
�
�

DOI: 10.2478/s12175-010-0030-x

Math. Slovaca 60 (2010), No. 4, 521–540

SPACES OF LOWER SEMICONTINUOUS

SET-VALUED MAPS I

R. A. McCoy

(Communicated by L’ubica Holá )

ABSTRACT. We introduce a lower semicontinuous analog, L−(X), of the well-
studied space of upper semicontinuous set-valued maps with nonempty compact
interval images. Because the elements of L−(X) contain continuous selections,
the space C(X) of real-valued continuous functions on X can be used to establish
properties of L−(X), such as the two interrelated main theorems. The first of
these theorems, the Extension Theorem, is proved in this Part I. The Extension
Theorem says that for binormal spaces X and Y , every bimonotone homeomor-
phism between C(X) and C(Y ) can be extended to an ordered homeomorphism
between L−(X) and L−(Y ). The second main theorem, the Factorization The-
orem, is proved in Part II. The Factorization Theorem says that for binormal
spaces X and Y , every ordered homeomorphism between L−(X) and L−(Y ) can
be characterized by a unique factorization.
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1. Introduction

Spaces of set-valued maps under a hyperspace topology are often spaces of
upper semicontinuous maps. One reason for this is that the graphs of such
maps are closed sets, which allows the topology on the space of such maps to
be a Hausdorff topology. However, lower semicontinuous set-valued maps have
a nice property that upper semicontinuous set-valued maps may not have. A
lower semicontinuous set-valued map from a normal space to a separable Banach
space has a continuous selection ([23]). That is, its graph contains the graph of
a continuous function. This suggests that spaces of lower semicontinuous set-
valued maps would be more naturally related to spaces of continuous functions
than are the spaces of upper semicontinuous set-valued maps.
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In defining an appropriate space of lower semicontinuous set-valued maps,
care must be taken to make sure that such a multifunction space is a completely
regular Hausdorff space, despite the fact that the graphs of such maps will
not necessarily be closed. There are several ways that one could define such a
multifunction space. Our approach will use a fairly restrictive definition that
gives a space that we denote by L−(X), which is a subset of the set of lower
semicontinuous maps with values that are nonempty compact intervals in the
space R of real numbers. This allows us to relate L−(X) to the well-studied space
L(X) of upper semicontinuous maps with values that are nonempty compact
intervals in R. In addition, we can then establish our two interrelated main
theorems: the Extension Theorem found in this Part I, and the Factorization
Theorem found in the following Part II. These theorems are similar to, and in
some ways more general than, the corresponding theorems for L(X) found in
[22]. In this Part I, when we refer to a result in Part II, we prefix its number
with a II.

The references contain a selection of papers that involve L(X) and more
general spaces of upper semicontinuous set-valued maps. We refer to Beer [1]
for basic facts about set-valued maps and hyperspaces, and we refer to Engelking
[7] for general topological facts. Finally, we will assume that all of our topological
spaces are completely regular Hausdorff spaces.

2. Definition of L−(X)

A set-valued map, or multifunction, from space X to space Y is a function
that assigns to each element of X a subset of Y . If F is such a map from X to Y ,
then the graph of F is the set

{〈x, y〉 ∈ X×Y : y ∈ F (x)
}

. On the other hand,

if F is any subset of X × Y and x ∈ X, we define F (x) =
{
y ∈ Y : 〈x, y〉 ∈ F

}
.

We see that F is the graph of a set-valued map whose value at each x is F (x).
In this way, we identify set-valued maps with their graphs.

If F is a set-valued map from X to Y (equivalently, F is a subset of X × Y ),
then F is called upper semicontinuous (usc) provided that for each x ∈ X and
open subset V of Y containing F (x), there exists a neighborhood U of x such that
F (x′) ⊆ V for all x′ ∈ U . On the other hand, F is called lower semicontinuous
(lsc) provided that for each x ∈ X and open subset V of Y intersecting F (x),
there exists a neighborhood U of x such that F (x′) ∩ V �= ∅ for all x′ ∈ U . A
usc map F is called a usco map (see Christensen [3]) provided that F (x) is a
nonempty compact set for all x ∈ X. In addition, a usco map F is called a cusco
map if F (x) is connected for all x ∈ X. The obvious analogs, lsco maps and clsco
maps, are defined by replacing upper semicontinuous with lower semicontinuous.

