10 and so ab exists. The other assertion is proved similarly.

An element $a \in C$ is said to be *invertible* if and only if there exists $b \in C$ such that ab = ba = e.

Lemma 3.2. $a \in C$ is invertible if and only if a(a * e) = (a * e)a = e.

Proof. Assume a is invertible, then there exists $b \in C$ such that ab = ba = e. Hence by the definition of product ab, we have a * e = b and b * e = e : b = a. Hence a(a * e) = ab = e and (a * e)a = ba = e; the converse is trivial.

By Lemma 3.2, the inverse a^{-1} of an invertible element a equals a * e = e : a.

N. V. SUBRAHMANYAM

Lemma 3.3. If a is invertible, then ax and xa exist for all $x \in C$.
Proof. If $ab = ba = e$, then $x(ab) = xe = x = ex = (ba)x$. Hence xa and ax exist by Lemma 2.10.
Lemma 3.4. If $a \in C$, then $a \wedge e$ is invertible.
Proof. By Lemma 2.5 and since $e: x = x * e$ for all $x \in C$, we have $(a \wedge e)((a \wedge e) * e) = e = (e: (a \wedge e))(a \wedge e) = ((a \wedge e) * e)(a \wedge e)$. Hence $a \wedge e$ is invertible.
COROLLARY 3.5. If $a \le e$, then a is invertible.
Lemma 3.6. If a and b are invertible, then so is ab. (Observe that by Lemma 3.3, ab exists).
Proof. Routine.
Lemma 3.7. If $a \le b$ and b is invertible, then a is invertible.
Proof. Since b is invertible, there exists $c \in C$ such that $bc = cb = e$. By Corollary 2.7, $ac \le bc = e$ (Observe that ac exists by Lemma 3.3); and hence ac is invertible. Hence $a = a(cb) = (ac)b$ is invertible by Lemma 3.6.
COROLLARY 3.8. If $a \in C$, then $a * e$ is invertible.
Proof. $a * e \le (a \land e) * e$, which is invertible since $(a \land e) * e$ is the inverse of $a \land e$. Hence $a * e$ is invertible by Lemma 3.7.
Lemma 3.9. If a is invertible, then $a * x = a^{-1}x$ and $x : a = xa^{-1}$.
Proof. If $u \in C$, then au is defined by Lemma 3.3. Hence $a * x \le u \iff x \le au \iff a^{-1}x \le a^{-1}(au) = (a^{-1}a)u = u$. Hence $a * x = a^{-1}x$; and similarly $x : a = xa^{-1}$.
We denote by J the set of all invertible elements of C ; then J is a subalgebra of C by Lemma 3.9 and we have
Lemma 3.10. $(J; \leq, \cdot, e)$ is an ℓ -group.
Proof. By Lemma 3.3, the product function "·" restricted to $J \times J$ is total. Hence ab is defined for $a, b \in J$. By Lemma 3.6, J is stable under · and by Lemma 2.10, $(J; \cdot, e)$ is a semigroup which is a group under routine verification. By Corollary 2.7, $(J; \cdot, e)$ is a pogroup and is an ℓ -group since $a \wedge e$ exists for

all $a \in J$.

Lemma 3.11. If $a \lor b$ exists in C, then

$$a \lor b = a((a * b) \lor e) = ((a : b) * e)b.$$

Proof. $a*(a \lor b) = (a*b) \lor e$ (Lemma 1.9) and $(a \lor b) : ((a*b) \lor e) = (a \lor b) : (a*(a \lor b)) = a$ since $a \le a \lor b$. Hence $a \lor b = a((a*b) \lor e)$ and similarly, $a \lor b = ((a:b) \lor e)b$.

Lemma 3.12. If $a \wedge b = e$ and $a \vee b$ exists, then $a \vee b = ab = ba$.

Proof. We have $b = e * b = (a \wedge b) * b = (a * b) \vee e$ and hence $a \vee b = a((a * b) \vee e)$ (Lemma 3.11) = ab = ba by symmetry.

Lemma 3.13. If u is invertible and g is integral, then gu = ug.

Proof. First assume that $e \le u$; then $g \wedge u \le u$ and hence is invertible by Lemma 3.7. Also, $e: (g \wedge u) = (g \wedge u) * e = (g * e) \vee (u * e) = e \vee (u * e) = e$ since $u * e \le e$. Since $(g \wedge u) * e$ is inverse of $g \wedge u$, we have $g \wedge u = e$.

Now $e \le u$ and $e \le g$ and hence $g \le gu$ and $u \le gu$ so that $g \lor u$ exists. Hence by Lemma 3.12, $gu = ug = g \lor u$.

