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SPACES OF LOWER SEMICONTINUOUS
SET-VALUED MAPS I
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ABSTRACT. We introduce a lower semicontinuous analog, L~ (X), of the well-
studied space of upper semicontinuous set-valued maps with nonempty compact
interval images. Because the elements of L~ (X) contain continuous selections,
the space C(X) of real-valued continuous functions on X can be used to establish
properties of L~ (X), such as the two interrelated main theorems. The first of
these theorems, the Extension Theorem, is proved in this Part I. The Extension
Theorem says that for binormal spaces X and Y, every bimonotone homeomor-
phism between C'(X) and C(Y') can be extended to an ordered homeomorphism
between L~ (X) and L~ (Y). The second main theorem, the Factorization The-
orem, is proved in Part II. The Factorization Theorem says that for binormal
spaces X and Y, every ordered homeomorphism between L~ (X) and L~ (Y) can
be characterized by a unique factorization.

©2010

Mathematical Institute
Slovak Academy of Sciences

1. Introduction

Spaces of set-valued maps under a hyperspace topology are often spaces of
upper semicontinuous maps. One reason for this is that the graphs of such
maps are closed sets, which allows the topology on the space of such maps to
be a Hausdorff topology. However, lower semicontinuous set-valued maps have
a nice property that upper semicontinuous set-valued maps may not have. A
lower semicontinuous set-valued map from a normal space to a separable Banach
space has a continuous selection ([23]). That is, its graph contains the graph of
a continuous function. This suggests that spaces of lower semicontinuous set-
valued maps would be more naturally related to spaces of continuous functions
than are the spaces of upper semicontinuous set-valued maps.
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In defining an appropriate space of lower semicontinuous set-valued maps,
care must be taken to make sure that such a multifunction space is a completely
regular Hausdorff space, despite the fact that the graphs of such maps will
not necessarily be closed. There are several ways that one could define such a
multifunction space. Our approach will use a fairly restrictive definition that
gives a space that we denote by L~ (X), which is a subset of the set of lower
semicontinuous maps with values that are nonempty compact intervals in the
space R of real numbers. This allows us to relate L™ (X)) to the well-studied space
L(X) of upper semicontinuous maps with values that are nonempty compact
intervals in R. In addition, we can then establish our two interrelated main
theorems: the Extension Theorem found in this Part I, and the Factorization
Theorem found in the following Part II. These theorems are similar to, and in
some ways more general than, the corresponding theorems for L(X) found in
[22]. In this Part I, when we refer to a result in Part II, we prefix its number
with a II.

The references contain a selection of papers that involve L(X) and more
general spaces of upper semicontinuous set-valued maps. We refer to Beer [1]
for basic facts about set-valued maps and hyperspaces, and we refer to Engelking
[7] for general topological facts. Finally, we will assume that all of our topological
spaces are completely regular Hausdorff spaces.

2. Definition of L= (X)

A set-valued map, or multifunction, from space X to space Y is a function
that assigns to each element of X a subset of Y. If F is such a map from X to Y,
then the graph of F' is the set {(:1;, yyeXxY: ye F(:z;)} On the other hand,
if F' is any subset of X x Y and z € X, we define F(z) = {y € Y : (z,y) € F}.
We see that F' is the graph of a set-valued map whose value at each x is F(x).
In this way, we identify set-valued maps with their graphs.

If F is a set-valued map from X to Y (equivalently, F is a subset of X x Y),
then F is called upper semicontinuous (usc) provided that for each x € X and
open subset V of Y containing F'(x), there exists a neighborhood U of x such that
F(2') CV for all #’ € U. On the other hand, F is called lower semicontinuous
(Isc) provided that for each x € X and open subset V' of Y intersecting F'(z),
there exists a neighborhood U of = such that F(z') NV # () for all 2’ € U. A
usc map F is called a usco map (see Christensen [3]) provided that F(z) is a
nonempty compact set for all x € X. In addition, a usco map F' is called a cusco
map if F(x) is connected for all z € X. The obvious analogs, Isco maps and clsco
maps, are defined by replacing upper semicontinuous with lower semicontinuous.

We will restrict our attention to ¥ = R. In particular, we will be working
with a lower semicontinuous analog to the space L(X) of cusco maps from X
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to R, whose topological properties have been studied in [11], [18], [19], [20]. To
obtain this analog, that we call L™ (X), we want to restrict the set of clsco maps
from X to R in such a way that L~ (X) is a Hausdorff space under the Vietoris
topology. To this end, let us first observe two properties that members of L(X)
have. We say that a subset F' of X X R is locally bounded provided that for each
x € X, there exist a neighborhood U of x and an a € R such that F(z') C [—a, a]
for all ' € U. Then every member of L(X) is locally bounded and closed in
X x R. This contrasts with the fact that a clsco map from X to R may be
neither locally bounded nor closed in X x R. Also the closure of such a clsco
map may not be lower semicontinuous, even though its closure is always upper
semicontinuous. On the other hand, an open subset of X x R is always lsc, but
is in general not usc.

In order to both define L~ (X) and to work with the Vietoris topology on this
space, it will be useful to define the family .Z(X) of Isc subsets F' of X x R such
that F'(z) is a nonempty interval for each z € X. Then for every F € Z(X),
let Fiyax be the union of all G € Z(X) such that FF C G C F (the closure taken
in X x R).

LEMMA 2.1. For each F € Z(X), Fiax € Z(X) and Fyax(z) is closed for all
rzeX.

Proof. To show that F.x is Isc, let x € X and let O be an open subset of
R such that Fax(z) N O # (. then Fp.x contains a G € Z(X) such that
FCGCFand G(z)NO # (. Now G is Isc, so that x has a neighborhood U
such that G(z')NO # 0 for all 2’ € U. But then Fax(2')NO # () for all 2’ € U,
showing that Fi,.x is Isc.

If € X, F(z) # 0, and hence Fpax(z) # 0. To show that Fi,.x(z) is an
interval, let a,b,c € R with a < b < ¢ and a,c € Fiyax(x). Then Fiax contains
G,H € £(X)suchthat FCGCF, FCHCF,a€G(x)and c € H(x).
Now F(z), G(z) and H(z) are connected with F(z) C G(z) and F(x) C H(z).
Therefore, G(z) U H(x) is connected, so that b € G(x) U H(z) C Fiyax(z). This
shows that Fl,.x(x) is an interval.

Finally, to show that for each x € X, Fiax(x) is closed in R, define

b :{(x,t>: xeXandteFmaX(:L’)},

max

the closure taken in R. Then each F) .. (z) = Fnax(z) is an interval because

Finax(x) is an interval. To show that F),  is in .£(X), it remains to show that

it is Isc. To this end, let x € X and let O be an open subset of R such that
Fl . (®)NO # 0. Then Fiax(x)NO # 0, so that Fiyax(z)NO # 0. Since Fiax is

Isc, x has a neighborhood U such that Fyax(z’)NO # ) for all ' € U. But then
Fl.x(@)NO #0 for all ' € U, showing that F} . is lsc. Then F} € Z(X),

and clearly ' C F) . C F. Therefore, F) .. C Fpax, so that Flax = F) ...
This shows that Fi,.x() is closed in R for all z € X. O
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LEMMA 2.2. Let F € £(X), and let G be a lsc subset of X xR with F C G C F.
Then there exists an H € £ (X) such that G C H C F.