We will restrict our attention to Y = R. In particular, we will be working
with a lower semicontinuous analog to the space L(X) of cusco maps from X
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to R, whose topological properties have been studied in [11], [18], [19], [20]. To
obtain this analog, that we call L−(X), we want to restrict the set of clsco maps
from X to R in such a way that L−(X) is a Hausdorff space under the Vietoris
topology. To this end, let us first observe two properties that members of L(X)
have. We say that a subset F of X ×R is locally bounded provided that for each
x ∈ X, there exist a neighborhood U of x and an a ∈ R such that F (x′) ⊆ [−a, a]
for all x′ ∈ U . Then every member of L(X) is locally bounded and closed in
X × R. This contrasts with the fact that a clsco map from X to R may be
neither locally bounded nor closed in X × R. Also the closure of such a clsco
map may not be lower semicontinuous, even though its closure is always upper
semicontinuous. On the other hand, an open subset of X ×R is always lsc, but
is in general not usc.

In order to both define L−(X) and to work with the Vietoris topology on this
space, it will be useful to define the family L (X) of lsc subsets F of X×R such
that F (x) is a nonempty interval for each x ∈ X. Then for every F ∈ L (X),
let Fmax be the union of all G ∈ L (X) such that F ⊆ G ⊆ F (the closure taken
in X × R).

����� 2.1� For each F ∈ L (X), Fmax ∈ L (X) and Fmax(x) is closed for all
x ∈ X.

P r o o f. To show that Fmax is lsc, let x ∈ X and let O be an open subset of
R such that Fmax(x) ∩ O �= ∅. then Fmax contains a G ∈ L (X) such that
F ⊆ G ⊆ F and G(x) ∩ O �= ∅. Now G is lsc, so that x has a neighborhood U
such that G(x′)∩O �= ∅ for all x′ ∈ U . But then Fmax(x′)∩O �= ∅ for all x′ ∈ U ,
showing that Fmax is lsc.

If x ∈ X, F (x) �= ∅, and hence Fmax(x) �= ∅. To show that Fmax(x) is an
interval, let a, b, c ∈ R with a < b < c and a, c ∈ Fmax(x). Then Fmax contains
G,H ∈ L (X) such that F ⊆ G ⊆ F , F ⊆ H ⊆ F , a ∈ G(x) and c ∈ H(x).
Now F (x), G(x) and H(x) are connected with F (x) ⊆ G(x) and F (x) ⊆ H(x).
Therefore, G(x) ∪H(x) is connected, so that b ∈ G(x) ∪H(x) ⊆ Fmax(x). This
shows that Fmax(x) is an interval.

Finally, to show that for each x ∈ X, Fmax(x) is closed in R, define

F ′
max =

{〈x, t〉 : x ∈ X and t ∈ Fmax(x)
}
,

the closure taken in R. Then each F ′
max(x) = Fmax(x) is an interval because

Fmax(x) is an interval. To show that F ′
max is in L (X), it remains to show that

it is lsc. To this end, let x ∈ X and let O be an open subset of R such that
F ′
max(x)∩O �= ∅. Then Fmax(x)∩O �= ∅, so that Fmax(x)∩O �= ∅. Since Fmax is

lsc, x has a neighborhood U such that Fmax(x′)∩O �= ∅ for all x′ ∈ U . But then
F ′
max(x′) ∩ O �= ∅ for all x′ ∈ U , showing that F ′

max is lsc. Then F ′
max ∈ L (X),

and clearly F ⊆ F ′
max ⊆ F . Therefore, F ′

max ⊆ Fmax, so that Fmax = F ′
max.

This shows that Fmax(x) is closed in R for all x ∈ X. �
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����� 2.2� Let F ∈ L (X), and let G be a lsc subset of X×R with F ⊆ G ⊆ F .
Then there exists an H ∈ L (X) such that G ⊆ H ⊆ F .

P r o o f. Let us define

H =
{〈x, t〉 : x ∈ X and t ∈ ch(G(x))

}

where each ch(G(x)) is the convex hull of G(x) in R (i.e., the intersection of
the intervals containing G(x)). Since each H(x) is a nonempty interval, to show
that H ∈ L (X), we must show that H is lsc. So let x ∈ X and let O be an open
subset of R such that there is some s ∈ H(x)∩O; we may assume that s /∈ G(x).
Then G(x) ∩ (−∞, s) �= ∅ and G(x) ∩ (s,∞) �= ∅. Now G is lsc, so that x has a
neighborhood U such that for each x′ ∈ U , there exist an r ∈ G(x′) ∩ (−∞, s)
and a t ∈ G(x′) ∩ (s,∞). Then s ∈ (r, t) ⊆ H(x′), and hence H(x′) ∩ O �= ∅ for
all x′ ∈ U . This shows that H is lsc, and thus H ∈ L (X).