If $u \le e$, then $e \le u^{-1}$ and so by the above $gu^{-1} = u^{-1}g$ and hence gu = ug. Now assume that u is an arbitrary invertible element; then by Lemma 2.5,

$$u = (u \wedge e)((u \wedge e) * u) = (u \wedge e)(u \vee e).$$

Hence $u \vee e = (u \wedge e)^{-1}u$ which is invertible by Lemma 3.6. Since $u \wedge e \leq e$ and $e \leq u \vee e$, g commutes with each of $u \wedge e$ and $u \vee e$ by the above and so commutes with their product u. Hence gu = ug.

Lemma 3.14. $a(a * e) = (a * e)a \text{ for all } a \in C.$

Proof. By Corollary 3.8, a * e is invertible and since e : (a(a * e)) = (a(a * e)) * e= (a * e) * (a * e) = e, a(a * e) is integral. Hence by Lemma 3.13, (a * e)a(a * e) =a(a * e)(a * e); and this implies a(a * e) = (a * e)a since a * e is invertible.

Lemma 3.15. If $a \in C$, there exists a unique pair u, g where u is invertible, g is integral and a = ug = gu.

Proof. Let $a \in C$ and write $u = (a * e)^{-1}$ and g = a(a * e) = (a * e)a. Then u is invertible and g is integral; and a = ug = gu. Conversely, assume a = ug = gu where u is invertible and g is integral. Then $a * e = (gu) * e = u * (g * e) = u * e = u^{-1}$ and hence $u = (a * e)^{-1}$ and hence $g = u^{-1}a = au^{-1}$ which gives g = (a * e)a = a(a * e).

We now prove the following theorem:

Theorem 3.16. Every extended cone algebra is the direct product of the ℓ -group of its invertible elements and the cone algebra of its integral elements.

Remark 3.17. [5] contains a similar theorem saying that every GMV-algebra is a direct product of an ℓ -group and an integral GMV-algebra.

Proof of Theorem 3.16. Let $a_1, a_2 \in C$ and write $a_1 = u_1g_1$ and $a_2 = u_2g_2$ (as in Lemma 3.15), where u_1, u_2 are invertible and g_1, g_2 are integral. We now prove

- (1) a_1a_2 exists if and only if g_1g_2 exists and in such a case $a_1a_2 = (u_1u_2)(g_1g_2)$,
- (2) $a_1 \le a_2$ if and only if $u_1 \le u_2$ and $g_1 \le g_2$,
- (3) $a_1 * a_2 = (u_1 * u_2)(g_1 * g_2),$
- (4) $a_1: a_2 = (u_1: u_2)(g_1: g_2),$
- (5) $a_1 \wedge a_2 = (u_1 \wedge u_2)(g_1 \wedge g_2)$, and
- (6) $a_1 \vee a_2$ exists if and only if $g_1 \vee g_2$ exists and in such a case $a_1 \vee a_2 = (u_1 \vee u_2)(g_1 \vee g_2)$.
- (1) Assume a_1a_2 exists; then $a_1a_2 = (u_1g_1)(u_2g_2) = ((u_1g_1)u_2)g_2 = (u_1(g_1u_2))g_2$ = $(u_1(u_2g_1))g_2 = ((u_1u_2)g_1)g_2 = (u_1u_2)(g_1g_2)$ (by Lemmas 2.10 and 3.13) and hence g_1g_2 exists (by Lemma 2.10). Conversely if g_1g_2 exists, then $(u_1u_2)(g_1g_2)$ exists by Lemma 3.3 and equals $(u_1g_1)(u_2g_2)$ (by Lemmas 2.10 and 3.13 as above) = a_1a_2 .
- (2) $a_1 \leq a_2 \Longrightarrow u_1 g_1 \leq u_2 g_2 \Longrightarrow g_1 \leq u_1^{-1}(u_2 g_2) = (u_1^{-1}u_2)g_2 \Longrightarrow g_1 : g_2 \leq u_1^{-1}u_2$. Hence $g_1 : g_2$ is invertible since $u_1^{-1}u_2$ is invertible (Lemma 3.7). But $g_1 : g_2$ is also integral since g_1 and g_2 are integral. Hence $(g_1 : g_2) * e = e$ and so $g_1 : g_2 = e$ since $(g_1 : g_2) * e$ is the inverse of $g_1 : g_2$. Hence $g_1 \leq g_2$ and $e \leq u_1^{-1}u_2$ and so $u_1 \leq u_2$. Thus $a_1 \leq a_2 \Longrightarrow u_1 \leq u_2$ and $g_1 \leq g_2$. The reverse implication is obvious.
- (3) $a_1 * a_2 = (u_1 g_1) * a_2 = g_1 * (u_1 * a_2)$ (Lemma 2.9) = $g_1 * (u_1^{-1} a_2)$ (Lemma 3.9) = $g_1 * ((u_1^{-1} u_2) g_2) = g_1 * ((u_1^{-1} u_2)^{-1} * g_2)$ (Lemma 3.9) = $((u_2^{-1} u_1) g_1) * g_2$ (Lemma 2.9) = $(g_1 (u_2^{-1} u_1)) * g_2$ (Lemma 3.13) = $(u_2^{-1} u_1) * (g_1 * g_2) = (u_1^{-1} u_2)$ ($g_1 * g_2$) (Lemma 3.9) = $(u_1 * u_2) (g_1 * g_2)$ (Lemma 3.9).
- (4) Similar to (3).
- (5) Follows from (1) and (2) or (3).
- (6) By (1) and (2), $a_1 \vee a_2$ exists if and only if $u_1 \vee u_2$ and $g_1 \vee g_2$ both exist. However, $u_1 \vee u_2$ always exists by Lemma 3.10, hence (6).