Proof. Let us define
H={(z,t): z€ X and t € ch(G(z))}

where each ch(G(x)) is the convex hull of G(z) in R (i.e., the intersection of
the intervals containing G/(z)). Since each H(z) is a nonempty interval, to show
that H € Z(X), we must show that H is Isc. Solet z € X and let O be an open
subset of R such that there is some s € H(x) NO; we may assume that s ¢ G(z).
Then G(z) N (=00, s) # 0 and G(x) N (s,00) # 0. Now G is Isc, so that = has a
neighborhood U such that for each a2’ € U, there exist an r € G(2) N (—o0, )
and a t € G(2') N (s,00). Then s € (r,t) C H(2'), and hence H(z') N O # ( for
all 2/ € U. This shows that H is lsc, and thus H € Z(X).

To show that H C F', let (z,s) € H\ G, and let U x O be a neighborhood of
(x,s) in X x R. Then G(z) N (—00,s) # 0 and G(z) N (s,00) # 0. Now G is Isc,
so that x has a neighborhood U’ contained in U such that G(x) N (—o0,s) #
and G(z') N (s,00) # 0 for all 2’ € U'. Since G C F, there exists a (z/,r') €
U’ x (—o00,s)NF. Using the Isc property of F', we obtain a neighborhood U” of z’
contained in U’ such that F(z”)N(—o00,s) # 0 for all 2”7 € U”. Now there exists
a (z",t) € U" x (s,00) N F. Let r € F(2") N (—00,s). By the connectivity of
F(2"), we have s € (r,t) C F(z"). Then (z",s) € Ux ONF, so that (x,s) € F.
This shows that H C F. O

If we define a subset F' of X x R to be maximally lower semicontinuous
(maximally 1sc) provided that it is lsc and is not a proper subset of any lsc
subset of its closure, then Lemma 2.1 implies that each F' € Z(X) is densely
contained in a maximally lsc member of Z(X), namely Fi,ax. In fact, we have
the following.

LEMMA 2.3. For each F € £(X), F is mazimally lsc if and only if F = Fiax.

Proof. Let F € Z(X) be maximally Isc. Since F' C Fiax and Fl.x is an
Isc subset of F, we have F' = Fyax. Conversely, let F' € Z(X) be such that
F' = Fax. To show that F' is maximally Isc, let G be an Isc set with FF C G C F.
We need to show that F' = G. Lemma 2.2 gives us an H € Z(X) such that
F CGCHCF. It now follows that H C Fyax. Therefore, G C H C Fiax =
F C G, so that F = G. This completes the argument that F' is maximally
Isc. O

The next lemma gives a convenient characterization of F' being maximally
Isc. If F e £(X) and (z,t) € X x R, we define (x,t) to be an almost Isc point
of F' provided that for every neighborhood O of ¢, there exists a neighborhood
U of xz such that every nonempty open subset of U contains a point z’ with

F@')nO #0.
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LEMMA 2.4. Let F € £(X). Then Fyax is equal to the set of almost lsc points
of F. It follows that F is mazimally Isc if and only if it is equal to its set of
almost Isc points.

Proof. Let F’ be the set of almost Isc points of F. To show that F’ C Fy .,
let (xo,to) € F'. Suppose, by way of contradiction, that (xg,t0) ¢ Fax; say
to > d where d = sup Fiax(z9). Let s € (d,ty). Now xo has a neighborhood
Up such that for every z € Uy, Fiax(z) N (—00,s) # 0, and such that every
nonempty open subset of Uy contains a point x with Fiax(z) N (s,00) # 0. Let
a = inf Fj .y, and define

Fy :Fmaxu{@;,t) €Uy xR: a(zx) <t< s}.

Obviously F.x is a proper subset of Fj.

To obtain a contradiction, we need to show that Fy € .Z(X) and Fy C F.
Clearly each Fy(x) is a nonempty interval. Since Fiax is Isc, to show that
Fy is Isc, we need only consider an x € Uy. Let O be an open interval with
[a(x),s] N O # (. For each 2’ € Uy, if Fhax(z') NO = 0, then a(z’) < t for all
t € O. Tt follows that Fy(x') N O # (), showing that Fy is Isc.

To show that Fy C F, let (z,t) € Fy. Since Fyax C F, we may assume
that © € Uy and ¢t € [a(z),s]. It suffices to show that (z,t) € Fyax. For
each neighborhood U of x contained in Uy, there exists an xyy € U such that
Fax(zy) N (=00, s) # 0, and hence s € Fax(2y). Now the net (zy) converges
to x, so that (x,s) € Fax. Since also (x,a(x)) € Fiax, it follows that (z,t) €
Friaz- This completes the argument that Fy C F', which in turn completes the
contradiction argument and shows that F’ C Fl ..

Conversely, to show that Fi.x C F', let (z,t) € Fax. Suppose, by way
of contradiction, that (x,t) ¢ F’. Then ¢ has a neighborhood O such that for
every neighborhood U of z, there exists a nonempty open subset U’ of U with
F(2')NO =0 for all 2’ € U’'. Since Fiax is Isc, x has a neighborhood Uy such
that for every 2’ € Uy, Finax(2')NO # (. So there exists a nonempty open subset
U’ of Uy such that for every 2’ € U’, F(¢/)NO = (. Then U' x ONF = (.
But U’ x O N Fpax # 0, so that Fu.x € F; which is a contradiction. Therefore,
Frax € F/, which finishes the argument that Fi., = F’. O

We now define L™ (X) to be the set of clsco maps from X to R that are
maximally lsc and locally bounded. Specifically, F' € L~ (X) if and only if

(1) FC X xR;

(2) F(r) is a nonempty compact interval for all z € X;

(3) F' is maximally lsc; and

(4) F is locally bounded.
Note that L~ (X) is a subset of Z(X).
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Unless otherwise indicated, the topology on L~ (X) will be the Vietoris to-
pology, where the basic open subsets of L~ (X) are the subsets of the form
WHnWw; n---NW, where W, Wy, ..., W, are open subsets of X x R, W+ =
{FeL (X): FCW}, and each W, = {F € L (X): FNW; # 0}. Also
the topology generated by the sets of the form W is called the upper Vietoris
topology, and the topology generated by the sets of the form W™ is called the
lower Vietoris topology.

We can use .Z(X) to give another useful base for the Vietoris topology on
L= (X).