To show that H ⊆ F , let 〈x, s〉 ∈ H \G, and let U ×O be a neighborhood of
〈x, s〉 in X ×R. Then G(x)∩ (−∞, s) �= ∅ and G(x)∩ (s,∞) �= ∅. Now G is lsc,
so that x has a neighborhood U ′ contained in U such that G(x′) ∩ (−∞, s) �= ∅
and G(x′) ∩ (s,∞) �= ∅ for all x′ ∈ U ′. Since G ⊆ F , there exists a 〈x′, r′〉 ∈
U ′×(−∞, s)∩F . Using the lsc property of F , we obtain a neighborhood U ′′ of x′

contained in U ′ such that F (x′′)∩(−∞, s) �= ∅ for all x′′ ∈ U ′′. Now there exists
a 〈x′′, t〉 ∈ U ′′ × (s,∞) ∩ F . Let r ∈ F (x′′) ∩ (−∞, s). By the connectivity of
F (x′′), we have s ∈ (r, t) ⊆ F (x′′). Then 〈x′′, s〉 ∈ U ×O∩F , so that 〈x, s〉 ∈ F .
This shows that H ⊆ F . �

If we define a subset F of X × R to be maximally lower semicontinuous
(maximally lsc) provided that it is lsc and is not a proper subset of any lsc
subset of its closure, then Lemma 2.1 implies that each F ∈ L (X) is densely
contained in a maximally lsc member of L (X), namely Fmax. In fact, we have
the following.

����� 2.3� For each F ∈ L (X), F is maximally lsc if and only if F = Fmax.

P r o o f. Let F ∈ L (X) be maximally lsc. Since F ⊆ Fmax and Fmax is an
lsc subset of F , we have F = Fmax. Conversely, let F ∈ L (X) be such that
F = Fmax. To show that F is maximally lsc, let G be an lsc set with F ⊆ G ⊆ F .
We need to show that F = G. Lemma 2.2 gives us an H ∈ L (X) such that
F ⊆ G ⊆ H ⊆ F . It now follows that H ⊆ Fmax. Therefore, G ⊆ H ⊆ Fmax =
F ⊆ G, so that F = G. This completes the argument that F is maximally
lsc. �

The next lemma gives a convenient characterization of F being maximally
lsc. If F ∈ L (X) and 〈x, t〉 ∈ X × R, we define 〈x, t〉 to be an almost lsc point
of F provided that for every neighborhood O of t, there exists a neighborhood
U of x such that every nonempty open subset of U contains a point x′ with
F (x′) ∩O �= ∅.
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����� 2.4� Let F ∈ L (X). Then Fmax is equal to the set of almost lsc points
of F . It follows that F is maximally lsc if and only if it is equal to its set of
almost lsc points.

P r o o f. Let F ′ be the set of almost lsc points of F . To show that F ′ ⊆ Fmax,
let 〈x0, t0〉 ∈ F ′. Suppose, by way of contradiction, that 〈x0, t0〉 /∈ Fmax; say
t0 > d where d = supFmax(x0). Let s ∈ (d, t0). Now x0 has a neighborhood
U0 such that for every x ∈ U0, Fmax(x) ∩ (−∞, s) �= ∅, and such that every
nonempty open subset of U0 contains a point x with Fmax(x) ∩ (s,∞) �= ∅. Let
a = inf Fmax, and define

F0 = Fmax ∪
{〈x, t〉 ∈ U0 × R : a(x) ≤ t ≤ s

}
.

Obviously Fmax is a proper subset of F0.

To obtain a contradiction, we need to show that F0 ∈ L (X) and F0 ⊆ F .
Clearly each F0(x) is a nonempty interval. Since Fmax is lsc, to show that
F0 is lsc, we need only consider an x ∈ U0. Let O be an open interval with
[a(x), s] ∩ O �= ∅. For each x′ ∈ U0, if Fmax(x′) ∩ O = ∅, then a(x′) < t for all
t ∈ O. It follows that F0(x′) ∩ O �= ∅, showing that F0 is lsc.

