

DOI: 10.2478/s12175-011-0001-x Math. Slovaca **61** (2011), No. 2, 127–154

LOCAL PSEUDO-BCK ALGEBRAS WITH PSEUDO-PRODUCT

Lavinia Corina Ciungu

(Communicated by Anatolij Dvurečenskij)

ABSTRACT. Pseudo-BCK algebras were introduced by G. Georgescu and A. Iorgulescu as a generalization of BCK algebras in order to give a corresponding structure to pseudo-MV algebras, since the bounded commutative BCK algebras correspond to MV algebras. Properties of pseudo-BCK algebras and their connections with other fuzzy structures were established by A. Iorgulescu and J. Kühr. The aim of this paper is to define and study the local pseudo-BCK algebras with pseudo-product. We will also introduce the notion of perfect pseudo-BCK algebras with pseudo-product and we will study their properties. We define the radical of a bounded pseudo-BCK algebra with pseudo-product and we prove that it is a normal deductive system. Another result consists of proving that every strongly simple pseudo-hoop is a local bounded pseudo-BCK algebra with pseudo-product.

©2011 Mathematical Institute Slovak Academy of Sciences

1. Introduction

Pseudo-BCK algebras were introduced in [11] by G. Georgescu and A. Iorgulescu as a generalization of BCK algebras in order to give a corresponding structure to pseudo-MV algebras, since the bounded commutative BCK algebras correspond to MV algebras. Properties of pseudo-BCK algebras and their connections with others fuzzy structures were established by A. Iorgulescu in [15], [16], [17], [18]. The pseudo-product property (pP for short) proved to be very important to establish connections of pseudo-BCK algebras with other fuzzy structures. It was proved in [17] that the pseudo-BCK(pP) algebras are categorically equivalent with the partially ordered residuated integral monoids (porims) and it was proved in [15] that the pseudo-BCK(pP) lattices

2010 Mathematics Subject Classification: Primary 03G25, 06F05, 06F35.

Keywords: pseudo-BCK algebra, deductive system, local pseudo-BCK(pP) algebra, good pseudo-BCK(pP) algebra, maximal deductive system, normal deductive system, primary deductive system, perfect pseudo-BCK(pP) algebra, radical.

are termwise equivalent with the residuated lattices which generalize other structures such as pseudo-MTL algebras, bounded divisible non-commutative algebras ($R\ell$ -monoids), pseudo-BL algebras and pseudo-MV algebras. Pseudo-Iséki algebras were introduced in [18] and it was proved that they are categorically equivalent with the pseudo-BL algebras. J. Kühr proved in [20] that every pseudo-BCK algebra is a subreduct of a residuated lattice. Deductive systems of a pseudo-BCK algebra were introduced and studied in [14].

Local MV-algebras were studied in [1], local BL-algebras were studied in [25], while local bounded commutative $R\ell$ -monoids were investigated in [24]. For the case of non-commutative structures, local pseudo-MV algebras were presented in [22], local pseudo-BL algebras in [12], local pseudo-MTL algebras in [6] and local residuated lattices in [5]. Recently, properties of local bounded non-commutative R ℓ -monoids were investigated in [23]. In this paper we study new properties of the deductive systems of a pseudo-BCK(pP) algebra and we define and study the primary and the perfect deductive systems of a bounded pseudo-BCK(pP) algebra. We define and study the local pseudo-BCK algebras with pseudo-product. We will also introduce the notion of perfect pseudo-BCK(pP) algebra with pseudo-product and we will study their properties. The local bounded pseudo-BCK(pP) algebras are characterized in terms of primary deductive systems, while the perfect pseudo-BCK(pP) algebras are characterized in terms of perfect deductive systems. One of the main results consists of proving that the radical of a bounded pseudo-BCK(pP) algebra is normal. We also prove that every strongly simple pseudo-hoop is a local bounded pseudo-BCK(pP) algebra. Additionally, we prove some new properties of pseudo-BCK algebras.

2. Pseudo-BCK algebras and their basic properties

DEFINITION 2.1. ([15]) A pseudo-BCK algebra (more precisely, reversed left-pseudo-BCK algebra) is a structure $\mathscr{A} = (A, \leq, \to, \leadsto, 1)$ where \leq is a binary relation on A, \to and \leadsto are binary operations on A and 1 is an element of A satisfying, for all $x, y, z \in A$, the axioms:

- $(\mathbf{A}_1) \ x \to y \leq (y \to z) \leadsto (x \to z), \ x \leadsto y \leq (y \leadsto z) \to (x \leadsto z);$
- $(A_2) \ x \le (x \to y) \leadsto y, \ x \le (x \leadsto y) \to y;$
- $(A_3) \ x \leq x;$
- $(A_4) \ x \leq 1;$
- (A₅) if $x \leq y$ and $y \leq x$, then x = y;
- (A₆) $x \le y$ iff $x \to y = 1$ iff $x \leadsto y = 1$.

Remark 2.2. ([15]) A pseudo-BCK algebra $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 1)$ is *commutative* iff $\rightarrow = \rightsquigarrow$. Any commutative pseudo-BCK algebra is a BCK algebra.

Example 2.3. Consider $A = \{o_1, a_1, b_1, c_1, o_2, a_2, b_2, c_2, 1\}$ with $o_1 < a_1, b_1 < c_1 < 1$ and a_1, b_1 incomparable, $o_2 < a_2, b_2 < c_2 < 1$ and a_2, b_2 incomparable. Assume also that any element of the set $\{o_1, a_1, b_1, c_1\}$ is incomparable with any element of the set $\{o_2, a_2, b_2, c_2\}$. Consider the operations \rightarrow , \rightsquigarrow given by the following tables:

\rightarrow	o_1	a_1	b_1	c_1	o_2	a_2	b_2	c_2	1
o_1	1	1	1	1	o_2	a_2	b_2	c_2	1
a_1	o_1	1	b_1	1	o_2	a_2	b_2	c_2	1
b_1	a_1	a_1	1	1	o_2	a_2	b_2	c_2	1
c_1	o_1	a_1	b_1	1	o_2	a_2	b_2	c_2	1
o_2	o_1	a_1	b_1	c_1	1	1	1	1	1
a_2	o_1	a_1	b_1	c_1	o_2	1	b_2	1	1
b_2	o_1	a_1	b_1	c_1	c_2	c_2	1	1	1
c_2	o_1	a_1	b_1	c_1	o_2	c_2	b_2	1	1
1	o_1	$ \begin{array}{c} a_1 \\ 1 \\ a_1 \end{array} $	b_1	c_1	o_2	a_2	b_2	c_2	1

~ →	o_1	a_1	b_1	c_1	o_2	a_2	b_2	c_2	1
o_1	1	1	1	1	o_2	a_2	b_2	c_2	1
a_1	b_1	1	b_1	1	o_2	a_2	b_2	c_2	1
b_1	o_1	$1 \\ a_1 \\ a_1$	1	1	o_2	a_2	b_2	c_2	1
c_1	o_1	a_1	b_1	1	o_2	a_2	b_2	c_2	1
o_2	o_1	a_1	b_1	c_1	1	1	1	1	1
a_2	o_1	a_1	b_1	c_1	b_2	1	b_2	1	1
b_2	o_1	a_1	b_1	c_1	b_2	c_2	1	1	1
c_2	o_1	a_1	b_1	c_1	b_2	c_2	b_2	1	1
1	o_1	a_1	b_1	c_1	o_2	a_2	b_2	c_2	1

Then $\mathscr{A}=(A,\leq,\rightarrow,\rightsquigarrow,1)$ is a proper pseudo-BCK algebra.

PROPOSITION 2.4. ([17], [18]) In any pseudo-BCK algebra the following properties hold:

- (c₁) $x \le y$ implies $y \to z \le x \to z$ and $y \leadsto z \le x \leadsto z$;
- (c₂) $x \le y, y \le z$ implies $x \le z$;
- (c_3) $x \to (y \leadsto z) = y \leadsto (x \to z);$
- (c₄) $z \le y \to x$ iff $y \le z \leadsto x$;

$$(c_5)$$
 $z \to x \le (y \to z) \to (y \to x)$ and $z \leadsto x \le (y \leadsto z) \leadsto (y \leadsto x)$;

(c₆)
$$x \le y \to x, x \le y \leadsto x$$
;

(c₇)
$$1 \rightarrow x = x = 1 \rightsquigarrow x$$
;

(c₈)
$$x \le y$$
 implies $z \to x \le z \to y$ and $z \leadsto x \le z \leadsto y$;

$$(c_9)$$
 $[(y \to x) \leadsto x] \to x = y \to x$, $[(y \leadsto x) \to x] \leadsto x = y \leadsto x$.

DEFINITION 2.5. ([15]) If there is an element 0 of a pseudo-BCK algebra $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 1)$ such that $0 \leq x$ (i.e. $0 \rightarrow x = 0 \rightsquigarrow x = 1$), for all $x \in A$, then 0 is called the *zero* of \mathscr{A} . A pseudo-BCK algebra with zero is called *bounded pseudo-BCK algebra* and it is denoted by $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$.

We note that \leq is a partial order on A, thus A is bounded if it has least element with respect to \leq .

Example 2.6. Consider $A = \{0, a, b, c, 1\}$ with 0 < a, b < c < 1 and a, b incomparable. Consider the operations \rightarrow , \rightsquigarrow given by the following tables:

\rightarrow	0	a	b	c	1		~→	0	a	b	c	1
0	1	1	1	1	1	_	0	1	1	1	1	1
a	0	1	b	1	1		a	b	1	b	1	1
b	a	a	1	1	1				a			
		a							a			
1	0	a	b	c	1		1	0	a	b	c	1

Then $\mathcal{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ is a bounded pseudo-BCK algebra.

DEFINITION 2.7. ([15]) A pseudo-BCK algebra with (pP) condition (i.e. with pseudo-product condition) or a pseudo-BCK(pP) algebra for short, is a pseudo-BCK algebra $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 1)$ satisfying (pP) condition:

(pP)
$$(\forall x, y \in A)(\exists w \in A)(w = x \odot y := \min\{z : x \le y \to z\}$$

= $\min\{z : y \le x \leadsto z\}$).

If A is a pseudo-BCK(pP) algebra, then for any $n \in \mathbb{N}$, $x \in A$ we put $x^0 = 1$ and $x^{n+1} = x^n \odot x = x \odot x^n$. If A is bounded, the *order* of $x \in A$, denoted $\operatorname{ord}(x)$ is the smallest $n \in \mathbb{N}$ such that $x^n = 0$. If there is no such n, then $\operatorname{ord}(x) = \infty$.

Definition 2.8. ([15])

- (1) Let $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK algebra. If the poset (A, \leq) is a lattice, then we say that \mathscr{A} is a pseudo-BCK lattice.
- (2) Let $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK(pP) algebra. If the poset (A, \leq) is a lattice, then we say that \mathscr{A} is a pseudo-BCK(pP) lattice.