LEMMA 2.5. A base for L~ (X) consists of sets of the form WTnNW, N---NW,~
where W is an open element of £ (X) with W (x) bounded for all x € X, and
where each W; is an open subset of W such that W; = U; x O; with O; an
interval.

Proof. Let F € L™ (X) and let Wr n W Nn---N W, contain F where
W, Wy, ..., W, are open subsets of X x R. Define

W’:{<x,s>eX><R: ian(x)—1<s<supF(:L’)+1},

which is a subset of X x R containing F. The fact that W’ is open in X x R
follows from Lemmas 3.1 and 3.2 in the next section. Now for each z € X, F(x)

is compact, so there exist neighborhood U, of x and open interval O, such that
{x} x F(z) CU, x O, CW NW'. Define

Wi = J{U: x Os : z€ X},

which is open in X x R and F C W) C W N W’'. Note that each W{(x) is
bounded since W’(z) is bounded. However, W(j(z) may not be connected for
some x € X. So for each x € X, let Wy(z) be the component of W{(z) that
contains the nonempty set F'(x). Then define

Wo = {(z,t): € X and t € Wy(z)}.

Now Wy(x) is nonempty and connected for each z € X, and FF C Wy C WnNW'.

To show that Wy € £(X), it remains to show that Wy is open in X x R.
So let (z,t) € Wo, and let s € F(z). Since {z} x Wy(z) is connected and
covered by {Ux/ X Oy : 2’ € X}, there exist z1,...,z, € X such that s € O,
t € Oy, Op, MOy, #Ofori=1,...,k—1,and x € U,, for i =1,..., k. Let
U=UzN--NUy, and let O = Oy, U---UO,, . Note that O is a connected subset
of Wj(z) that intersects F'(z), so that O C Wy(x). Now since F is Isc, = has a
neighborhood U’ contained in U such that F(2')NO,, # () for all 2’ € U’. Then
for every 2’ € U’, O is a connected subset of Wyj(z') that intersects F'(z'), so
that O C Wy(z'). Therefore, U’ x O is a neighborhood of (z,t) that is contained

in Wy, showing that Wy is open in X x R, and hence W is an open element of
Z(X) with Wy(z) bounded for all z € X.
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Finally, let (z;,t;) € FNW, for i = 1,...,n. Then for each ¢, there exist
neighborhood Ujq of x; and open interval O, containing ¢; such that U;g x O;9 C
Wi N W(). For each i = 1, ey, let WiO = UiO X Oi0~ Then

FeWwnWyn---nW,CWrnw, n---nW,,
which shows that sets like W™ N Wi, N -~ N W,  form a base for L=(X). O

We end this section with a lemma that will help us show that L~ (X) is a
Hausdorff space.

LEMMA 2.6. If F,G € L= (X) are such that F = G, then F = G.

Proof. Since the union of Isc sets is Isc, UG is a lsc set. Now F' C FUG C F,
so that by Lemma 2.2, there exists an H € £ (X) such that FUG C H C F.
Then F.. = F € H C F, which implies that H = F,,« = F. Similarly,
H = Gpax = G, so that FF = G. OJ

3. Relation to C(X)

The set C(X) of continuous functions from X to R is a subset of both L(X)
and L~ (X). One can show that, as a subspace of both L(X) and L~ (X) with
the Vietoris topology, the subspace topology induced on C(X) can be generated
by the basic open sets of the form W+ where W is an open subset of X x R and
Wt = {f eC(X): fC W} In particular, the Vietoris topology on C(X) is
the same as the upper Vietoris topology on C(X). This topology on C(X) is
also called the graph topology ([24]), and will be the topology that C(X) will
have throughout this study. From Lemma 2.4, we see that C'(X) has as a base
for its topology the family of sets of the form W™ where W is an open element
of Z(X).

The terms upper semicontinuous and lower semicontinuous, when applied to
real-valued functions as opposed to set-valued maps, has a well-known different
definition. In particular, a function f from X to R is called upper semicon-
tinuous (respectively, lower semicontinuous) provided that for every x € X
and € > 0, there exists a neighborhood U of x such that f(U) C (—oo, f(z) +¢)
(respectively, f(U) C (f(z)—¢,0)). Let USC(X) and LSC(X) denote such up-
per semicontinuous real-valued functions and lower semicontinuous real-valued
functions, respectively. Although a member of USC(X) (or LSC(X)) can be
considered as a set-valued map, it will not necessarily be usc (or lsc) in the
sense that was previously defined for set-valued maps. However, USC(X) and
LSC(X) are related to L(X) and L™ (X) as follows.

For each F' in either L(X) or L~ (X), we have F(z) nonempty and bounded
for all x € X. Then there are two real-valued functions sup F' and inf F' defined
on X by sup F(z) =sup{t: t € F(z)} and inf F = inf{t : t € F(z)} for all
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x € X. Because each F(x) is compact, sup F' C F and inf F C F. We can think
of sup F' as the upper boundary of F' and inf F' as the lower boundary of F.

LEMMA 3.1. Let F C X x R such that F(x) is nonempty and bounded for all
x € X. If F is usc, then sup F' € USC(X) and inf F € LSC(X). If F is Isc,
then sup F' € LSC(X) and inf F € USC(X).

Proof. Since this follows directly from definitions, we only illustrate with a
proof of one case. Let F be Isc, let z € X and let € > 0. Then there exists a
t € F(x) with ¢t > sup F(z) —e. By the lsc property of F, z has a neighborhood
U such that for every 2’ € U, F(z') N (sup F(z) — ¢,00) # (. Then sup F(U) C
(sup F(z) — &,00), so that sup F' € LSC(X). O

Since L~ (X) € Z(X), we see that for each F' € L~ (X), the upper boundary
of F' is a lower semicontinuous real-valued function, and the lower boundary of
F' is an upper semicontinuous real-valued function.

LEMMA 3.2. Ifa € USC(X) andb € LSC(X) witha < b, then {(z,s) € X xR :
a(z) < s < b(z)} is open in X x R.

Proof. Let W = {(z,s) € X xR : a(z) <s < b(z)}, let (x,s) € W, and let
r,t € R with a(z) <r < s <t <b(x). Then = has a neighborhood U such that
a(U) C (—oo,r) and b(U) C (t,00). So (z,s) € U x (r,t) C W, showing that W
is open in X x R. O

The following theorem (see [6], [26], or [7, Problems 2.7.4, 5.5.20]) allows us
to use C(X) to study L™ (X). Here the term binormal space means a normal
countably paracompact space.

THEOREM 3.3. The following are true for a Ti-space X.

(1) The space X is normal if and only if for every f € USC(X) and g €
LSC(X) with f < g, there exists an h € C(X) such that f <h < g.

(2) The space X is binormal if and only if for every f € USC(X) and g €
LSC(X) with f < g, there exists an h € C(X) such that f < h < g.

From Theorem 3.3, we see that if X is a normal space and F' € L™ (X), then
there exists an f € C(X) such that inf FF < f < sup F, and therefore f C F.
So every member of L~ (X) contains a continuous selection. On the other hand,
the members of L(X) do not in general contain continuous selections.