To show that F0 ⊆ F , let 〈x, t〉 ∈ F0. Since Fmax ⊆ F , we may assume
that x ∈ U0 and t ∈ [a(x), s]. It suffices to show that 〈x, t〉 ∈ Fmax. For
each neighborhood U of x contained in U0, there exists an xU ∈ U such that
Fmax(xU ) ∩ (−∞, s) �= ∅, and hence s ∈ Fmax(xU ). Now the net 〈xU 〉 converges
to x, so that 〈x, s〉 ∈ Fmax. Since also 〈x, a(x)〉 ∈ Fmax, it follows that 〈x, t〉 ∈
Fmax. This completes the argument that F0 ⊆ F , which in turn completes the
contradiction argument and shows that F ′ ⊆ Fmax.

Conversely, to show that Fmax ⊆ F ′, let 〈x, t〉 ∈ Fmax. Suppose, by way
of contradiction, that 〈x, t〉 /∈ F ′. Then t has a neighborhood O such that for
every neighborhood U of x, there exists a nonempty open subset U ′ of U with
F (x′) ∩ O = ∅ for all x′ ∈ U ′. Since Fmax is lsc, x has a neighborhood U0 such
that for every x′ ∈ U0, Fmax(x′)∩O �= ∅. So there exists a nonempty open subset
U ′ of U0 such that for every x′ ∈ U ′, F (x′) ∩ O = ∅. Then U ′ × O ∩ F = ∅.
But U ′ ×O ∩ Fmax �= ∅, so that Fmax �⊆ F ; which is a contradiction. Therefore,
Fmax ⊆ F ′, which finishes the argument that Fmax = F ′. �

We now define L−(X) to be the set of clsco maps from X to R that are
maximally lsc and locally bounded. Specifically, F ∈ L−(X) if and only if

(1) F ⊆ X × R;

(2) F (x) is a nonempty compact interval for all x ∈ X;

(3) F is maximally lsc; and

(4) F is locally bounded.

Note that L−(X) is a subset of L (X).
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Unless otherwise indicated, the topology on L−(X) will be the Vietoris to-
pology, where the basic open subsets of L−(X) are the subsets of the form
W+ ∩W−

1 ∩ · · · ∩W−
n where W,W1, . . . ,Wn are open subsets of X ×R, W+ ={

F ∈ L−(X) : F ⊆ W
}

, and each W−
i =

{
F ∈ L−(X) : F ∩Wi �= ∅}. Also

the topology generated by the sets of the form W+ is called the upper Vietoris
topology, and the topology generated by the sets of the form W− is called the
lower Vietoris topology.

We can use L (X) to give another useful base for the Vietoris topology on
L−(X).

����� 2.5� A base for L−(X) consists of sets of the form W+∩W−
1 ∩· · ·∩W−

n

where W is an open element of L (X) with W (x) bounded for all x ∈ X, and
where each Wi is an open subset of W such that Wi = Ui × Oi with Oi an
interval.

P r o o f. Let F ∈ L−(X) and let W+ ∩ W−
1 ∩ · · · ∩ W−

n contain F where
W,W1, . . . ,Wn are open subsets of X × R. Define

W ′ =
{〈x, s〉 ∈ X × R : inf F (x) − 1 < s < supF (x) + 1

}
,

which is a subset of X × R containing F . The fact that W ′ is open in X × R

follows from Lemmas 3.1 and 3.2 in the next section. Now for each x ∈ X, F (x)
is compact, so there exist neighborhood Ux of x and open interval Ox such that{
x
}× F (x) ⊆ Ux ×Ox ⊆ W ∩W ′. Define

W ′
0 =

⋃{
Ux × Ox : x ∈ X

}
,

which is open in X × R and F ⊆ W ′
0 ⊆ W ∩ W ′. Note that each W ′

0(x) is
bounded since W ′(x) is bounded. However, W ′

0(x) may not be connected for
some x ∈ X. So for each x ∈ X, let W0(x) be the component of W ′

0(x) that
contains the nonempty set F (x). Then define

W0 =
{〈x, t〉 : x ∈ X and t ∈ W0(x)

}
.