A pseudo-BCK(pP) lattice $\mathcal{A} = (A, \leq, \rightarrow, \rightsquigarrow, 1)$ will be denoted by

$$\mathscr{A} = (A, \vee, \wedge, \rightarrow, \rightsquigarrow, 1).$$

Remarks 2.9.

- (1) ([17]) Pseudo-BCK(pP) algebras are categorically isomorphic with *left-porims* (partially ordered, residuated, integral left-monoids).
- (2) ([15]) (Bounded) pseudo-BCK(pP) lattices are categorically isomorphic with (bounded) integral residuated lattices.

Example 2.10.

- (1) If $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ is the bounded pseudo-BCK lattice from Example 2.6, then $\min\{z: b \leq a \rightarrow z\} = \min\{a, b, c, 1\}$ and $\min\{z: a \leq b \rightsquigarrow z\} = \min\{a, b, c, 1\}$ do not exist. Thus, $b \odot a$ does not exist, so \mathscr{A} is not a pseudo-BCK(pP) algebra. Moreover, since (A, \leq) is a lattice, it follows that \mathscr{A} is a pseudo-BCK lattice.
- (2) If $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ is a reduct of a residuated lattice, then it is obvious that \mathscr{A} is a bounded pseudo-BCK(pP) algebra.

Example 2.11. ([16]) Take $A = \{0, a_1, a_2, s, a, b, n, c, d, m, 1\}$ with $0 < a_1 < a_2 < s < a, b < n < c, d < m < 1$ (a is incomparable with b and c is incomparable with d). Consider the operations \rightarrow , \rightsquigarrow given by the following tables:

\rightarrow	0	a_1	a_2	s	a	b	n	c	d	m	1
0	1	1	1	1	1	1	1	1	1	1	1
a_1	a_1	1	1	1	1	1	1	1	1	1	1
a_2	a_1	a_1	1	1	1	1	1	1	1	1	1
s	0	a_1	a_2	1	1	1	1	1	1	1	1
a	0	a_1	a_2	m	1	m	1	1	1	1	1
b	0	a_1	a_2	m	m	1	1	1	1	1	1
n	0	a_1	a_2	m	m	m	1	1	1	1	1
c	0	a_1	a_2	m	m	m	m	1	m	1	1
d	0	a_1	a_2	m	m	m	m	m	1	1	1
m	0	a_1	a_2	m	m	m	m	m	m	1	1
1	0	a_1	a_2	s	a	b	n	c	d	m	1

~ →	0	a_1	a_2	s	a	b	n	c	d	m	1
0	1	1	1	1	1	1	1	1	1	1	1
a_1	a_2	1	1	1	1	1	1	1	1	1	1
a_2	0	a_1	1	1	1	1	1	1	1	1	1
s	0	a_1	a_2	1	1	1	1	1	1	1	1
a	0	a_1	a_2	m	1	m	1	1	1	1	1
b	0	a_1	a_2	m	m	1	1	1	1	1	1
n	0	a_1	a_2	m	m	m	1	1	1	1	1
c	0	a_1	a_2	m	m	m	m	1	m	1	1
d	0	a_1	a_2	m	m	m	m	m	1	1	1
m	0	a_1	a_2	m	m	m	m	m	m	1	1
1	0	a_1	a_2	s	a	b	n	c	d	m	1

Then $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ is a bounded pseudo-BCK(pP) algebra. The operation \odot is given by the following table:

\odot	0	a_1	a_2	s	a	b	n	c	d	m	1
0	0	0	0	0	0	0	0	0	0	0	0
a_1	0	0	0	a_1							
a_2	0	a_1	a_2								
s	0	a_1	a_2	s	s	s	s	s	s	s	s
a	0	a_1	a_2	s	s	s	s	s	s	s	a
b	0	a_1	a_2	s	s	s	s	s	s	s	b
n	0	a_1	a_2	s	s	s	s	s	s	s	n
c	0	a_1	a_2	s	s	s	s	s	s	s	c
d	0	a_1	a_2	s	s	s	s	s	s	s	d
m	0	a_1	a_2	s	s	s	s	s	s	s	m
1	0	a_1	a_2	s	a	b	n	c	d	m	1

PROPOSITION 2.12. ([18]) In any pseudo-BCK(pP) algebra the following properties hold:

```
(c<sub>10</sub>) x \odot y \leq x, y;
```

$$(c_{11})$$
 $(x \to y) \odot x \le x, y, x \odot (x \leadsto y) \le x, y;$

$$(c_{12}) \ y \le x \to (y \odot x), \ y \le x \leadsto (x \odot y);$$

$$(c_{13}) \ x \to y \le (x \odot z) \to (y \odot z), \ x \leadsto y \le (z \odot x) \leadsto (z \odot y);$$

$$(c_{14}) \ x \odot (y \rightarrow z) \leq y \rightarrow (x \odot z), \ (y \leadsto z) \odot x \leq y \leadsto (z \odot x);$$

$$(c_{15})$$
 $(y \to z) \odot (x \to y) \le x \to z$, $(x \leadsto y) \odot (y \leadsto z) \le x \leadsto z$;

$$(c_{16})$$
 $x \to (y \to z) = (x \odot y) \to z, x \leadsto (y \leadsto z) = (y \odot x) \leadsto z;$

$$(c_{17})$$
 $(x \odot z) \rightarrow (y \odot z) \leq x \rightarrow (z \rightarrow y), (z \odot x) \rightsquigarrow (z \odot y) \leq x \rightsquigarrow (z \rightsquigarrow y);$

(c₁₈)
$$x \to y \le (x \odot z) \to (y \odot z) \le x \to (z \to y),$$

 $x \leadsto y \le (z \odot x) \leadsto (z \odot y) \le x \leadsto (z \leadsto y);$

(c₁₉)
$$x \leq y$$
 implies $x \odot z \leq y \odot z$ and $z \odot x \leq z \odot y$.

Let $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ be a bounded pseudo-BCK algebra. We define two negations $\bar{}$ and $\bar{}$ ([18]): for all $x \in A$,

$$x^- = x \to 0, \qquad x^\sim = x \leadsto 0.$$

PROPOSITION 2.13. ([18]) In a bounded pseudo-BCK algebra the following hold:

$$(c_{20}) 1^- = 0 = 1^{\sim}, 0^- = 1 = 0^{\sim};$$

$$(c_{21}) \ x \le (x^{-})^{\sim}, \ x \le (x^{\sim})^{-};$$

$$(c_{22}) \ x \to y \le y^- \leadsto x^-, \ x \leadsto y \le y^\sim \to x^\sim;$$

(c₂₃)
$$x \le y$$
 implies $y^- \le x^-$ and $y^\sim \le x^\sim$;

$$(c_{24}) x \rightarrow y^{\sim} = y \rightsquigarrow x^{-};$$

$$(c_{25}) ((x^{-})^{\sim})^{-} = x^{-}, ((x^{\sim})^{-})^{\sim} = x^{\sim}.$$

Proposition 2.14. In a bounded pseudo-BCK algebra the following hold:

(c₂₆)
$$x \to y^{-} = y^{-} \leadsto x^{-} = x^{-} \to y^{-}$$
 and $x \leadsto y^{-} = y^{-} \to x^{-} = x^{-} \leadsto y^{-}$;

(c₂₇)
$$x \to y^{\sim} = y^{\sim-} \leadsto x^{-} = x^{-\sim} \to y^{\sim}$$
 and $x \leadsto y^{-} = y^{-\sim} \to x^{\sim} = x^{\sim-} \leadsto y^{-};$

$$(c_{28}) (x \to y^{\sim -})^{\sim -} = x \to y^{\sim -} \text{ and } (x \leadsto y^{\sim -})^{\sim -} = x \leadsto y^{\sim -}.$$

Proof.

$$(c_{26})$$
: By (c_{24}) we have: $y \rightsquigarrow x^{-} = x \to y^{\sim}$.

Replacing y with y^- we get: $y^- \rightsquigarrow x^- = x \to y^{-}$.

Replacing x with x^- in the last equality we get: $y^- \rightsquigarrow x^{-} = x^- \to y^-$. Hence, applying (c₂₅) it follows that: $y^- \rightsquigarrow x^- = x^- \to y^-$.

Thus,
$$x \to y^{-\sim} = y^{-} \leadsto x^{-} = x^{-\sim} \to y^{-\sim}$$
.

Similarly,
$$x \leadsto y^{\sim -} = y^{\sim} \to x^{\sim} = x^{\sim -} \leadsto y^{\sim -}$$
.

(c₂₇): The assertions follow replacing in (c₂₆), y with y^{\sim} and respectively y with y^{-} and applying (c₂₅).

 (c_{28}) : Applying (c_3) and (c_{27}) we have:

$$1 = (x \to y^{\sim -}) \leadsto (x \to y^{\sim -}) = x \to ((x \to y^{\sim -}) \leadsto y^{\sim -})$$
$$= x \to ((x \to y^{\sim -})^{\sim -} \leadsto y^{\sim -}) = (x \to y^{\sim -})^{\sim -} \leadsto (x \to y^{\sim -}).$$

Hence,
$$(x \to y^{\sim -})^{\sim -} \le x \to y^{\sim -}$$
.

On the other hand, by
$$(c_{21})$$
 we have $x \to y^{\sim -} \le (x \to y^{\sim -})^{\sim -}$, so $(x \to y^{\sim -})^{\sim -} = x \to y^{\sim -}$. Similarly, $(x \leadsto y^{\sim -})^{\sim -} = x \leadsto y^{\sim -}$.

PROPOSITION 2.15. ([15]) In a bounded pseudo-BCK(pP) algebra the following hold:

$$(c_{29}) (x_{n-1} \to x_n) \odot (x_{n-2} \to x_{n-1}) \odot \cdots \odot (x_1 \to x_2) \le x_1 \to x_n \text{ and}$$
$$(x_1 \leadsto x_2) \odot (x_2 \leadsto x_3) \odot \cdots \odot (x_{n-1} \leadsto x_n) \le x_1 \leadsto x_n;$$

$$(c_{30}) \ x \odot 0 = 0 \odot x = 0;$$

$$(c_{31}) \ x \odot 1 = 1 \odot x = x;$$

$$(c_{32}) \ x^- \odot x = 0 \ and \ x \odot x^{\sim} = 0;$$

(c₃₃)
$$x \le y^-$$
 iff $x \odot y = 0$ and $x \le y^-$ iff $y \odot x = 0$;

$$(c_{34})$$
 $x \rightarrow y^- = (x \odot y)^-$ and $x \rightsquigarrow y^\sim = (y \odot x)^\sim$;

(c₃₅)
$$x \le y^-$$
 iff $y \le x^-$;

$$(c_{36})$$
 $x \le x^{\sim} \to y$ and $x \le x^{-} \leadsto y$.