Theorem 3.3 allows us to work with the topology on C(X). In particular,
let X be a binormal space, let h € C(X), and let W™ be a basic neighborhood
of h where W is an open element of .Z(X) with W (z) bounded for all x € X.
Then inf W < h < sup W, so there exist f,g € C(X) with inf W < f < h <
g <supW. Then {W € C(X): f < h' < g} is a neighborhood of h in C(X)
contained in W. This shows that for binormal X, the Vietoris (graph) topology
on C'(X) is equal to the fine topology on C(X) (see [4, Section 2]).
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Theorem 3.3 also allows us to work with the topology on L(X), and in so
doing we can relate L™ (X) to L(X).

PROPOSITION 3.4. If X is a binormal space, then the function v: L= (X) —
L(X) defined by «(F) = F for all F € L™ (X) is a well-defined continuous
imgjection.

Proof. To show that ¢ is well-defined, first note that F' is locally bounded, and
so F(z) is a nonempty closed bounded set for all x € X. To finish showing that
F € L(X), as indicated by [11, Lemma 3.1], we need to show that each F(x) is
connected. To this end, let z € X, let [a,b] = F(z), and let t € F(x). We only
consider the case that ¢ > b since the case that ¢ < a is similar. It suffices to
show that [b,t] C F(z), so let s € (b,t). Since F' is lsc, « has a neighborhood Uy
such that for every x¢ € Uy, F(xo)N(—00,s) # (). Also since (z,t) € F, for every
neighborhood U of z contained in Uy, there exists a (zy,ty) € FNU x (s,00).
Then for this zy, let ry € F(xy) N (—o0,s). By the connectedness of F(zy),
s € (ry,ty) C F(xy). So we have a net (zy, s)y in F that converges to (z, s),
showing that (z,s) € F, and hence [b,t] C F(z). This completes the argument
that F'(z) is connected, and we see that ¢ is a well-defined function.

The fact that ¢ is one-to-one follows from Lemma 2.6. Finally, to show that
¢ is continuous, let F € L™ (X) and F € WHrNnW, Nn---NW, in L(X) with
W (z) bounded for all x € X. Since inf W € USC(X), inf F € LSC(X), and
inf W < inf F'| the binormality of X insures, by Theorem 3.3, that there exists
an f € C(X) such that inf W < f < inf F. Similarly, there exists a g € C(X)
such that sup F' < g < sup W. Let

Wy = {(x,t> eXxR: f(x) <t<g(x)},

which is an open subset of X x R. Also observe that ¥ C Wy and W, C W.
Now W is a neighborhood of F in L™ (X), and if G € L™ (X) with G € W,
we have G C Wy C W, so that +(G) € WT. Finally, note that since FF' N W; # ()
for each i = 1,...,n, then F NW; # ) for each i. Certainly if G € L~ (X) with
GNW; # 0 for each 4, then GNW; # () for each i. Therefore, W, nW, N---NW,
is a neighborhood of F' in L~ (X) that maps into W N W, n---NW, under
t, showing the continuity of ¢. O

We might note that, in general, the continuous injection ¢: L™(X) — L(X)
in Proposition 3.4 is not a bijection and is not an embedding.

Our last two lemmas in this section give us additional tools for using C'(X)
to work with L™ (X).

LEMMA 3.5. Let X be a normal space, and let F' be an lsc subset of X x R
such that F(z) is a nonempty compact interval for all x € X. Then F =

U{fecx): fCFy.
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Proof. We certainly have U{f eC(X): fcC F} C F. To show containment
in the other direction, let (z,t) € F'. Define a: X — R and b: X — R as follows.
For every 2’ € X with 2’ # x, let a(2’) = inf F((2’) and b(z') = sup F(2), and
let a(x) = b(x) = t. Since inf F(x) < ¢t < sup F(x), and inf FF € USC(X) and
sup F' € LSC(X) by Lemma 3.1, we see that a € USC(X) and b € LSC(X).
Also since X is normal and a < b, Theorem 3.3 tells us that there exists an
f € C(X) such that a < f < b. Then (x,t) € f C F, showing that F =
U{feC(X): fCF}. O

LEMMA 3.6. Let X be a normal space, and let F € £ (X) be locally bounded.
Then Fax =U{f € C(X): fCF}.

Proof. Since F is locally bounded, it follows that F'(z) is bounded for all
x € X. Therefore, Fihax is a lsc subset of X x R such that Fi.x(z) is nonempty
and bounded for all x € X, so that by Lemma 3.5, we have Fi.x = U{f e C(X):
fC Fuax} CU{feCX): fCF}.

To show containment in the other direction, let f € C(X) with f C F. Now
Fihax is Isc, and clearly f is Isc. Since it is evident that the union of two lsc

subsets of X x R is Isc, we see that Fiuax U f is Isc. But Fiax is maximally lsc
and Fpac U f C F. It follows that Fiax U f = Fax, and f C Fluax. O

Now from these two lemmas we see that when X is normal, each F'in L™ (X)
has the property that F = J{f € C(X): fCF}=U{feC(X): fCF}.

4. Separation properties

Recall that we are assuming that our spaces are completely regular Hausdorff
spaces. In particular, the regularity of X now ensures that L~ (X) is Hausdorff,
as shown in our first proposition.

PRrOPOSITION 4.1. The space L~ (X) is a Hausdorff space.

Proof. Let F,G € L~ (X) with F # G. Then by Lemma 2.6, F' # G, say there
is an (z,t) € G\ F. Since X x R is regular, there exist disjoint open subsets W
and W7 of X X R such that F C W and (z,t) € W;. Note that G N Wy # (.
Then W and W; are disjoint open subsets of L™ (X) containing F and G,
respectively. O

In order to show that L™ (X) is completely regular, we need the following two
lemmas. In the first, for an F' € £ (X), the notation F'* is used for the set of
all G € L™ (X) such that G C F.