COROLLARY 3.18. Let $(C; \leq, *, :, e)$ be an extended cone algebra satisfying the following condition:

 $(\mathrm{AC}) \quad \textit{given } a,b \in C, \textit{ there exists } x \in C \textit{ such that } a \star x = b \textit{ and } x : b = a.$

Then C is isomorphic to the direct product of an ℓ -group and the cone algebra of an ℓ -group cone.

Proof. By the above theorem, the integral part of C is a cone algebra satisfying the condition (AC). Hence by the statement [2, 1.20], the integral part of C is the cone algebra of an ℓ -group cone. (Observe that if a * x = b and C is a cone algebra then $x : b = a \iff x \wedge a = a \iff a \le x \iff x * a = e$.)

Remark 3.19. If $(C; \leq, *, :, e)$ is an extended cone algebra, then $(C; \leq)$ is a meet semilattice and by Lemmas 2.5, 2.10 and 3.12 and Corollary 2.7, C has the structure of a Bosbach's semiclan [1]. Whether every semiclan is an extended cone algebra is an open question.

Remark 3.20. Let C be a semiintegral extended BCK-algebra with greatest element u; then if $a \in C$, we have $a * e = a * (u : u) = (a * u) : u \le e$ since $a * u \le u$. Hence $e \le a$ for all $a \in C$ and so by Theorem [10, 1.14], C is integral. Hence if $(C; \le, *, :, e)$ is a commutative extended BCK-algebra bounded above, then C is a commutative pseudo BCK-algebra bounded above and hence, by Theorem 1.11, is a distributive lattice. Further, by Corollary [10, 5.8], C is a bounded precone algebra and hence is a brick ([2, 12]) and hence is equivalent to a pseudo MV-algebra ([11]). See Theorem [6, 3.14].

REFERENCES

- [1] BOSBACH, B.: Concerning semiclans, Arch. Math. (Basel) 37 (1981), 316–324.
- [2] BOSBACH, B.: Concerning cone algebras, Algebra Universalis 15 (1982), 58–66.
- [3] DVUREČENSKIJ, A.—GRAZIANO, M. G.: On representations of commutative BCK-algebras, Demonstratio Math. 32 (1999), 227–246.
- [4] DVUREČENSKIJ, A.—VETTERLEIN, T.: Algebras in the positive cone of po-groups, Order 19 (2002), 127–146.
- [5] GALATOS, N.—TSINAKIS, C.: Generalized MV-algebras, J. Algebra 283 (2005), 254–291.
- [6] GEORGESCU, G.—IORGULESCU, A.: Pseudo-BCK algebras: an extension of BCK algebras. In: Combinatorics, computability and logic (Constanţa, 2001). Springer Ser. Discrete Math. Theoret. Comput. Sci., Springer, London, 2001, pp. 97–114.
- [7] IMAI, Y.—ISÉKI, K.: On axiom systems of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19–22.
- [8] ISÉKI, K.—TANAKA, S.: An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), 1–26.
- [9] KÜHR, J.: Commutative pseudo BCK-algebras, Southeast Asian Bull. Math. 33 (2009), 451–475.
- [10] SUBRAHMANYAM, N. V.: BCK-monoids, Math. Slovaca 60 (2010), 137–156.
- [11] SUBRAHMANYAM, N. V.: Bricks and pseudo MV-algebras are equivalent, Math. Slovaca 58 (2008), 131–142.

N. V. SUBRAHMANYAM

[12] SUBRAHMANYAM, N. V.: Deductive systems of a cone algebra – I: Semi-lg-cones, Math. Slovaca **58** (2008), 653–670.

Received 10. 1. 2009 Accepted 27. 8. 2009 C/o Dr. K. V. Krishna Department of Mathematics Indian Institute of Technology Guwahati Guwahati – 781 039 INDIA

E-mail: nvs.math@gmail.com