DEFINITION 2.16. ([15]) A bounded pseudo-BCK algebra $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ is with (pDN) (pseudo-Double Negation) condition if it satisfies the following condition:

(pDN)
$$(\forall x \in A)((x^{-})^{\sim} = (x^{\sim})^{-} = x).$$

PROPOSITION 2.17. ([15]) Let \mathscr{A} be a pseudo-BCK algebra with (pDN) condition. Then for all $x, y \in A$ the following hold:

$$(c_{37})$$
 $x \le y$ iff $y^- \le x^-$ iff $y^\sim \le x^\sim$;

(c₃₈)
$$x \to y = y^- \leadsto x^-, x \leadsto y = y^- \to x^-;$$

$$(c_{39}) x^{\sim} \rightarrow y = y^{-} \leadsto x;$$

$$(c_{40}) (x \to y^{-})^{\sim} = (y \leadsto x^{\sim})^{-}.$$

THEOREM 2.18. ([15]) A bounded pseudo-BCK algebra $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ with (pDN) condition is with (pP) condition, where

$$x \odot y = (x \to y^-)^{\sim} = (y \leadsto x^{\sim})^-$$

(by (c_{40})).

Definition 2.19. A bounded pseudo-BCK algebra $\mathscr A$ is called *good* if

$$(x^-)^{\sim} = (x^{\sim})^-$$
 for all $x \in A$.

Remark 2.20. It is easy to show that any bounded pseudo-BCK algebra can be extended to a good one. Indeed, consider the bounded pseudo-BCK algebra $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ and an element $0_1 \notin A$. Consider a new pseudo-BCK algebra $\mathscr{A}_1 = (A_1, \leq, \rightarrow_1, \rightsquigarrow_1, 0_1, 1)$, where $A_1 = A \cup \{0_1\}$ and the operations \rightarrow_1 and \rightsquigarrow_1 are defined as follows:

$$x \to_1 y = \begin{cases} x \to y, & \text{if } x, y \in A, \\ 1, & \text{if } x = 0_1, \ y \in A_1, \\ 0_1, & \text{if } x \in A, \ y = 0_1, \end{cases}$$

$$x \leadsto_1 y = \left\{ \begin{array}{ll} x \leadsto y, & \text{ if } x,y \in A, \\ 1, & \text{ if } x = 0_1, \ y \in A_1, \\ 0_1, & \text{ if } x \in A, \ y = 0_1. \end{array} \right.$$

One can easily check that \mathcal{A}_1 is a good pseudo-BCK algebra.

Example 2.21. Consider the pseudo-BCK lattice \mathscr{A} from Example 2.11. Since $(a_1^-)^{\sim} = a_2$ and $(a_1^{\sim})^- = a_1$, it follows that \mathscr{A} is not good. \mathscr{A} is extended to the good pseudo-BCK algebra (see [16]) $\mathscr{A}_1 = (A_1, \leq, \rightarrow, \rightsquigarrow, 0, 1)$, where $A = \{0, a_1, a_2, b_2, s, a, b, n, c, d, m, 1\}$ with $0 < a_1 < a_2 < b_2 < s < a, b < n < c, d < m < 1 (a is incomparable with b and c is incomparable with d). The operations <math>\rightarrow$ and \rightsquigarrow are constructed in the way described in Remark 2.20.

PROPOSITION 2.22. In any good pseudo-BCK(pP) algebra the following properties hold:

(1)
$$(x^{\sim} \odot y^{\sim})^{-} = (x^{-} \odot y^{-})^{\sim}$$
;

(2)
$$x^{-\sim} \odot y^{-\sim} \le (x \odot y)^{-\sim}$$
.

Proof. Applying (c_{34}) , (c_{24}) , (c_{25}) we have:

(1):
$$(x^{\sim} \odot y^{\sim})^- = x^{\sim} \to y^{\sim-} = x^{\sim} \to y^{-\sim} = y^{-\sim-} \leadsto x^{\sim-} = y^- \leadsto x^{-\sim} = (x^- \odot y^-)^{\sim}.$$

(2): Because the pseudo-BCK(pP) algebra is good and by (c_{11}) , we have: $(x \odot y)^{-\sim} = (x \odot y)^{\sim -} \ge x^{\sim -} \odot (x^{\sim -} \leadsto (x \odot y)^{\sim -}) = x^{\sim -} \odot (x^{\sim -} \leadsto (x \odot y)^{-\sim}) = x^{\sim -} \odot (x^{\sim -} \leadsto (x \to y^{-})^{\sim}).$

Applying (c_{16}) we get: $x^{\sim -} \leadsto (x \to y^{-})^{\sim} = x^{\sim -} \leadsto ((x \to y^{-}) \leadsto 0) = [(x \to y^{-}) \odot x^{\sim -}] \leadsto 0 = [(x \to y^{-}) \odot x^{\sim -}]^{\sim} = [(x^{\sim -} \to y^{-}) \odot x^{\sim -}]^{\sim}.$ (By (c_{26}) replacing y with y^{-} we have $x \to y^{-} = x^{-} \leadsto y^{-}).$

Applying (c_{11}) we have $(x^{\sim -} \to y^-) \odot x^{\sim -} \le y^-$, hence

$$[(x^{\sim -} \to y^{-}) \odot x^{\sim -}]^{\sim} \ge y^{-\sim}.$$

Thus,
$$(x \odot y)^{-\sim} \ge x^{\sim -} \odot (x^{\sim -} \leadsto (x \to y^{-})^{\sim}) = x^{\sim -} \odot [(x^{\sim -} \to y^{-}) \odot x^{\sim -}]^{\sim} \ge x^{\sim -} \odot y^{-\sim}.$$

Similarly as in [23] for the case of bounded non-commutative R ℓ -monoids, a good pseudo-BCK(pP) algebra A which satisfies the identity $(x \odot y)^{-\sim} = x^{-\sim} \odot y^{-\sim}$ for all $x, y \in A$ will be called *normal* pseudo-BCK(pP) algebra.

PROPOSITION 2.23. Let $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ be a good pseudo-BCK algebra. We define a binary operation \oplus on A by $x \oplus y := y^{\sim} \to x^{\sim-}$. Then, for all $x, y \in A$ the following hold:

(1)
$$x \oplus y = x^- \leadsto y^{\sim -}$$
,

$$(2) x, y \leq x \oplus y,$$

(3)
$$x \oplus 0 = 0 \oplus x = x^{\sim -}$$
,

- $(4) x \oplus 1 = 1 \oplus x = 1,$
- (5) $(x \oplus y)^{-} = x \oplus y = x^{-} \oplus y^{-}$
- $(6) \oplus is \ associative.$

Proof.

- (1) It follows by (c_{26}) , second identity, replacing x with x^- .
- (2) Since $x \le x^{\sim -} \le y^{\sim} \to x^{\sim -}$, it follows that $x \le x \oplus y$. Similarly, $y \le y^{\sim -} \le x^{-} \leadsto y^{\sim -}$, so $y \le x \oplus y$.
 - (3) $x \oplus 0 = 0^{\sim} \to x^{\sim -} = 1 \to x^{\sim -} = x^{\sim -}$.

Similarly, $0 \oplus x = x^{\sim} \rightarrow 0^{\sim -} = x^{\sim} \rightarrow 0 = x^{\sim -}$.

- (4) $1 \oplus x = x^{\sim} \to 1^{\sim -} = x^{\sim} \to 1 = 1$. Similarly, $x \oplus 1 = 1$.
- (5) $(x \oplus y)^{-} = (y^{\sim} \to x^{\sim})^{-} = y^{\sim} \to x^{\sim} = x \oplus y \text{ (we applied (c₂₈))}.$ We also have: $x^{-} \oplus y^{-} = (y^{-})^{\sim} \to (x^{-})^{-} = y^{\sim} \to x^{-} = x \oplus y.$
 - (6) Applying (c_{28}) and (c_3) we get:

$$(x \oplus y) \oplus z = (x^- \leadsto y^{\sim -}) \oplus z = z^{\sim} \to (x^- \leadsto y^{\sim -})^{\sim -} = z^{\sim} \to (x^- \leadsto y^{\sim -}) = x^- \leadsto (z^{\sim} \to y^{\sim -}) = x^- \leadsto (y \oplus z) = x^- \leadsto (y \oplus z)^{\sim -} = x \oplus (y \oplus z).$$

PROPOSITION 2.24. If $\mathscr{A}=(A,\leq,\rightarrow,\rightsquigarrow,0,1)$ is a good pseudo-BCK(pP) algebra, then

$$x \oplus y = (y^- \odot x^-)^{\sim} = (y^{\sim} \odot x^{\sim})^-.$$

Proof. It follows applying (c_{34}) .

For any $n \in \mathbb{N}$, $x \in A$ we put 0x = 0, 1x = x and $(n+1)x = nx \oplus x = x \oplus nx$ for n > 1.

PROPOSITION 2.25. If $\mathscr{A} = (A, \leq, \rightarrow, \rightsquigarrow, 0, 1)$ is a normal pseudo-BCK(pP) algebra, then the following hold for all $x, y \in A$ and $n \in \mathbb{N}$:

- (1) $(x \odot y)^- = y^- \oplus x^- \text{ and } (x \odot y)^\sim = y^\sim \oplus x^\sim;$
- (2) $((x \odot y)^n)^- = n(y^- \oplus x^-)$ and $((x \odot y)^n)^\sim = n(y^\sim \oplus x^\sim);$
- (3) $(x^n)^- = nx^- \text{ and } (x^n)^{\sim} = nx^{\sim}.$

Proof.

- (1) $(x \odot y)^- = (x \odot y)^{-} = (x^- \odot y^-)^- = y^{-} \oplus x^{-} = y^- \oplus x^-;$ $(x \odot y)^- = (x \odot y)^{-} = (x^- \odot y^-)^- = y^{-} \oplus x^{-} = y^- \oplus x^-;$
- (2) For n = 2 we have:

$$((x \odot y)^2)^- = [(x \odot y) \odot (x \odot y)]^- = [(x \odot y) \odot (x \odot y)]^{-\sim} = [(x \odot y)^{-\sim} \odot (x \odot y)^{-\sim}]^- = (x \odot y)^{-\sim} \oplus (x \odot y)^{-\sim} = (x \odot y)^- \oplus (x \odot y)^- = (y^- \oplus x^-) \oplus (y^- \oplus x^-) = 2(y^- \oplus x^-).$$

By induction we get $((x \odot y)^n)^- = n(y^- \oplus x^-)$ and similarly $((x \odot y)^n)^\sim = n(y^\sim \oplus x^\sim)$;

(3) It follows from (2) for
$$y = 1$$
.

3. Deductive systems of pseudo-BCK algebras with pseudo-product

In this section we will define the notion of deductive system for a pseudo-BCK(pP) algebra and we will extend some results proved in [8], [9], [12], [5], [6] for the case of pseudo-BL algebras, pseudo-MTL algebras and residuated lattices.

DEFINITION 3.1. Let \mathscr{A} be pseudo-BCK algebra. The subset $D \subseteq A$ is called *deductive system* of A if it satisfies the following conditions:

$$(DS_1)$$
 $1 \in D$;

(DS₂) for all
$$x, y \in A$$
, if $x, x \to y \in D$, then $y \in D$.