LEMMA 4.2. For each W € Z(X) with W(x) bounded for all x € X, the
following are true.
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(1) The closure of W in L™ (X) is contained in Wk, .
(2) The set W is closed in L™ (X).

max

Proof. Statement (2) follows from statement (1) because (Wiax)max = Wmax-
For statement (1), let F € L~ (X) be such that F' ¢ W, .. Then there is
some (x,t) € F \ Wiax. Since Wiax(z) is closed, either ¢t > sup Wiax(x) or
t < inf Wiax(x); say the former. Let s € R with sup Wiax(z) < s < ¢, and let
01 and O3 be disjoint open intervals with t € O; and s € Os. Since F is Isc, x
has a neighborhood U; such that for all 2’ € Uy, F(2')NO; # (. By Lemma 2.4,
(x, s) is not an almost Isc point of W, so that there exist neighborhood O3 of s
contained in Oy and nonempty open subset Us of Uy such that Uy x O3NW = ().
But then Uy x O1 N W = (. So define Wy = Uz x O;. Then F € W; and
W+ NW, =0, showing that F is not in the closure of W in L™ (X). a

LEMMA 4.3. If F € L™ (X) and W is an open element of £ (X) with F C W
and W (zx) bounded for all x € X, then there exists an open element W' of £ (X)
such that F C W' and W/ .. CW.

max

Proof Let a =1infF, b = supF, ¢ = inf W, and d = supW. Define ¢; =
(a+c)/2 and d; = (b+d)/2, which, by Lemma 3.1, are in USC(X) and LSC(X),
respectively. Then ¢ < ¢; < a <b < dy < d. Define Wy = {(z,t) € X xR :
c1(z) < t < di(z)}, which, by Lemma 3.2, is an open subset of X x R such that
F CW;. Also if Wy = {(;z:,t) EXXR: ¢(z) <t < dl(:z:)}, then W, C W.

Let z € X be momentarily fixed. Define r(x) = (¢1(z) + a(x))/2 and s(z) =
(b(z) + dy(z))/2. Let U, be a neighborhood of x such that U, x [r(z), s(z)] C
Wi, e1(Uy) C (—o0,r(x)), and di(U,) C (s(x),o0). Since, by Proposition 2.4,
(x,c1(x)) and (z,dy(z)) are not almost lsc points of F', there exist neighborhoods
Vi and V; of ¢i(x) and dq(z), respectively, such that for every neighborhood U
of z contained in U,, there exist nonempty open subsets O}, and O% of U such
that for all 2’ € O}, F(2’)NV; = 0 and for all 2’ € O%, F(z') N Va = 0. For
each neighborhood U of z contained in U,, let K;U = O}, x (=00, c1(x)] and
K2y = Of x [di(z),00). Note that K ;; and K7 ;; are disjoint from F. Define
K; = U{K,y : U is aneighborhood of z contained in U, }, K7 = J{K2 :
U is a neighborhood of x contained in Ux}, and K, = K} UK2.

Now let @ vary over X, and define W' = Wy \ K where K = |J{K, : z € X}.
We need to show that W' € Z(X), F C W' and W/ . CW.

max
Since F' C Wi, to show that F© C W’, we need to show that F' N K = 0.
Suppose, by way of contradiction, that there exits a (x,t) € F N K. Then
there exists a net (xx,tx) in K that converges to (x,t); we may assume that
each (zx,t\) € Uy x (r(z),s(x)). For each A, there exists an 2, € X with
(Tx,ta) € Kx;. Since we can use a subnet, if necessary, we may assume that

each (x),t)) € Ki;; so then d;(x)) < tx. Since each 2\, € Uy, s(z) < di(x)).
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But then ¢ty < s(z) < di(x)) < tx, which is a contradiction. This shows that
F C W', and that each W' (z) # 0.

Now to show that W' € Z(X), it suffices to show that each W’(x) is con-
nected. Suppose, by way of contradiction, that for some z € X, W'(x) is not
connected; say r < s < t and r,t € W/(z) while s ¢ W'(z). Then (z,s) € K,
so that there exists a net (xy, sy) in K that converges to (z,s). Then for each
A, there exists an z, € X with (zy, s)) € Ky, . As before, we may assume that
each (xy,s)) € KE/A. Let p = (s+1t)/2. Since W' is open, = has a neighborhood
U such that for all 2’ € U, W/(2') N (p, 00) # 0. Now there exists a A such that
(T, sx) € Ux(—00,p). But there exists some t) € W' (xx)N(p, ), so that since
sx < tx, we have (z),t)\) € Kﬁ,}. This contradicts the fact that Kg& NWwW’' = .
Therefore, each W'(z) is connected, so that W’ € Z(X).

It remains to show that W/ .. C W. Now Wl C W, so it suffices to show that
W!.. CWi. Let (z,t) € X xR\Wy; say dy (z) < t. Let ¢ = (dy()+1)/2, and let
V = (g, 00). For each neighborhood U of z contained in U,, 02U is a nonempty
open subset of U such that for all 2’ € O%, (2/,d; (z)) € KiU C K, C XxR\W".
Then for each ' € O}, W/(2') NV = (. Therefore, <x t) is not an almost
Isc point of W', so that by Proposition 2.4, (z,t) ¢ W, This shows that

max

w! C W1 C W, which finishes the proof. O

max

PROPOSITION 4.4. The space L~ (X) is a completely regular space.

Proof. Let F € L™(X) and let W," N W, N---NW,  be a basic open subset
of L7(X) containing F' such that W is an open element of .Z(X) with each
Wo(z) bounded, as given by Lemma 2.5. By Lemma 4.3, there exists an open
W € Z(X) such that F C W and Wyax € Wy. For each x € X, define
a(z) = inf F(x), b(z) = sup F(x), c(z) = inf Wyax(x), and d(x) = sup Wiax(x).
This defines a,c € USC(X) and b,d € LSC(X) such that ¢ < a < b < d.
Now for each t € [0,1] and = € X, define pi(z) = tc(z) + (1 — t)a(x) and
qt(z) = td(z) + (1 — t)b(z). Then for cach t € [0, 1], define

Fo={{z,y) € X xR: pi(x) <y < qila)}.

We now show that for each ¢ € [0,1], F; = (Fi)max. Suppose, by way of
contradiction, that there exits a (zo,y0) € (Fi)max \ Ft; say yo > qi(xo). Let
e = yo — qt(xo). Since (Fy)max and Wiy are lsc, xo has a neighborhood Uy
such that for all x € Uy, (Fy)max(x) N (yo — /4,90 + €/4) # 0 and Wiyax(z) N
(d(zo) — €/4,d(xo) + €/4) # 0. Let y1 = b(xo) + €/4, so that (xo,y1) ¢ F.
Now F' = Fpax, so that by Lemma 2.4, there exists an open subset U X (r,s)
contained in Uy X (y1 — €/4,y1 + €/4) with U x (r,s) N F = {); in particular,
Ux(r,00)NF ={. Thenif z € U, we have b(z) < y1+¢/4 = b(xo)+¢/2. Also for
x €U, d(x) <d(xg)+e/4,so that ¢ (x) = td(x)+ (1 —t)b(x) < t(d(xo) +£/4) +
(1=t)(b(xo)+e/2) = td(xo)+(1—t)b(xo)+te/4+(1—1t)e/2 = qi(xo)+e/2—te /4 <
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qt(z0) +€/2 =yo —e+¢€/2 =yo — £/2. Since this is true for all z € U, we have
Ux(yo—e/4,y0+¢e/4)NF; =0, and thus U X (yo —e/4,yo+€/4) N (F})max = 0.
But U C Uy, which gives us the contradiction; and therefore, Fy = (F})max-
Now for each G € L™ (X), define fo(G) as follows. If G C F; for some
t € [0,1], then take fo(G) = inf{t € [0,1] : G C F}. If G € F, for all
t € [0,1], then take fo(G) = 1. This defines the function fo: L= (X) — [0,1].
To show that fy is continuous, let G € L™ (X) and let € > 0. First, suppose
that fo(G) > 0; we may assume that ¢ < fo(G). Let t € (fo(G) — ¢, fo(G)),
so that G € F;. We know that F; = (F})max, so that F' is closed in L™ (X)
by Lemma 4.2. Define ) = L™(X) \ F;", which is a neighborhood of G in
L~ (X). If G’ € 0y, then G’ € F;, so that fo(G') >t > fo(G) — €. Secondly,
suppose that fo(G) < 1; we may assume that ¢ < 1 — fo(G). Then there
exists a t € (fo(G), fo(G) + €) such that G C F}. Let s € (¢, fo(G) +¢), and let
Fo={(z,y) € XxR: ps(x) <y < gs(x)}. Then F? is an open subset of X xR
by Lemma 3.2. Now G C F; C F?, so that 0y = (F?)* is a neighborhood of G
in L7(X). If G’ € 0y, then G' C F? C Fj, so that fo(G') < s < fo(G)+e. Now
either fo(G) =1, or fo(G) =0,0r 0 < fo(G) < 1. So either & is a neighborhood
of G such that 1 —e < fo(G’) for all G’ € Oy, or O is a neighborhood of G such
that fo(G') < e for all G’ € Oy, or 01 N O, is a neighborhood of G such that
fo(G)—e < fo(G') < fo(G)+e¢ for all G' € 01 N O,. Therefore, fy is continuous.