Now W0(x) is nonempty and connected for each x ∈ X, and F ⊆ W0 ⊆ W ∩W ′.
To show that W0 ∈ L (X), it remains to show that W0 is open in X × R.

So let 〈x, t〉 ∈ W0, and let s ∈ F (x). Since
{
x
} × W0(x) is connected and

covered by
{
Ux′ ×Ox′ : x′ ∈ X

}
, there exist x1, . . . , xk ∈ X such that s ∈ Ox1

,
t ∈ Oxk

, Oxi
∩ Oxi+1

�= ∅ for i = 1, . . . , k − 1, and x ∈ Uxi
for i = 1, . . . , k. Let

U = Ux1
∩· · ·∩Uxk

and let O = Oxi
∪· · ·∪Oxk

. Note that O is a connected subset
of W ′

0(x) that intersects F (x), so that O ⊆ W0(x). Now since F is lsc, x has a
neighborhood U ′ contained in U such that F (x′)∩Ox1

�= ∅ for all x′ ∈ U ′. Then
for every x′ ∈ U ′, O is a connected subset of W ′

0(x′) that intersects F (x′), so
that O ⊆ W0(x′). Therefore, U ′×O is a neighborhood of 〈x, t〉 that is contained
in W0, showing that W0 is open in X × R, and hence W0 is an open element of
L (X) with W0(x) bounded for all x ∈ X.
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Finally, let 〈xi, ti〉 ∈ F ∩ Wi for i = 1, . . . , n. Then for each i, there exist
neighborhood Ui0 of xi and open interval Oi0 containing ti such that Ui0×Oi0 ⊆
Wi ∩W0. For each i = 1, . . . , n, let Wi0 = Ui0 ×Oi0. Then

F ∈ W+
0 ∩W−

10 ∩ · · · ∩W−
n0 ⊆ W+ ∩W−

1 ∩ · · · ∩W−
n ,

which shows that sets like W+
0 ∩W−

10 ∩ · · · ∩W−
n0 form a base for L−(X). �

We end this section with a lemma that will help us show that L−(X) is a
Hausdorff space.

����� 2.6� If F,G ∈ L−(X) are such that F = G, then F = G.

P r o o f. Since the union of lsc sets is lsc, F ∪G is a lsc set. Now F ⊆ F ∪G ⊆ F ,
so that by Lemma 2.2, there exists an H ∈ L (X) such that F ∪ G ⊆ H ⊆ F .
Then Fmax = F ⊆ H ⊆ F , which implies that H = Fmax = F . Similarly,
H = Gmax = G, so that F = G. �

3. Relation to C(X)

The set C(X) of continuous functions from X to R is a subset of both L(X)
and L−(X). One can show that, as a subspace of both L(X) and L−(X) with
the Vietoris topology, the subspace topology induced on C(X) can be generated
by the basic open sets of the form W+ where W is an open subset of X×R and
W+ =

{
f ∈ C(X) : f ⊆ W

}
. In particular, the Vietoris topology on C(X) is

the same as the upper Vietoris topology on C(X). This topology on C(X) is
also called the graph topology ([24]), and will be the topology that C(X) will
have throughout this study. From Lemma 2.4, we see that C(X) has as a base
for its topology the family of sets of the form W+ where W is an open element
of L (X).

The terms upper semicontinuous and lower semicontinuous, when applied to
real-valued functions as opposed to set-valued maps, has a well-known different
definition. In particular, a function f from X to R is called upper semicon-
tinuous (respectively, lower semicontinuous) provided that for every x ∈ X
and ε > 0, there exists a neighborhood U of x such that f(U ) ⊆ (−∞, f(x) + ε)
(respectively, f(U ) ⊆ (f(x)−ε,∞)). Let USC(X) and LSC(X) denote such up-
per semicontinuous real-valued functions and lower semicontinuous real-valued
functions, respectively. Although a member of USC(X) (or LSC(X)) can be
considered as a set-valued map, it will not necessarily be usc (or lsc) in the
sense that was previously defined for set-valued maps. However, USC(X) and
LSC(X) are related to L(X) and L−(X) as follows.

For each F in either L(X) or L−(X), we have F (x) nonempty and bounded
for all x ∈ X. Then there are two real-valued functions supF and inf F defined
on X by supF (x) = sup

{
t : t ∈ F (x)

}
and inf F = inf

{
t : t ∈ F (x)

}
for all
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x ∈ X. Because each F (x) is compact, supF ⊆ F and inf F ⊆ F . We can think
of supF as the upper boundary of F and inf F as the lower boundary of F .