The condition (DS_2) is equivalent with the following condition:

$$(DS_2')$$
 for all $x, y \in A$, if $x, x \rightsquigarrow y \in D$, then $y \in D$.

We will denote by $\mathscr{D}S(A)$ the set of all deductive systems of A.

Obviously, $\{1\}, A \in \mathscr{D}S(A)$.

A deductive system D of a pseudo-BCK algebra \mathscr{A} is called *proper* if $D \neq A$.

DEFINITION 3.2. A deductive system D of a pseudo-BCK algebra \mathscr{A} is called normal if it satisfies the condition:

(DS₃) for all
$$x, y \in A$$
, $x \to y \in D$ iff $x \leadsto y \in D$.

The normal deductive system is called *compatible deductive* system in [19], but for an easier connection with the previous results, in this paper we will use the notion of normal deductive system.

We will denote by $\mathscr{D}S_n(A)$ the set of all normal deductive systems of A. It is obvious that $\{1\}, A \in \mathscr{D}S_n(A)$ and $\mathscr{D}S_n(A) \subseteq \mathscr{D}S(A)$.

DEFINITION 3.3. Let \mathscr{A} be pseudo-BCK(pP) algebra. The subset $\emptyset \neq F \subseteq A$ is called *filter* of A if it satisfies the following conditions:

(F₁)
$$x, y \in F$$
 implies $x \odot y \in F$;

$$(\mathcal{F}_2) \ x \in F, \, y \in A, \, x \leq y \text{ implies } y \in F.$$

One can easily check that in the case of a pseudo-BCK(pP) algebra the definition of the filter is equivalent with the definition of the deductive system.

Proposition 3.4. ([7]) If A is a bounded pseudo-BCK(pP) algebra, then the sets

$$A_0^-=\{x\in A:\ x^-=0\}\qquad and\qquad A_0^\sim=\{x\in A:\ x^\sim=0\}$$
 are proper deductive systems of A.

PROPOSITION 3.5. ([7]) Let A be a bounded pseudo-BCK algebra and $H \in \mathscr{D}S_n(A)$. Then:

- (1) $x^- \in H$ iff $x^\sim \in H$:
- (2) $x \in H$ implies $(x^-)^- \in H$ and $(x^\sim)^\sim \in H$.

DEFINITION 3.6. A deductive system is called *maximal* if it is proper and not strictly contained in any other deductive system. Denote:

$$Max(A) := \{F : F \text{ is maximal deductive system of } A\},\$$

$$Max_n(A) := \{F : F \text{ is maximal normal deductive system of } A\}.$$

Clearly, $\operatorname{Max}_n(A) \subseteq \operatorname{Max}(A)$.

PROPOSITION 3.7. ([7]) Any proper deductive system of a bounded pseudo-BCK algebra A can be extended to a maximal deductive system of A.

Examples 3.8.

(1) Let A be the pseudo-BCK(pP) algebra A from Example 2.11 and $D_1 = \{s, a, b, n, c, d, m, 1\}$, $D_2 = \{a_2, s, a, b, n, c, d, m, 1\}$. Then:

$$\mathscr{D}S(A) = \{\{1\}, D_1, D_2, A\}, \quad \text{Max}(A) = \{D_2\}, \\ \mathscr{D}S_n(A) = \{\{1\}, D_1, A\}, \quad \text{Max}_n(A) = \emptyset.$$

(2) In the case of the pseudo-BCK(pP) algebra A_1 from Example 2.21, denoting by $D_1 = \{a_1, a_2, b_2, s, a, b, n, c, d, m, 1\}$, $D_2 = \{b_2, s, a, b, n, c, d, m, 1\}$ and $D_3 = \{s, a, b, n, c, d, m, 1\}$, we have:

$$\mathscr{D}S(A) = \{\{1\}, D_1, D_2, D_3, A\}, \quad \text{Max}(A) = \{D_1\},$$

 $\mathscr{D}S_n(A) = \{\{1\}, D_1, D_3, A\}, \quad \text{Max}_n(A) = \{D_1\}.$

DEFINITION 3.9. For every subset $X \subseteq A$, the smallest deductive system of A containing X (i.e. the intersection of all deductive systems $D \in \mathscr{D}S(A)$ such that $X \subseteq D$) is called the deductive system generated by X and will be denoted by X. If $X = \{x\}$ we write X instead of X.

Lemma 3.10. ([12]) Let A be a bounded pseudo-BCK(pP) algebra and $x, y \in A$. Then:

- (1) $\langle x \rangle$ is proper iff $\operatorname{ord}(x) = \infty$;
- (2) if $x \le y$ and $\operatorname{ord}(y) < \infty$, then $\operatorname{ord}(x) < \infty$;
- (3) if $x \le y$ and $\operatorname{ord}(x) = \infty$, then $\operatorname{ord}(y) = \infty$.

PROPOSITION 3.11. ([8]) If A is a pseudo-BCK(pP) algebra and $X \subseteq A$, then

$$\langle X \rangle = \left\{ y \in A : \ y \ge x_1 \odot x_2 \odot \cdots \odot x_n \ \text{for some} \ n \ge 1 \right.$$

$$\left. \begin{array}{l} \text{and} \ x_1, x_2, \ldots, x_n \in X \right\} \\ \\ = \left\{ y \in A : \ x_1 \to (x_2 \to (\ldots (x_n \to y) \ldots)) = 1 \ \text{for some} \ n \ge 1 \right. \\ \\ \left. \begin{array}{l} \text{and} \ x_1, x_2, \ldots, x_n \in X \right\} \\ \\ = \left\{ y \in A : \ x_1 \leadsto (x_2 \leadsto (\ldots (x_n \leadsto y) \ldots)) = 1 \ \text{for some} \ n \ge 1 \right. \\ \\ \left. \begin{array}{l} \text{and} \ x_1, x_2, \ldots, x_n \in X \right\}. \end{array} \right.$$

Remarks 3.12. ([8]) Let A be a pseudo-BCK(pP) algebra. Then:

- (1) If X is a deductive system of A, then $\langle X \rangle = X$;
- (2) $\langle x \rangle = \{ y \in A : y \ge x^n \text{ for some } n \ge 1 \}.$ $\langle x \rangle$ is called *principal* deductive system;
- (3) If D is a deductive system of A and $x \in A$, then

$$D(x) = \langle D \cup \{x\} \rangle = \{ y \in A : \ y \ge (d_1 \odot x^{n_1}) \odot (d_2 \odot x^{n_2}) \odot \cdots \odot (d_m \odot x^{n_m})$$
 for some $m \ge 1, \ n_1, n_2, \dots, n_m \ge 0, \ d_1, d_2, \dots, d_m \in D \}.$

The next result is obvious.

Lemma 3.13. Let A be a pseudo-BCK(pP) algebra and D a proper deductive system of A. Then the following are equivalent:

- (a) D is maximal;
- (b) for all $x \in A$, if $x \notin D$ then $\langle D \cup \{x\} \rangle = A$.

PROPOSITION 3.14. ([4]) If D_1 , D_2 are nonempty subsets of a pseudo-BCK(pP) algebra A such that $1 \in D_1 \cap D_2$, then

$$\langle D_1 \cup D_2 \rangle = \{ x \in A : x \ge (d_1 \odot d'_1) \odot (d_2 \odot d'_2) \odot \cdots \odot (d_n \odot d'_n) \}$$

for some $n \ge 1, d_1, d_2, \dots, d_n \in D_1, d'_1, d'_2, \dots, d'_n \in D_2 \}.$

The next result can be proved similarly as in [5] for the case of the residuated lattices.

Lemma 3.15. Let A be a pseudo-BCK(pP) algebra and $H \in \mathcal{D}S_n(A)$. Then:

- (1) For any $x \in A$ and $h \in H$ there is $h' \in H$ such that $x \odot h \ge h' \odot x$;
- (2) For any $x \in A$ and $h \in H$ there is $h'' \in H$ such that $h \odot x \ge x \odot h''$.

PROPOSITION 3.16. Let A be a pseudo-BCK(pP) algebra, $H \in \mathscr{D}S_n(A)$ and $x \in A$. Then

$$H(x) = \langle H \cup \{x\} \rangle = \{ y \in A : \ y \ge h \odot x^n \text{ for some } n \in \mathbb{N}, \ h \in H \}$$
$$= \{ y \in A : \ y \ge x^n \odot h \text{ for some } n \in \mathbb{N}, \ h \in H \}$$
$$= \{ y \in A : \ x^n \to y \in H \text{ for some } n \ge 1 \}$$
$$= \{ y \in A : \ x^n \leadsto y \in H \text{ for some } n \ge 1 \}.$$

COROLLARY 3.17. Let A be a pseudo-BCK(pP) algebra and H a proper normal deductive system of A. Then the following are equivalent:

- (a) $H \in \operatorname{Max}_n(A)$;
- (b) for all $x \in A$, if $x \notin H$, then for any $y \in A$, $x^n \to y \in H$ for some $n \in \mathbb{N}$, $n \ge 1$;
- (c) for all $x \in A$, if $x \notin H$, then for any $y \in A$, $x^n \leadsto y \in H$ for some $n \in \mathbb{N}$, $n \ge 1$.

Proof.

- (a) \Longrightarrow (b): Since H is maximal, then by Lemma 3.13, $\langle H \cup \{x\} \rangle = A$ and applying Proposition 3.16 we get the assertion (b);
- (b) \Longrightarrow (a): Let $x \in A \setminus H$. By (b), for all $y \in A$ we have $x^n \to y \in H$ for some $n \in \mathbb{N}$, $n \ge 1$. Since $(x^n \to y) \odot x^n \le y$, then by Proposition 3.16 it follows that $y \in \langle H \cup \{x\} \rangle$. Hence, $\langle H \cup \{x\} \rangle = A$. Applying Lemma 3.13 we get that $H \in \operatorname{Max}_n(A)$;

(a)
$$\iff$$
 (c): Similarly as (a) \iff (b).

Based on Proposition 3.14 and Lemma 3.15 we can prove the following result.

PROPOSITION 3.18. If A is a pseudo-BCK(pP) algebra and $D_1, D_2 \in \mathscr{D}S_n(A)$, then

$$\langle D_1 \cup D_2 \rangle = \{ x \in A : x \ge u \odot v \text{ for some } u \in D_1, v \in D_2 \}.$$

DEFINITION 3.19. A bounded pseudo-BCK(pP) algebra A is *locally finite* if for any $x \in A$, $x \neq 1$ implies $\operatorname{ord}(x) < \infty$.

PROPOSITION 3.20. ([7]) Let A be a bounded pseudo-BCK(pP) algebra. The following are equivalent:

- (a) A is locally finite;
- (b) $\{1\}$ is the unique proper deductive system of A.

Theorem 3.21. If D is a proper deductive system of A, then the following are equivalent:

- (a) $D \in Max(A)$;
- (b) For any $x \notin D$ there is $d \in D$, $n, m \in \mathbb{N}$, $n, m \ge 1$ such that $(d \odot x^n)^m = 0$.