Now momentarily fix 7 € {1, .. .,n}, and let (z;,y;) € FNW,. Since X x R
is completely regular, there exists a continuous function g;: X x R — [0, 1] such
that g;((z;,v:)) = 0 and g;((z,y)) = 1 for all (z,y) € X x R\ W;. Define
fir L7(X) = [0,1] by fi(G) = inf{t € [0,1] : Gng;'([0,t)) # 0}. Then
fi(F) =0, and if G ¢ W, we have f;(G) = 1. To show that f; is continuous,
let G € L™ (X) and let € > 0. First, suppose that f;(G) > 0; we may assume
that ¢ < f;(G). Let t € (fi(G) — ¢, f:(GQ)), so that G N g;'([0,¢]) = 0. Then
Wi1 = g; *((t,1]) is an open subset of X x R containing G, and hence W;rl isa
neighborhood of G. If G’ € W, then G'Ng;'([0,1]) = 0, and thus f;(G") >t >
fi(G) —e. Secondly, suppose that f;(G) < 1; we may assume that ¢ < 1— f;(G).
Then there exists a t € (fi(G), f;(G) + ) such that G N g; *([0,¢)) # 0. Then
Wi2 = g; '([0,t)) is an open subset of X x R, and so W, is a neighborhood of
G. If G' € W5, then G’ N g;1([0,1)) # 0, and hence fi(G') <t < f;(G) +e.
Now either f;(G) = 1, or f;(G) = 0, or 0 < f;(G) < 1. So either W;ﬁ is a
neighborhood of G such that 1 —e < f;(G’) for all G’ € Wiﬁ, or W, is a
neighborhood of G such that f;(G') < e for all G’ € W,,, or W, N W, is
a neighborhood of G such that f;(G) —e < fi(G") < fi(G) + ¢ for all G’ €
le N W, . Therefore, f; is continuous.

Finally, letting ¢ vary, define the continuous function f: L= (X) — [0,1] by
f=max{fo, f1,..., fn}. Then f(F) =0, and if F ¢ W' n W, n---NW,,
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then F' € Winax or FNW,; = ) for some 4. It follows that for such F, f(F) =
which completes the proof that L~ (X) is completely regular. d

5. Extension Theorem

A general problem is to determine how X and Y are related if C(X) and C(Y)
are homeomorphic. It may not be the case that X and Y must be homeomorphic.
For example, if X is the space of countable ordinals and Y is its (one point)
compactification, it is well-known that C'(X) and C(Y) are homeomorphic (see
Example 11.2.17 in Part II).

This section combined with Part II gives a partial solution to the problem
above. In this section, we show that certain homeomorphisms from C(X) onto
C(Y) extend to a special kind of homeomorphism from L~ (X) onto L~ (Y),
and in the last section of Part II, a factorization is given for this special kind of
homeomorphism that shows how X and Y must be related.

A function p: C(X) — C(Y) is increasing (respectively, decreasing) provided
that if f1, fo € C(X) are such that f; < fo, then u(f1) < p(f2) (respectively,
w(f1) > p(f2)). We say that p is monotone provided that it is either increasing
or decreasing.

We now generalize this notion of monotone function by defining a function
p: C(X) — C(Y) to be bimonotone provided that for every f1, fo € C(X) with
fi < f2 and for every f € C(X), it is true that f; < f < fy if and only if
min{u(f1),1(f2)} < p(f) < max{u(f2), u(f)}. Then p: C(X) — C(Y) is a
bimonotone homeomorphism provided that it is a homeomorphism such that
both p and p~! are bimonotone.

We also define a homeomorphism M: L~ (X) — L~ (Y) to be an ordered
homeomorphism provided that for each Fy,Fy € L™ (X), M(Fy) C M(F3) if
and only if F} C Fb.

If p: C(X) — C(Y) is a bimonotone homeomorphism, then for each F' €
L~ (X), define

= {uf): feC(x) with f C F}.

Also if M: L_(X) — L_(Y) is an ordered homeomorphism, then for each f €
C(X), let M.(f) = M(f) where the second f is thought of as an element of
L= (X).

EXTENSION THEOREM 5.1. Let X and Y be binormal spaces. If u: C(X)— C(Y)
is a bimonotone homeomorphism, then p*: L= (X) — L= (Y) is a well-defined
extension of p that is an ordered homeomorphism; if M: L~ (X) — L= (Y) is
an ordered homeomorphism, then M,: C(X) — C(Y) is a well-defined restric-
tion of M that is a bimonotone homeomorphism; and we have (u*). = p and
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(M,)* = M. Therefore, there is a natural one-to-one correspondence between the
bimonotone homeomorphisms from C(X) onto C(Y') and the ordered homeomor-
phisms from L~ (X) onto L= (Y). In particular, a function u: C(X) — C(Y)
can be extended to an ordered homeomorphism from L~ (X) onto L~ (Y) if and
only if p is a bimonotone homeomorphism.

We will break the proof of the Extension Theorem 5.1 into a number of
lemmas. So for the following lemmas in this section, let X and Y be bi-
normal spaces, and let us start by working with the ordered homeomorphism

M: L~ (X) = L™(Y).

LEMMA 5.2. Let Fi,F, € L™ (X) be such that Fy(x) N Fy(z) # O for all
rz e X. Then F1 N Fy € L_(X), M(Fl) ﬂM(FQ) S L_(Y), and M(F1 N FQ) =
M(Fy) N M(Fy).