����� 3.1� Let F ⊆ X × R such that F (x) is nonempty and bounded for all
x ∈ X. If F is usc, then supF ∈ USC(X) and inf F ∈ LSC(X). If F is lsc,
then supF ∈ LSC(X) and inf F ∈ USC(X).

P r o o f. Since this follows directly from definitions, we only illustrate with a
proof of one case. Let F be lsc, let x ∈ X and let ε > 0. Then there exists a
t ∈ F (x) with t > supF (x)− ε. By the lsc property of F , x has a neighborhood
U such that for every x′ ∈ U , F (x′) ∩ (supF (x) − ε,∞) �= ∅. Then supF (U ) ⊆
(supF (x) − ε,∞), so that supF ∈ LSC(X). �

Since L−(X) ⊆ L (X), we see that for each F ∈ L−(X), the upper boundary
of F is a lower semicontinuous real-valued function, and the lower boundary of
F is an upper semicontinuous real-valued function.

����� 3.2� If a ∈ USC(X) and b ∈ LSC(X) with a < b, then
{〈x, s〉 ∈ X×R :

a(x) < s < b(x)
}
is open in X × R.

P r o o f. Let W =
{〈x, s〉 ∈ X × R : a(x) < s < b(x)

}
, let 〈x, s〉 ∈ W , and let

r, t ∈ R with a(x) < r < s < t < b(x). Then x has a neighborhood U such that
a(U ) ⊆ (−∞, r) and b(U ) ⊆ (t,∞). So 〈x, s〉 ∈ U × (r, t) ⊆ W , showing that W
is open in X × R. �

The following theorem (see [6], [26], or [7, Problems 2.7.4, 5.5.20]) allows us
to use C(X) to study L−(X). Here the term binormal space means a normal
countably paracompact space.

������� 3.3� The following are true for a T1-space X.

(1) The space X is normal if and only if for every f ∈ USC(X) and g ∈
LSC(X) with f ≤ g, there exists an h ∈ C(X) such that f ≤ h ≤ g.

(2) The space X is binormal if and only if for every f ∈ USC(X) and g ∈
LSC(X) with f < g, there exists an h ∈ C(X) such that f < h < g.

From Theorem 3.3, we see that if X is a normal space and F ∈ L−(X), then
there exists an f ∈ C(X) such that inf F ≤ f ≤ supF , and therefore f ⊆ F .
So every member of L−(X) contains a continuous selection. On the other hand,
the members of L(X) do not in general contain continuous selections.

Theorem 3.3 allows us to work with the topology on C(X). In particular,
let X be a binormal space, let h ∈ C(X), and let W+ be a basic neighborhood
of h where W is an open element of L (X) with W (x) bounded for all x ∈ X.
Then inf W < h < supW , so there exist f, g ∈ C(X) with inf W < f < h <
g < supW . Then

{
h′ ∈ C(X) : f < h′ < g

}
is a neighborhood of h in C(X)

contained in W+. This shows that for binormal X, the Vietoris (graph) topology
on C(X) is equal to the fine topology on C(X) (see [4, Section 2]).
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Theorem 3.3 also allows us to work with the topology on L(X), and in so
doing we can relate L−(X) to L(X).

	��
���
��� 3.4� If X is a binormal space, then the function ι : L−(X) →
L(X) defined by ι(F ) = F for all F ∈ L−(X) is a well-defined continuous
injection.

P r o o f. To show that ι is well-defined, first note that F is locally bounded, and
so F (x) is a nonempty closed bounded set for all x ∈ X. To finish showing that
F ∈ L(X), as indicated by [11, Lemma 3.1], we need to show that each F (x) is
connected. To this end, let x ∈ X, let [a, b] = F (x), and let t ∈ F (x). We only
consider the case that t > b since the case that t < a is similar. It suffices to
show that [b, t] ⊆ F (x), so let s ∈ (b, t). Since F is lsc, x has a neighborhood U0

such that for every x0 ∈ U0, F (x0)∩(−∞, s) �= ∅. Also since 〈x, t〉 ∈ F , for every
neighborhood U of x contained in U0, there exists a 〈xU , tU 〉 ∈ F ∩ U × (s,∞).
Then for this xU , let rU ∈ F (xU ) ∩ (−∞, s). By the connectedness of F (xU ),
s ∈ (rU , tU ) ⊆ F (xU ). So we have a net 〈xU , s〉U in F that converges to 〈x, s〉,
showing that 〈x, s〉 ∈ F , and hence [b, t] ⊆ F (x). This completes the argument
that F (x) is connected, and we see that ι is a well-defined function.