Proof.

(a) \Longrightarrow (b): Since $0 \in A = \langle D \cup \{x\} \rangle$, by Remark 3.12 it follows that there exist $m \geq 1, n_1, n_2, \ldots, n_m \geq 0, d_1, d_2, \ldots, d_m \in D$ such that

$$(d_1 \odot x^{n_1}) \odot (d_2 \odot x^{n_2}) \odot \cdots \odot (d_m \odot x^{n_m}) = 0.$$

Taking $n = \max\{n_1, n_2, \dots, n_m\}$ and $d = d_1 \odot d_2 \odot \cdots \odot d_m \in D$ we get

$$(d \odot x^n)^m \le (d_1 \odot x^{n_1}) \odot (d_2 \odot x^{n_2}) \odot \cdots \odot (d_m \odot x^{n_m}) = 0.$$

It follows that $(d \odot x^n)^m = 0$.

(b) \Longrightarrow (a): Assume that there is a proper deductive system E of A such that $D \subset E, D \neq E$. Then, there exists $x \in E$ such that $x \notin D$. By the hypothesis, there exist $d \in D$, $n, m \in \mathbb{N}$ such that $(d \odot x^n)^m = 0$. Since $x, d \in E$, it follows that $0 \in E$, hence E = A which is a contradiction. Thus, $D \in \text{Max}(A)$.

The next result follows from Corollary 3.17.

Theorem 3.22. If H is a proper normal deductive system of a bounded pseudo-BCK(pP) algebra A, then the following are equivalent:

- (a) $H \in \operatorname{Max}_n(A)$;
- (b) For any $x \in A$, $x \notin H$ iff $(x^n)^- \in H$ for some $n \in \mathbb{N}$;
- (c) For any $x \in A$, $x \notin H$ iff $(x^n)^n \in H$ for some $n \in \mathbb{N}$.

According to [21], the class of pseudo-BCK algebras is not closed under homomorphic images. In other words, there exist congruences $\theta \in \text{Con}(A)$ such that the quotient algebra $(A/\theta, \rightarrow, \rightsquigarrow, 1/\theta)$ is not a pseudo-BCK algebra (see [21], Example 2.2.3).

A congruence $\theta \in \text{Con}(A)$ such that the quotient algebra $(A/\theta, \to, \leadsto, 1/\theta)$ is a pseudo-BCK algebra is called in [21] relative congruence. With any $H \in \mathscr{D}S_n(A)$ we associate a binary relation \equiv_H on A by defining $x \equiv_H y$ iff $x \to y, y \to x \in H$ iff $x \leadsto y, y \leadsto x \in H$.

For a given $H \in \mathscr{D}S_n(A)$ the relation \equiv_H is an equivalence relation on A.

It was proved in [21] that $\theta_H = \equiv_H$ is a relative congruence of $(A, \to, \leadsto, 1)$, that is A/θ_H becomes a pseudo-BCK algebra with the natural operations induced from those of A. Moreover, the congruence θ_H is also compatible with the operation \odot . Indeed, if $x \equiv_H y$ and $a \equiv_H b$, we prove that $x \odot a \equiv_H y \odot b$. From $x \geq (x \to y) \odot x$ and $a \geq (b \to a) \odot b$, it follows that $x \odot a \geq (x \to y) \odot x \odot (b \to a) \odot b$. Since $b \to a \in H$, by Lemma 3.15 there exists $h' \in H$ such

that $x \odot (b \to a) \odot b \ge h' \odot x \odot b$. It follows that $x \odot a \ge (x \to y) \odot h' \odot x \odot b$, hence $(x \to y) \odot h' \le x \odot b \to x \odot a$. Since $(x \to y) \odot h' \in H$, we get that $x \odot b \to x \odot a \in H$. Similarly, $x \odot a \to x \odot b \in H$, so $x \odot a \equiv_H x \odot b$. One can analogously show that $x \odot b \equiv_H y \odot b$ whence $x \odot a \equiv_H y \odot b$.

Thus, A/θ_H is a pseudo-BCK(pP) algebra. This algebra is called the *quotient* of A by θ_H and it will be denoted shortly A/H. For any $x \in A$, let x/H be the congruence class $x/_{\equiv_H}$ of x, hence $A/H = \{x/H : x \in A\}$.

The next result is obvious.

Lemma 3.23. If H be a normal deductive system of a bounded pseudo-BCK(pP) algebra A, then:

- (1) $x/H = 1/H \text{ iff } x \in H;$
- (2) x/H = 0/H iff $x^- \in H$ iff $x^\sim \in H$;
- (3) $x/H \le y/H$ iff $x \to y \in H$ iff $x \leadsto y \in H$.

PROPOSITION 3.24. If H is a proper normal deductive system of a bounded pseudo-BCK(pP) algebra A, then the following are equivalent:

- (a) $H \in \operatorname{Max}_n(A)$;
- (b) A/H is locally finite.

Proof. H is maximal iff the condition (b) from Theorem 3.22 is satisfied. This condition is equivalent with: for any $x \in A, x/H \neq 1/H$ iff $(x^n)^-/H = 1/H$ for some $n \in \mathbb{N}$ iff $(x/H)^n = 0/H$ for some $n \in \mathbb{N}$ iff A/H is locally finite.

PROPOSITION 3.25. If A is a bounded pseudo-BCK(pP) algebra and $D = A \setminus \{0\}$ $\in \text{Max}(A)$, then A is good.

Proof. Obviously $(0^-)^{\sim} = (0^{\sim})^- = 0$. Assume x > 0, that is, $x \in D$. If $x^-, x^{\sim} \in D$ it follows that $x^- \odot x, x \odot x^{\sim} \in D$, that is $0 \in D$, a contradiction.

Thus, $x^- = x^\sim = 0$, hence $(x^-)^\sim = (x^\sim)^- = 1$. Therefore, $(x^-)^\sim = (x^\sim)^-$ for all $x \in A$, so A is a good pseudo-BCK(pP) algebra. \square

PROPOSITION 3.26. Let A be a linearly ordered pseudo-BCK(pP) algebra, $D \in Max(A)$ and $x, y \in A$. Then:

- (1) $y \notin D$ and $y \odot x = x$ implies x = 0;
- (2) $y \notin D$ and $x \odot y = x$ implies x = 0.

Proof.

(1) Consider $y \in A \setminus D$ such that $y \odot x = x$. Assume $x \in A$, x > 0 and consider $E = \{z \in A : z \odot x = x\}$. First we prove that E is a proper deductive system. Obviously, $1, y \in E$ and $0 \notin E$. Consider $z \in A$ such that $y \to z \in E$, so $(y \to z) \odot x = x$. Since $(y \to z) \odot y \odot x = (y \to z) \odot x = x$, it follows that $x = [(y \to z) \odot y] \odot x \le z \odot x \le x$. Thus, $z \odot x = x$, hence $z \in E$. Therefore,

E is a proper deductive system. Since $y \in E$ and D is maximal, it follows that $y \in D$, a contradiction. Thus, x = 0.

(2) Similarly as in (1).
$$\Box$$

DEFINITION 3.27. Let A and B be two bounded pseudo-BCK(pP) algebras. A function $f: A \longrightarrow B$ is a homomorphism if it satisfies the following conditions, for all $x, y \in A$:

- $(\mathrm{H}_1) \ f(x \odot y) = f(x) \odot f(y);$
- $(\mathrm{H}_2) \ f(x \to y) = f(x) \to f(y);$
- (H_3) $f(x \leadsto y) = f(x) \leadsto f(y);$
- $(H_4) f(0) = 0.$

Remark 3.28. If $f: A \longrightarrow B$ is a bounded pseudo-BCK(pP) algebras homomorphism, then one can easily prove that the following hold for all $x \in A$:

- (H_5) f(1) = 1;
- $(H_6) f(x^-) = (f(x))^-;$
- $(H_7) f(x^{\sim}) = (f(x))^{\sim};$
- (H_8) if $x, y \in A$, $x \le y$, then $f(x) \le f(y)$.

The *kernel* of f is the set $ker(f) = f^{-1}(1) = \{x \in A : f(x) = 1\}.$

The function $\pi_H \colon A \longrightarrow A/H$ defined by $\pi_H(x) = x/H$ for any $x \in A$ is a surjective homomorphism which is called the *canonical projection* from A to A/H. One can easily prove that $\ker(\pi_H) = H$.

The proofs of the results in the next proposition are obvious.

PROPOSITION 3.29. Let A and B be non-trivial pseudo-BCK(pP) algebras. If $f: A \longrightarrow B$ is a homomorphism, then the following hold:

- (1) ker(f) is a proper deductive system of A.
- (2) f is injective iff $ker(f) = \{1\}$.
- (3) If $G \in \mathscr{D}S(B)$, then $f^{-1}(G) \in \mathscr{D}S(A)$ and $\ker(f) \subseteq f^{-1}(G)$. If $G \in \mathscr{D}S_n(B)$, then $f^{-1}(G) \in \mathscr{D}S_n(A)$. In particular $\ker(f) \in \mathscr{D}S_n(A)$.
- (4) If f is surjective and $D \in \mathscr{D}S(A)$ such that $\ker(f) \subseteq D$, then $f(D) \in \mathscr{D}S(B)$.

PROPOSITION 3.30. If $f: A \longrightarrow B$ is a surjective bounded pseudo-BCK(pP) algebras homomorphism, then there is a bijective correspondence between $\{D: D \in \mathscr{D}S(A), \ker(f) \subseteq D\}$ and $\mathscr{D}S(B)$.

Proof. By Proposition 3.29, for any $D \in \mathscr{D}S(A)$ such that $\ker(f) \subseteq D$ and $G \in \mathscr{D}S(B)$ there is the correspondence $D \mapsto f(D)$ and $G \mapsto f^{-1}(G)$ between the two sets.

We have to prove that $f^{-1}(f(D)) = D$ and $f(f^{-1}(G)) = G$. Since f is surjective, it follows that $f(f^{-1}(G)) = G$. Obviously, $D \subseteq f^{-1}(f(D))$ always holds.

Suppose that $x \in f^{-1}(f(D))$, then $f(x) \in f(D)$, so there is $x' \in D$ such that f(x) = f(x'). We have $f(x') \to f(x) = 1$, so $f(x' \to x) = 1$, that is $x' \to x \in \ker(f) \subseteq D$.

From $x', x' \to x \in D$ we get $x \in D$. Thus, $f^{-1}(f(D)) = D$.

Corollary 3.31. If $D \in \mathscr{D}S_n(A)$, then:

- (1) $\pi_D(E) \in \mathscr{D}S(A/D)$, where $E \in \mathscr{D}S(A)$ such that $D \subseteq E$;
- (2) the correspondence $E \mapsto \pi_D(E)$ is a bijection between $\{F: F \in \mathscr{D}S(A), D \subseteq F\}$ and $\mathscr{D}S(A/D)$.

Proof.