Proof. It is immediate that Fy N Fy is a locally bounded member of .Z(X).
By considering almost lsc points, we see that (F1 N Fo)max € (F1)max = F1,
and (F1 N Fo)max € (F2)max = F2. Therefore, F1 N Fy = (F1 N F3)max, S0 that
FiNF, € L~ (X). Now since M is ordered, we have M (Fy N Fy) C M(F}y) and
M(Fy N Fy) € M(Fy), and hence M (Fy N Fy) C M(Fy) N M(F3). Then note
that M (Fy)(y) N M(Fs)(y) # 0 for all y € Y, so that by the argument above,
M(F))NM(F,) € L= (Y). Again using the argument above, but with M~ we
have Mﬁl(M(F1)) N M(FQ)) - Mﬁl(M(F1)) N Mﬁl(M(FQ)) = Fy N F;. It now
follows that M(Fl) n M(FQ) = M(M_l(M(F1) n M(FQ))) Q M(F1 N FQ), and

therefore, M(Fy N Fy) = M(Fy) N M(F). O
LEMMA 5.3. Let fl,fg € C(X) with f1 < fa, let g1 = mln{M f1), M (fQ)}, let
ggzmaX{M(fl fg} let F' = {xt ye X xR: fi(x) ng:l;}, and
leth{(y,t)GYxR g1(y) <t <ga(y)}. Then F € L™ ( ), G e L~(Y),
and M (F) =G.

Proof. Itisimmediate that F' € L™ (X)and G € L™ (Y). Now since fi, fo C F,
we have M (f1), M(f2) € M(F). For each y € Y, M(F)(y) is connected, and
every element of G(y) lies between M (f1)(y) and M (f2)(y), so it follows that G C
M (F). On the other hand, M (f1), M(f2) C G, so that f1, fo € M~}(G). Again,
by the connectivity of each M~1(G)(z), we have F C M~(G). Therefore,
M(F) C G, which finishes the argument that M (F) = G. g

LEMMA 5.4. If M,: C(X) — C(Y) is the restriction of M to C(X), then M,
18 a bimonotone homeomorphism.

Proof. The ordered property of M forces M, to map members of C(X) to
members of C'(Y), so it is clear that M, is a homeomorphism. Let f1, fo € C'(X)
with f1 < fy and let f € C(X). Define g1, g2, F, and G as in Lemma 5.3,
and thus M(F) = G. Also let ¢ = M, (f) = M(f). If fi < f < fs, then
f C F, so that by the ordered property of M, g = M(f) C M(F) = G,
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and hence g1 < ¢ S ge. Conversely, if g1 < g < g9, then ¢ C G, so that
f =M1y C M’ (G) = F, and hence f; < f < fo. Since g = M.(f),
g1 = min{ M. (f1), M.(f2 } and go = max{M*(fl),M*(fg)}, we see that M, is
bimonotone. (]

Now let us work on getting the extension by starting with the bimonotone
homeomorphism p: C(X) — C(Y).

LEMMA 5.5. The bimonotone homeomorphism p has the property that for every
f1, f2, f3 € C(X) with fi1 < f2 < f3,

min{ju(f1), u(fs)} < plfa) < max{pu(f), n(fa)}.

Proof. Let fi,f2,f3 € C(X) with f1 < fa < f3, and define g3 =
min{u(f).u(fo)}s g2 = plf2), and go — max{u(f).u(fs)}. Let W —
{(x,t> eEXxR: fi(z) <t< fg(;z:)}, so that W7 is a neighborhood of f5 in
C(X). Since u~! is continuous, there exists a neighborhood W of g in C(Y)
such that p= (W) € WT where Wy = {(y,t) € Y xR : hi(y) <t < hao(y)}
for some hy,hy € C(Y). Let k1 = (h1 + ¢2)/2 and ko = (g2 + h2)/2. Then k; <
g2 < ko and kq, ko € W, Now pu=1(k1), p 1 (k2) € p=(W5") € W, and hence
fi<p (k1) < fzand f; < pt(ke) < f3. But then since p is bimonotone, we
have g1 < k1 < g3 and g1 < k2 < g3, so that g1 < k1 < g2 < k2 < g3. O

LEMMA 5.6. For each F € L™(X) and eachy € Y, p*(F)(y) is connected.

Proof. Suppose that p*(F)(y) is not connected. Then there exist r < s < t
with 7.t € p*(F)(y) and s ¢ p*(F)(y). Let W =Y x R\ {(y,s)}. By the
continuity of u, for each f € C(X) with f C F, there exists an open subset
Wy of X x R with each Wy (z) connected and such that f € I/Vf+ in C(X) and
p(Wf) € Wt. Define Wy = U{Wy : f € C(X) with f C F}. Then W is
an open subset of X x R with each Wy(z) connected and such that F' C W)
and p(Wi) € W*. Let fo fi € C(X) with fo,fy C F and p(f,)(y) =
and p(ft)(y) = t. Now min{f,, f;},max{f., ft} € F C Wy, so there exist
fi,f2 € C(X) with f1, fa € Wy and fi < min{f,, fi} < max{f., fi} < fa.
Let g1 = min{u(f1), u(f2)} and go = max{u(f1), u(f2)}. Lemma 5.5 tells us
that g1 < pu(fr) < g2 and g1 < p(fy) < g2. Then gi(y) < p(fr)(y) = r
and g2(y) > u(fe)(y) = t, so that g1(y) < s < g2(y). Then there exists a
g € C(Y) with g1 < g < g2 and ¢g(y) = s. Since p is bimonotone, we have
fi < t(g) < fo2, so that u=t(g) € W,". Therefore, g € u(W,") € W, which
contradicts the fact that g(y) = s. O

LEMMA 5.7. For each F € L~ (X) and each y € Y, u*(F)(y) is bounded.

Proof. Suppose, by way of contradiction, that u*(F')(y) is unbounded for some
y € Y say it is unbounded from above. Then for each n € N, there exits
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an f, € C(X) with f,, € F and u(f,) > n. Since X is binormal and F' is
locally bounded, there exist f, f’ € C(X) with f < inf FF and supF < f’.
Then for each n, f < f, < f’. Now pu is bimonotone, so for each n, we have
pu(fn) < max{p(f), u(f)}. I p(f)(y) < u(f)(y), then for each n, n < u(fa)(y)
< u(f)(y); which contradicts the continuity of u(f) at y. The other case con-
tradicts the continuity of u(f’) at y. d

LEMMA 5.8. For each F € L™ (X), p*(F) = p*(F)max-

Proof. Suppose, by way of contradiction, that there exists a (y,t) €
W(F)max \ w*(F); say t > d where d = suppu*(F)(y). Note that y can not
be an isolated point of Y because otherwise (y,¢) would not be in the closure
of p*(F). By Lemma 3.6 there exists a ¢ € C(Y) with ¢ C p*(F)max and
g(y) =t. Since g Z p*(F), we have u~!(g) € F. So there exists an € X with
p~t(g)(x) ¢ F(x); say p~'(g)(x) > b where b = sup F'(z). Let s = u~'(g)(z).
Since (z,8) ¢ F = Fiax, (x,s) is not an almost lsc point of F. So there ex-
ists a neighborhood O of s with the property that for every neighborhood U of
x, there is a nonempty open subset Uy of U such that F(z') N O = () for all
2’ € Uy. In particular, let U be a neighborhood of = such that u=1(g)(U) C O
and such that for every z C U, F(z)N(b—¢e,b+¢) # 0, where ¢ = (s — b)/2;
and let Uy be a nonempty open subset of this U such that F(z') N O = 0 for
all ' € Up. Choose an x¢g € Uy. Since pu~1(g)(zo) € O, there is an r € O
with r < u=1(g)(z0). Since X is binormal and F is locally bounded, there exist
fi,f2 € C(X) with f; <inf F and sup F' < fy. Since F(z)N(b—e,b+¢e) # 0
for all z € U, we have that sup F(z') < inf O for all 2’ € Up, and so we can
choose fy so that fo(wg) = r. Now p is bimonotone, so that since u=1(g) £ fa,
it follows that either min{u(fl),,u)fg)} L gorg < max{u(fl),u(fQ)}. Sup-
pose g £ max{u(fl),u(fg)}; the proof in the other case is similar. Then
there is a yo € Y with max{u(f1), u(f2)}(y0) < g(yo). Since the functions
max{p(f1), u(fQ)} and g are continuous, there is a neighborhood Wof yy and a
o > 0 such that W x (g(yo) — 0, g(yo) + o) Nmax{u(f1), u(f2)} = 0. Define the
set-valued map G by

G(y') = [min{p(f1), u(f2) } (), max{u(f1), n(f2)} ()]

for all y’ € Y. Then p*(F) C G and GNW x (g(yo) — 0, 9(yo) + o) = 0, which
is a contradiction to the fact that the point (yo, g(yo)) is an almost Isc point of
P (F ) max- u

LEMMA 5.9. For each F € L™ (X), p*(F) is locally bounded.

Proof. Since F' is locally bounded, there exist f1, fo € C(X) with f; <inf F’
and sup F' < fo. Then for every f € C(X) with f C F, we have f; <
f< fo, and hence min{u(f1), u(fo)} < p(f) < max{p(f1),(f2)}. Therefore,
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min{u(f1), u(f2)} < inf p*(F) and sup p*(F) < max{u(f1),4(f2)}, showing
that p*(F) is locally bounded. O

Lemmas 5.6 through 5.9 show that u*: L= (X) — L~ (Y) is a well-defined
function. The same arguments used on (,u’ )*: L7 (Y) — L™ (X) show that it
is also a well-defined function.

LEMMA 5.10. For each F € L™ (X), (u~

H
Proof. If f € C(X) with f C F, then u(f)
(u=1)*(u*(F)). This shows that F - (,u 1)*( *(F)). For the reverse con-
tainment, let f € C(X) with f C (u=1)*(u*(F)). Suppose, by way of con-
tradlctlon that f € F. Then f(x) ¢ F(x) for some z € X; say f(z) > b
where b = sup F(x). Now there exist fi1, fo € C(X) such that f; < inf F' and
sup F' < fy. We can choose fo so that fa(z ) f( ) for some z € X. Since
f £ f1, we have either min{u(fl (f2) } Z pu(f) or p(f) € max{pu(f1), u )}
i i i) < () and supi(F) & o). p(f2)}, 5o
that u(f) € p*(F). We can repeat this argument to show that f = u=!(u(f)) €
(u=H)*(u*(F)), which is a contradiction.

(n*(F)) =

7
C p*(F), so that f = p='(u(f)) €

Lemma 5.10 says that (u=1)*u* is the identity map on L~ (X). The same ar-
gument shows that p*(pu~1)* is the identity map on L=(Y). Therefore,
w*: L™ (X) — L (Y) is a bijection.

LEMMA 5.11. The bijection p*: L= (X) — L™(Y) is continuous when L™ (X)
and L= (YY) have the upper Vietoris topology.

Proof. Let F € L™ (X) and let W+ be a basic neighborhood of p*(F) where
W is a locally bounded element of Z(Y). Then there exists a W' € Z(Y)
with p*(F) € W' and W/, € W. Note that W/ .. € L™ (Y). Define W

max — max

to be the interior of (u=1)*(W!..) in X x R. To show that F C W, let
(x,t) € F. By Lemma 3.5, there exists an f € C(X) with f C F and f(z) =t
Since p*(F) € W', we have p(f) € W’. Then there exist g1,92 € C(Y) with
g1 < u(f) < g2 and gi,92 C W' C W, Let fi = min{n " (1) /fl(gz)} and
fo= max{u gl) = t(ge2) } Then by Lemma 5.5 applied to u=1, f1 < f < f2
and I’ (gl) I (92) - ( ) (ernax) We have flva = ( ) (ernax)

that {(2/,t') € X xR : fi(a) <t < fo(a’)} is an open subset of X x R
containing f and contained in (™ ) (W] .«), and thus contained in Wy. There-
fore, (x,t) € Wy, showing that W' is a neighborhood of F in L~(X). Finally,
if I/ € L=(X) with F/ € W, then F' C Wy C (p~1)*(W/,.), so that

w*(F") C W/ .. €W, and hence u*(F') € W+. O

The same argument as in Lemma 5.11 shows that (u=1)*: L=(Y) — L™ (X)
is continuous when L~ (X) and L~ (Y') have the upper Vietoris topology, so that
w*: L7 (X) — L™ (Y) is a homeomorphism with respect to the upper Vietoris
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topology. Now the fact that p* is also a homeomorphism with respect to the
Vietoris topology follows from Proposition I1.3.6 in Part II. That p* is an ordered
homeomorphism comes directly from the definition of u*.

LEMMA 5.12. For pu: C(X) — C(Y), we have (u*)x = pu; and for M: L= (X) —
L=(Y), we have (M,)* = M.

Proof. For (u*). = u, observe that for each f € C(X), u*(f) = u(f), so
that (u*)«(f) = p(f). For (M,)* = M, let F € L= (X). Now (M,)*(F) =
U{M(f): feC(X)with f C F} C M(F) since M is ordered. To show that
M(F) C U{M(f): f € C(X)with f C F}, let (y,t) € M(F). Then, by
Lemma 3.5, there exists a g € C(Y) with (y,t) € g € M(F). Now M~1(g) C

M~Y(M(F))=F,so that (y,t) € g CU{M(f): feC(X)with fCF}. O

This finishes the proof of the Extension Theorem 5.1. The related Factoriza-
tion Theorem I1.3.3 is proved in the following Part II.
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