- (1) It follows from Proposition 3.29(4);
- (2) It follows from Proposition 3.30.

PROPOSITION 3.32. If $D, H \in \mathscr{D}S_n(A)$ such that $H \subseteq D$, then $D \in \text{Max}(A)$ iff $\pi_H(D) \in \text{Max}(A/H)$.

Proof. We will apply Theorem 3.22. Suppose that $D \in \text{Max}(A)$ and let $y \in A/H$, $y \notin \pi_H(D)$. It follows that there is $x \in A$ such that $y = \pi_H(x) = x/H$. Obviously, $x \notin D$. Since $D \in \text{Max}(A)$, it follows that:

 $(x^n)^- \in D$ for some $n \in \mathbb{N}$ iff $\pi_H((x^n)^-) \in \pi_H(D)$ for some $n \in \mathbb{N}$ iff $\pi_H(((x/H)^n)^-) \in \pi_H(D)$ for some $n \in \mathbb{N}$ iff $(y^n)^- \in \pi_H(D)$ for some $n \in \mathbb{N}$.

Thus, $\pi_H(D) \in \text{Max}(A/H)$. The converse can be proved in a similar way. \square

Corollary 3.33. If H is a proper normal deductive system of a bounded pseudo-BCK(pP) algebra A, then there is a bijection between $\{D: D \in Max(A), H \subset D\}$ and Max(A/H).

PROPOSITION 3.34. If P is a proper normal deductive system of a bounded pseudo-BCK(pP) algebra A, then the following are equivalent:

- (a) for all $x, y \in A$, $((x \odot y)^n)^- \in P$ for some $n \in \mathbb{N}$ implies $(x^m)^- \in P$ or $(y^m)^- \in P$ for some $m \in \mathbb{N}$;
- (b) for all $x, y \in A$, $((x \odot y)^n)^{\sim} \in P$ for some $n \in \mathbb{N}$ implies $(x^m)^{\sim} \in P$ or $(y^m)^{\sim} \in P$ for some $m \in \mathbb{N}$.

Proof. It is obvious taking into consideration that, since P is a normal deductive system, then $x^- \in P$ iff $x^{\sim} \in P$ for all $x \in A$.

Definition 3.35. A proper normal deductive system of a bounded pseudo-BCK(pP) algebra A is called *primary* if it satisfies one of the above equivalent conditions.

Remark 3.36. If the bounded pseudo-BCK(pP) algebra A is normal, then its primary deductive systems can be dually characterized by means of the operation \oplus . Indeed, if P is a proper normal deductive system of A, applying Proposition 2.25 we have:

$$((x \odot y)^n)^- = n(y^- \oplus x^-), (x^m)^- = mx^- \text{ and } (y^m)^- = my^-$$

for all $n, m \in \mathbb{N}$.

Therefore, a proper normal deductive system P of the normal pseudo-BCK(pP) algebra A is primary if it satisfies the following condition for all $x, y \in A$: if $n(y^- \oplus x^-) \in P$ for some $n \in \mathbb{N}$, then $mx^- \in P$ or $my^- \in P$ for some $m \in \mathbb{N}$.

Obviously, the above condition is equivalent with the following: if $n(y^{\sim} \oplus x^{\sim}) \in P$ for some $n \in \mathbb{N}$, then $mx^{\sim} \in P$ or $my^{\sim} \in P$ for some $m \in \mathbb{N}$.

4. Local pseudo-BCK algebras with pseudo-product

DEFINITION 4.1. A pseudo-BCK(pP) algebra is called *local* if it has a unique maximal deductive system.

In this section by a pseudo-BCK(pP) algebra we mean a bounded pseudo-BCK(pP) algebra, even though some notions and properties are valid for an arbitrary pseudo-BCK(pP) algebra.

We will denote:

$$D(A) = \{x \in A : \operatorname{ord}(x) = \infty\}$$
 and $D(A)^* = \{x \in A : \operatorname{ord}(x) < \infty\}.$

Obviously,
$$D(A) \cap D(A)^* = \emptyset$$
 and $D(A) \cup D(A)^* = A$.

We also can remark that $1 \in D(A)$ and $0 \in D(A)^*$.

Let A be a pseudo-BCK(pP) algebra and $D \in \mathscr{D}S(A)$. We will use the following notations:

$$\begin{split} D_-^* &= \{x \in A: \ x \leq y^- \ \text{for some} \ y \in D\}, \\ D_\sim^* &= \{x \in A: \ x \leq y^\sim \ \text{for some} \ y \in D\}. \end{split}$$

The next results can be proved similarly as in [5] for the case of the residuated lattices.

PROPOSITION 4.2. ([7]) Let A be a local pseudo-BCK(pP) algebra. Then:

- (1) any proper deductive system of A is included in the unique maximal deductive system of A;
- (2) A_0^- and A_0^{\sim} are included in the unique maximal deductive system of A.

Theorem 4.3. Let A be a pseudo-BCK(pP) algebra. Then the following are equivalent:

- (a) D(A) is a deductive system of A;
- (b) D(A) is a proper deductive system of A;
- (c) A is local;
- (d) D(A) is the unique maximal deductive system of A;
- (e) for all $x, y \in A$, $\operatorname{ord}(x \odot y) < \infty$ implies $\operatorname{ord}(x) < \infty$ or $\operatorname{ord}(y) < \infty$.

Corollary 4.4. If A is a local pseudo-BCK(pP) algebra, then:

- (1) for any $x \in A$, $\operatorname{ord}(x) < \infty$ or $[\operatorname{ord}(x^{-}) < \infty \text{ and } \operatorname{ord}(x^{\sim}) < \infty]$;
- (2) $D(A)_{-}^{*} \subseteq D(A)^{*}$ and $D(A)_{-}^{*} \subseteq D(A)^{*}$;
- (3) $D(A) \cap D(A)^*_{-} = D(A) \cap D(A)^*_{\sim} = \emptyset.$

Example 4.5. Consider the pseudo-BCK(pP) algebra A from Example 2.11. One can easily check that $D(A) = \{a_2, s, a, b, n, c, d, m, 1\}$ and it is a deductive system of A, so A is a local pseudo-BCK(pP) algebra.

PROPOSITION 4.6. ([7]) Any linearly ordered pseudo-BCK(pP) algebra is local.

Proposition 4.7. ([7]) Any locally finite pseudo-BCK(pP) algebra is local.

PROPOSITION 4.8. If P is a proper normal deductive system of a bounded pseudo-BCK(pP) A, then the following are equivalent:

- (a) P is primary;
- (b) A/P is a local pseudo-BCK(pP) algebra;
- (c) P is contained in a unique maximal deductive system of A.

Proof.

- (a) \iff (b): Applying Theorem 4.3 (e) and Lemma 3.23 (2), we have: A/P is local iff for all $x, y \in A$, $\operatorname{ord}(x/P \odot y/P) < \infty$ implies $\operatorname{ord}(x/P) < \infty$ or $\operatorname{ord}(y/P) < \infty$ iff for all $x, y \in A$, $(x/P \odot y/P)^n = 0/P$ for some $n \in \mathbb{N}$ implies $(x/P)^m = 0/P$ or $(y/P)^m = 0/P$ for some $m \in \mathbb{N}$ iff for all $x, y \in A$, $(x/P \odot y/H)^n = 0/P$ for some $n \in \mathbb{N}$ implies $x^m/P = 0/P$ or $y^m/P = 0/P$ for some $m \in \mathbb{N}$ iff for all $x, y \in A$, $((x \odot y)^n)^- \in P$ for some $n \in \mathbb{N}$ implies $(x^m)^- \in P$ or $(y^m)^- \in P$ for some $m \in \mathbb{N}$ iff P is primary.
- (a) \iff (c): By (a) \iff (b), P is primary iff A/P is local iff A/P has a unique maximal deductive system. By Corollary 3.33 there is a bijection between $\operatorname{Max}(A/P)$ and $\{D: D \in \operatorname{Max}(A), P \subseteq D\}$. It follows that P is primary if and only if there is a unique maximal deductive system of A containing P. \square

Theorem 4.9. If A is a pseudo-BCK(pP) algebra, then the following are equivalent:

- (a) A is local;
- (b) any proper normal deductive system of A is primary;
- (c) {1} is a primary deductive system of A.

Proof.

- (a) \Longrightarrow (b): Let H be a proper normal deductive system of A. By Theorem 4.3 (d), D(A) is the unique maximal deductive system of A. Hence, $H \subseteq D(A)$ and according to Proposition 4.8 it follows that H is primary;
- (b) \implies (c): Since $\{1\}$ is a proper normal deductive system of A, then by (b) we get that $\{1\}$ is primary;
- (c) \Longrightarrow (a): Since $\{1\}$ is primary, applying Proposition 4.8 it follows that $A/\{1\}$ is local. Taking into consideration that $A \cong A/\{1\}$, it follows that A is local.

DEFINITION 4.10. A primary deductive system P of a bounded pseudo-BCK(pP) algebra A is called *perfect* if for all $x \in A$, $(x^n)^- \in P$ for some $n \in \mathbb{N}$ implies $((x^-)^m)^- \notin P$ for all $m \in \mathbb{N}$.

An element x of a pseudo-BCK(pP) algebra A is said to be zero divisor if there exists an element $0 \neq y \in A$ such that $x \odot y = 0$ or $y \odot x = 0$. The set of all zero divisors of A is denoted by Div(A). Obviously, $0 \in \text{Div}(A)$ and $1 \notin \text{Div}(A)$.

PROPOSITION 4.11. Let A be a bounded pseudo-BCK(pP) algebra satisfying the conditions: Div(A) = $\{0\}$, ord(x) = ∞ and $x^- = x^{\sim} = 0$ for all $x \in A \setminus \{0\}$. Then, any proper normal deductive system of A is perfect.

P roof. We first prove that any proper normal deductive system P of A is primary.

Let $x, y \in A$ and consider the following cases:

- (1) If x, y > 0, then $x \odot y > 0$, so $\operatorname{ord}(x \odot y) = \infty$. It follows that $(x \odot y)^n \neq 0$ for all $n \in \mathbb{N}$. Hence, $((x \odot y)^n)^- = 0 \notin P$;
- (2) If x = 0, then $((x \odot y)^n)^- = 0^- = 1 \in P$ for all $n \in \mathbb{N}$. Moreover, $(x^m)^- = 0^- = 1 \in P$ for all $m \in \mathbb{N}$;
- (3) If y = 0, then similarly as in (2) we get that $(y^m)^- = 0^- = 1 \in P$ for all $m \in \mathbb{N}$.

Thus, P is a primary deductive system of A.

Since $x^n \neq 0$ for all $x \in A \setminus \{0\}$, it follows that $(x^n)^- = 0 \notin P$ for all $n \in \mathbb{N}$. For x = 0 we have $(0^n)^- = 1 \in P$ for all $n \in \mathbb{N}$ and $((0^-)^m)^- = 0 \notin P$ for all $m \in \mathbb{N}$. Thus, P is a perfect deductive system of A. Examples 4.12.

- (1) It is a simple routine to check that the normal deductive system $D = \{s, a, b, n, c, d, m, 1\}$ of the pseudo-BCK(pP) algebra A from Example 2.11 is primary, but D it is not perfect $((a_1^2)^- = 0^- = 1 \in D)$ and $((a_1^-)^2)^- = (a_1^2)^- = 0^- = 1 \in D$);
 - (2) According to Proposition 4.11, the normal deductive systems

$$D_1 = \{a_1, a_2, b_2, s, a, b, n, c, d, m, 1\}$$
 and $D_3 = \{s, a, b, n, c, d, m, 1\}$

of the pseudo-BCK(pP) algebra A_1 from Example 2.21 are perfect deductive systems.

DEFINITION 4.13. A pseudo-BCK(pP) algebra A is called *perfect* if it satisfies the following conditions:

- (1) A is a local good pseudo-BCK(pP) algebra;
- (2) for any $x \in A$, $\operatorname{ord}(x) < \infty$ iff $\operatorname{ord}(x^{-}) = \infty$ and $\operatorname{ord}(x^{\sim}) = \infty$.

PROPOSITION 4.14. Let A be a local good pseudo-BCK(pP) algebra. Then the following are equivalent:

- (a) A is perfect;
- (b) $D(A)_{-}^{*} = D(A)_{\sim}^{*} = D(A)^{*}$.

Proof.

(a) \Longrightarrow (b): Since A is a local pseudo-BCK(pP) algebra, applying Corollary 4.4(2) we get $D(A)^*_- \subseteq D(A)^*$ and $D(A)^*_\sim \subseteq D(A)^*$.

Conversely, consider $x \in D(A)^*$, that is $\operatorname{ord}(x) < \infty$. By the definition of a perfect pseudo-BCK(pP) algebra we get $\operatorname{ord}(x^-) = \infty$ and $\operatorname{ord}(x^{\sim}) = \infty$, that is $x^-, x^{\sim} \in D(A)$. Applying the properties $x \leq x^{\sim -}$ and $x \leq x^{\sim -}$ we get $x \in D(A)^*$ and $x \in D(a)^*$. It follows that $D(A)^* \subseteq D(A)^*$ and respectively $D(A)^* \subseteq D(A)^*$. Thus, $D(A)^* = D(A)^*$ and $D(A)^* = D(A)^*$.

(b) \implies (a): Consider $x \in A$ such that $\operatorname{ord}(x) < \infty$, that is $x \in D(A)^*$.

Since $D(A)^*_- = D(A)^*$, there exists $y \in D(A)$ such that $x \leq y^-$, so $y^{-\sim} \leq x^{\sim}$. By $y \leq y^{-\sim}$ and $\operatorname{ord}(y) = \infty$, we get $\operatorname{ord}(y^{-\sim}) = \infty$. From $y^{-\sim} \leq x^{\sim}$ we get $\operatorname{ord}(x^{\sim}) = \infty$. Since $D(A)^*_{\sim} = D(A)^*$, there exists $y \in D(A)$ such that $x \leq y^{\sim}$, so $y^{\sim -} \leq x^-$. By $y \leq y^{\sim -}$ and $\operatorname{ord}(y) = \infty$, we get $\operatorname{ord}(y^{\sim -}) = \infty$. From $y^{\sim -} \leq x^-$ we get $\operatorname{ord}(x^{-}) = \infty$.

Conversely, consider $x \in A$ such that $\operatorname{ord}(x^-) = \infty$ and $\operatorname{ord}(x^{\sim}) = \infty$.

Since A is local, by Corollary 4.4(1) it follows that $\operatorname{ord}(x) < \infty$. Thus, A is a perfect pseudo-BCK(pP) algebra.

Examples 4.15.

(1) Consider the pseudo-BCK(pP) algebra A from Example 2.11. Since A is not good, it follows that it is not a perfect pseudo-BCK(pP) algebra.

(2) If A_1 is the good pseudo-BCK(pP) algebra A from Example 2.21, we have $D(A) = \{a_1, a_2, b_2, s, a, b, n, c, d, m, 1\}$ and $D(A)^* = \{0\}$. Since $\operatorname{ord}(0^-) = \operatorname{ord}(0^-) = \infty$, it follows that A is a perfect pseudo-BCK(pP) algebra.

PROPOSITION 4.16. Let A be a good pseudo-BCK(pP) algebra and P a proper normal deductive system of A. Then the following are equivalent:

- (a) P is a perfect deductive system of A;
- (b) A/P is a perfect pseudo-BCK(pP) algebra;
- (c) for all $x \in A$, $(x^n)^{\sim} \in P$ for some $n \in \mathbb{N}$ implies $((x^{\sim})^m)^{\sim} \notin P$ for all $m \in \mathbb{N}$.

Proof. By Proposition 4.8, A/P is local iff P is primary. Also, A/P is perfect iff the following condition is satisfied:

$$\operatorname{ord}(x/P) < \infty$$
 iff $\operatorname{ord}((x/P)^{-}) = \infty$ and $\operatorname{ord}((x/P)^{\sim}) = \infty$.

But, applying Lemma 3.23, we have:

$$\operatorname{ord}(x/P) < \infty \text{ iff } (x/P)^n = 0/P \text{ for some } n \in \mathbb{N}$$

iff $(x^n)^- \in P$ for some $n \in \mathbb{N}$ and $(x^n)^- \in P$ for some $n \in \mathbb{N}$.

We also have:

$$\operatorname{ord}((x/P)^-) = \infty$$
 iff $((x/P)^-)^m \neq 0/P$ for all $m \in \mathbb{N}$ iff $((x^-)^m)^- \notin P$ for all $m \in \mathbb{N}$.

Taking into consideration the definition of a perfect deductive system it follows that (a) \iff (b).

Similarly,

$$\operatorname{ord}((x/P)^{\sim}) = \infty \text{ iff } ((x/P)^{\sim})^m \neq 0/P \text{ for all } m \in \mathbb{N}$$
 iff $((x^{\sim})^m)^{\sim} \notin P \text{ for all } m \in \mathbb{N}.$

Thus, (a)
$$\iff$$
 (c).

PROPOSITION 4.17. If P is a perfect deductive system of A, then:

- (1) for all $x \in A$, $(x^n)^- \in P$ for some $n \in \mathbb{N}$ iff $((x^-)^m)^- \notin P$ for all $m \in \mathbb{N}$;
- (2) for all $x \in A$, $(x^n)^{\sim} \in P$ for some $n \in \mathbb{N}$ iff $((x^{\sim})^m)^{\sim} \notin P$ for all $m \in \mathbb{N}$.

Proof.

(1) The first implication follows immediately, since P is perfect.

Consider $x \in A$ such that $((x^-)^m)^- \notin P$ for all $m \in \mathbb{N}$. By (c_{32}) , $x^- \odot x = 0$, so $((x^- \odot x)^m)^- = 0^- = 1 \in P$ for all $m \in \mathbb{N}$. Since P is primary, it follows that $((x^-)^n)^- \in P$ or $(x^n)^- \in P$ for some $n \in \mathbb{N}$. Taking into consideration that $((x^-)^n)^- \notin P$ for all $n \in \mathbb{N}$, we conclude that $(x^n)^- \in P$ for some $n \in \mathbb{N}$;

(2) Similarly as (1).
$$\Box$$

Theorem 4.18. If A is a local good pseudo-BCK(pP) algebra, then the following are equivalent:

- (a) A is perfect;
- (b) any proper normal deductive system of A is perfect;
- (c) {1} is a perfect deductive system of A.

Proof.

(a) \Longrightarrow (b): Let D be a proper normal deductive system of A. By Theorem 4.9 it follows that D is primary. Let $x \in A$ such that $(x^n)^- \in D$ for some $n \in \mathbb{N}$ and suppose that $((x^-)^m)^- \in D$ for some $m \in \mathbb{N}$. Since D is proper, then $\langle (x^n)^- \rangle, \langle ((x^-)^m)^- \rangle \subseteq D$ are also proper deductive systems of A. By Lemma 3.10(1) it follows that $\operatorname{ord}((x^n)^-) = \operatorname{ord}(((x^-)^m)^-) = \infty$. Since A is perfect, $\operatorname{ord}(x^n) < \infty$ and $\operatorname{ord}(x^-) < \infty$, hence $\operatorname{ord}(x) < \infty$ and $\operatorname{ord}(x^-) < \infty$, a contradiction with the fact that A is perfect.

Thus, $(x^n)^- \in D$ for $n \in \mathbb{N}$ implies $((x^-)^m)^- \notin D$ for all $m \in \mathbb{N}$, that is D is perfect.

- (b) \implies (c): It is obvious, since $\{1\}$ is a proper normal deductive system of A.
- (c) \Longrightarrow (a): Since $\{1\}$ is a perfect deductive system of A, applying Proposition 4.16 it follows that $A/\{1\}$ is perfect. Taking into consideration that $A \cong A/\{1\}$ we get that A is perfect.

DEFINITION 4.19. Let A be a pseudo-BCK(pP) algebra. The intersection of all maximal deductive systems of A is called the radical of A and it is denoted by Rad(A).

PROPOSITION 4.20. ([7]) If A is a perfect pseudo-BCK(pP) algebra, then Rad(A) = D(A).

Example 4.21. Consider the perfect pseudo-BCK(pP) A_1 from Example 2.21. One can easily check that $Rad(A_1) = D(A_1) = \{a_1, a_2, b_2, s, a, b, n, c, d, m, 1\}.$

Remark 4.22. If A is a perfect pseudo-BCK(pP) algebra and $x \in \text{Rad}(A)^*$, $y \in A$ such that $y \leq x$, then $y \in \text{Rad}(A)^*$.

Theorem 4.23. If A is a perfect pseudo-BCK(pP) algebra, then Rad(A) is a normal deductive system of A.

Proof. We have to prove that $x \to y \in \operatorname{Rad}(A)$ iff $x \leadsto y \in \operatorname{Rad}(A)$ for all $x,y \in A$. Consider $x,y \in A$ such that $x \to y \in \operatorname{Rad}(A)$ and suppose $x \leadsto y \notin \operatorname{Rad}(A)$.

From $y \leq y^{-}$ we get $x \to y \leq x \to y^{-}$ (by (c_{21}) and (c_8)). Since Rad(A) is a deductive system of A, it follows that $x \to y^{-} \in \text{Rad}(A)$, that is $(x \odot y^{\sim})^{-} \in \text{Rad}(A)$ (by (c_{34}) and from the fact that A is good). Hence, $x \odot y^{\sim} \in \text{Rad}(A)^*$.

On the other hand, from $x \rightsquigarrow y \notin \operatorname{Rad}(A)$, it follows that $x \rightsquigarrow y \in \operatorname{Rad}(A)^*$. Since $x \leq x^{-\sim}$, by (c₁) we get $x^{-\sim} \rightsquigarrow y \leq x \rightsquigarrow y$, so $x^{-\sim} \leadsto y \in \operatorname{Rad}(A)^*$ (by Remark 4.22). By (c₃₆) we have $x^{\sim} \leq x^{\sim-} \leadsto y$, so $x^{\sim} \in \operatorname{Rad}(A)^*$, that is $x \in \operatorname{Rad}(A)$. But $y \leq x \leadsto y$, so $y \in \operatorname{Rad}(A)^*$, that is $y^{\sim} \in \operatorname{Rad}(A)$. Since $\operatorname{Rad}(A)$ is a deductive system of A and $x, y^{\sim} \in \operatorname{Rad}(A)$, we get $x \odot y^{\sim} \in \operatorname{Rad}(A)$ which is a contradiction. Thus, $x \to y \in \operatorname{Rad}(A)$ implies $x \leadsto y \in \operatorname{Rad}(A)$. Similarly, $x \leadsto y \in \operatorname{Rad}(A)$ implies $x \to y \in \operatorname{Rad}(A)$ and we conclude that $\operatorname{Rad}(A)$ is a normal deductive system of A.

Remark 4.24. If the pseudo-BCK(pP) algebra A is not perfect, then the above result is not always valid. Indeed, consider the pseudo-BCK(pP) algebra A from Example 2.11. Since A is not good, it is not a perfect pseudo-BCK(pP) algebra. Moreover, $D = \{a_2, s, a, b, n, c, d, 1\}$ is the unique maximal deductive system of A, so Rad(A) = D. But D is not a normal deductive system.

Corollary 4.25. If A is a perfect pseudo-BCK(pP) algebra, then $A/\operatorname{Rad}(A)$ is perfect too.

Proof. By Theorem 4.23, Rad(A) is a proper normal deductive system of A and by Theorem 4.18 it follows that Rad(A) is perfect. Applying Proposition 4.16 we get that A/Rad(A) is a perfect pseudo-BCK(pP) algebra.

5. Connection with pseudo-hoops

Pseudo-hoops were originally introduced by Bosbach in [2] and [3] under the name of *complementary semigroups* and their properties were recently studied in [13] and [10].

DEFINITION 5.1. ([13]) A pseudo-hoop is an algebra $(A, \odot, \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 2, 0) such that, for all $x, y, z \in A$:

```
\begin{split} & (\mathrm{psH_1}) \  \, x\odot 1 = 1\odot x = x; \\ & (\mathrm{psH_2}) \  \, x\to x = x\leadsto x = 1; \\ & (\mathrm{psH_3}) \  \, (x\odot y)\to z = x\to (y\to z); \\ & (\mathrm{psH_4}) \  \, (x\odot y)\leadsto z = y\leadsto (x\leadsto z); \\ & (\mathrm{psH_5}) \  \, (x\to y)\odot x = (y\to x)\odot y = x\odot (x\leadsto y) = y\odot (y\leadsto x). \end{split}
```

If the operation \odot is commutative, or equivalently $\to = \leadsto$, then the pseudo-hoop is said to be *hoop*. On the pseudo-hoop A we define $x \le y$ iff $x \to y = 1$ (equivalent to $x \leadsto y = 1$) and \le is a partial order on A. A pseudo-hoop A is bounded if there is an element $0 \in A$ such that $0 \le x$ for all $x \in A$.

PROPOSITION 5.2. ([13]) In every pseudo-hoop $(A, \odot, \rightarrow, \rightsquigarrow, 1)$ the following hold:

(h₁)
$$(A, \leq)$$
 is a meet-semillatice with $x \wedge y = (x \rightarrow y) \odot x = x \odot (x \rightsquigarrow y)$;

(h₂)
$$x \odot y \le z$$
 iff $x \le y \to z$ iff $y \le x \leadsto z$;

(h₃)
$$x \to x = x \leadsto x = 1$$
;

$$(h_4)$$
 $1 \rightarrow x = 1 \rightsquigarrow x = x;$

$$(h_5) x \to 1 = x \leadsto 1 = 1;$$

$$(h_6) \ x \le (x \to y) \leadsto y;$$

$$(h_7) \ x \leq (x \leadsto y) \to y;$$

(h₈)
$$x \to y \le (y \to z) \leadsto (x \to z)$$
;

$$(h_9) x \rightsquigarrow y \leq (y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z).$$

The proofs of he next two results are obvious from Proposition 5.2.

PROPOSITION 5.3. Every pseudo-BCK(pP) algebra satisfying (psH₅) is a pseudo-hoop.

PROPOSITION 5.4. Every pseudo-hoop is a pseudo-BCK(pP) algebra.

COROLLARY 5.5. A pseudo-BCK(pP) algebra with (psH₅) is termwise equivalent with a pseudo-hoop.

Theorem 5.6. Every locally finite pseudo-hoop is with (pDN).

Proof. Let A be a locally finite pseudo-hoop and $x \in A$. If x = 0, then $0^{-} = 0^{-} = 0$.

Suppose $x \neq 0$ and we prove that $x^{-} = x$. By (c_{21}) we have $x \leq x^{-}$. Suppose that $x^{-} \nleq x$, hence $x^{-} \to x \neq 1$. Since A is locally finite, there is $m \in \mathbb{N}$, $n \geq 1$ such that $(x^{-} \to x)^n = 0$. We have:

$$(x^{-\sim} \to x) \to x^{-} = (x^{-\sim} \to x) \to x^{-\sim-} = (x^{-\sim} \to x) \to (x^{-\sim} \to 0)$$

$$= (x^{-\sim} \to x) \odot x^{-\sim} \to 0 = (x \land x^{-\sim}) \to 0$$

$$= x \to 0 = x^{-}.$$

$$(x^{-\sim} \to x)^{2} \to x^{-} = (x^{-\sim} \to x) \to ((x^{-\sim} \to x) \to x^{-})$$

$$= (x^{-\sim} \to x) \to x^{-} = x^{-}.$$

By induction we get $(x^{-\sim} \to x)^n \to x^- = x^-$. Thus, $0 \to x^- = x^-$, so $x^- = 1$. Hence x = 0, a contradiction. Therefore, $x^{-\sim} = x$ and similarly $x^{\sim} = x$. \square

DEFINITION 5.7. ([13]) A pseudo-hoop A is called *simple* if $\{1\}$ is the unique proper normal deductive system of A. The pseudo-hoop A is called *strongly simple* if $\{1\}$ is the unique proper deductive system of A.

Obviously, any strongly simple pseudo-hoop is simple.

Theorem 5.8. Every strongly simple bounded pseudo-hoop is local.

Proof. By Proposition 3.20 it follows that a strongly simple bounded pseudo-hoop A is locally finite and by Proposition 4.7 we get that A is local.

REFERENCES

- BELLUCE, L. P.—DI NOLA, A.—LETTIERI, A.: Local MV algebras, Rend. Circ. Mat. Palermo (2) 42 (1993), 347–361.
- [2] BOSBACH, B.: Komplementäre Halbgruppen. Axiomatik und Aritmetik, Fund. Math. 64 (1969), 257–287.
- [3] BOSBACH, B.: Komplementäre Halbgruppen. Kongruenzen and Quotienten, Fund. Math. 69 (1970), 1–14.
- [4] BUŞNEAG, D.—PICIU, D.: On the lattice of filters of a pseudo BL-algebra, J. Mult.-Valued Logic Soft Comput. 12 (2006), 217–248.
- [5] CIUNGU, L. C.: Classes of residuated lattices, An. Univ. Craiova Ser. Mat. Inform. 33 (2006), 189–207.
- [6] CIUNGU, L. C.: Some classes of pseudo-MTL algebras, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 50(98) (2007), 223-247.
- [7] CIUNGU, L. C.: On perfect pseudo-BCK algebras with pseudo-product, An. Univ. Craiova Ser. Mat. Inform. 34 (2007), 29–42.
- [8] DI NOLA, A.—GEORGESCU, G.—IORGULESCU, A.: Pseudo-BL algebras: Part I, Mult.-Valued Log. 8 (2002), 673–714.
- [9] DI NOLA, A.—GEORGESCU, G.—IORGULESCU, A.: Pseudo-BL algebras: Part II, Mult.-Valued Log. 8 (2002), 717–750.
- [10] DVUREČENSKIJ, A.: Aglianò-Montagna type decomposition of linear pseudo-hoops and its applications, J. Pure Appl. Algebra 211 (2007), 851–861.
- [11] GEORGESCU, G.—IORGULESCU, A.: Pseudo-BCK algebras: An extension of BCK algebras. In: Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, pp. 97–114.
- [12] GEORGESCU, G.—LEUŞTEAN, L.: Some classes of pseudo-BL algebras, J. Aust. Math. Soc. 73 (2002), 127–153.
- [13] GEORGESCU, G.—LEUŞTEAN, L.—PREOTEASA, V.: Pseudo-hoops, J. Mult.-Valued Logic Soft Comput. 11 (2005), 153–184.
- [14] HALAŠ, R.—KÜHR, J.: Deductive systems and annihilators of pseudo-BCK algebras, Ital. J. Pure Appl. Math. 25 (2009), 83–94.
- [15] IORGULESCU, A.: Classes of pseudo-BCK algebras Part I, J. Mult.-Valued Logic Soft Comput. 12 (2006), 71–130.
- [16] IORGULESCU, A.: Classes of pseudo-BCK algebras Part II, J. Mult.-Valued Logic Soft Comput. 12 (2006), 575–629.
- [17] IORGULESCU, A.: On pseudo-BCK algebras and porims, Sci. Math. Jpn. 16 (2004), 293–305.
- [18] IORGULESCU, A.: Pseudo-Iséki algebras. Connection with pseudo-BL algebras, J. Mult.-Valued Logic Soft Comput. 3-4 (2005), 263–308.
- [19] KUHR, J.: Commutative pseudo-BCK algebras, Southeast Asian Bull. Math. 33 (2009), 451–475.

- [20] KÜHR, J.: Pseudo-BCK algebras and residuated lattices, Contrib. Gen. Algebra 16 (2005), 139–144.
- [21] KÜHR, J.: Pseudo-BCK Algebras and Related Structures. Habilitation Thesis, Univerzita Palackého v Olomouci, Olomouc, 2007.
- [22] LEUŞTEAN, I.: Local pseudo-MV algebras, Soft Comput. 5 (2001), 386–395.
- [23] RACHŮNEK, J.—ŠALOUNOVÁ, D.: A generalization of local fuzzy structures, Soft Comput. 11 (2007), 565–571.
- [24] RACHŮNEK, J.—ŠALOUNOVÁ, D.: Local bounded commutative residuated \$\ell\$-monoids, Czechoslovak Math. J. **57** (2007), 395–406.
- [25] TURUNEN, E.—SESSA, S.: Local BL algebras, Mult.-Valued Log. 6 (2001), 229–249.

Received 31. 10. 2008 Accepted 30. 9. 2009 Department of Mathematics Polytechnical University of Bucharest Splaiul Independenței 313 Bucharest ROMANIA

E-mail: lavinia_ciungu@math.pub.ro