The fact that ι is one-to-one follows from Lemma 2.6. Finally, to show that
ι is continuous, let F ∈ L−(X) and F ∈ W+ ∩ W−

1 ∩ · · · ∩ W−
n in L(X) with

W (x) bounded for all x ∈ X. Since inf W ∈ USC(X), inf F ∈ LSC(X), and
inf W < inf F , the binormality of X insures, by Theorem 3.3, that there exists
an f ∈ C(X) such that inf W < f < inf F . Similarly, there exists a g ∈ C(X)
such that supF < g < supW . Let

W0 =
{〈x, t〉 ∈ X × R : f(x) < t < g(x)

}
,

which is an open subset of X × R. Also observe that F ⊆ W0 and W0 ⊆ W .
Now W+

0 is a neighborhood of F in L−(X), and if G ∈ L−(X) with G ∈ W+
0 ,

we have G ⊆ W0 ⊆ W , so that ι(G) ∈ W+. Finally, note that since F ∩Wi �= ∅
for each i = 1, . . . , n, then F ∩Wi �= ∅ for each i. Certainly if G ∈ L−(X) with
G∩Wi �= ∅ for each i, then G∩Wi �= ∅ for each i. Therefore, W+

0 ∩W−
1 ∩· · ·∩W−

n

is a neighborhood of F in L−(X) that maps into W+ ∩W−
1 ∩ · · · ∩W−

n under
ι, showing the continuity of ι. �

We might note that, in general, the continuous injection ι : L−(X) → L(X)
in Proposition 3.4 is not a bijection and is not an embedding.

Our last two lemmas in this section give us additional tools for using C(X)
to work with L−(X).

����� 3.5� Let X be a normal space, and let F be an lsc subset of X × R

such that F (x) is a nonempty compact interval for all x ∈ X. Then F =⋃{
f ∈ C(X) : f ⊆ F

}
.
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P r o o f. We certainly have
⋃{

f ∈ C(X) : f ⊆ F
} ⊆ F . To show containment

in the other direction, let 〈x, t〉 ∈ F . Define a : X → R and b : X → R as follows.
For every x′ ∈ X with x′ �= x, let a(x′) = inf F (x′) and b(x′) = supF (x′), and
let a(x) = b(x) = t. Since inf F (x) ≤ t ≤ supF (x), and inf F ∈ USC(X) and
supF ∈ LSC(X) by Lemma 3.1, we see that a ∈ USC(X) and b ∈ LSC(X).
Also since X is normal and a ≤ b, Theorem 3.3 tells us that there exists an
f ∈ C(X) such that a ≤ f ≤ b. Then 〈x, t〉 ∈ f ⊆ F , showing that F =⋃{

f ∈ C(X) : f ⊆ F
}

. �
����� 3.6� Let X be a normal space, and let F ∈ L (X) be locally bounded.
Then Fmax =

⋃{
f ∈ C(X) : f ⊆ F

}
.

P r o o f. Since F is locally bounded, it follows that F (x) is bounded for all
x ∈ X. Therefore, Fmax is a lsc subset of X ×R such that Fmax(x) is nonempty
and bounded for all x ∈ X, so that by Lemma 3.5, we have Fmax =

⋃{
f ∈ C(X) :

f ⊆ Fmax

} ⊆ ⋃{
f ∈ C(X) : f ⊆ F

}
.

To show containment in the other direction, let f ∈ C(X) with f ⊆ F . Now
Fmax is lsc, and clearly f is lsc. Since it is evident that the union of two lsc
subsets of X × R is lsc, we see that Fmax ∪ f is lsc. But Fmax is maximally lsc
and Fmax ∪ f ⊆ F . It follows that Fmax ∪ f = Fmax, and f ⊆ Fmax. �

Now from these two lemmas we see that when X is normal, each F in L−(X)
has the property that F =

⋃{
f ∈ C(X) : f ⊆ F

}
=

⋃{
f ∈ C(X) : f ⊆ F

}
.

4. Separation properties

Recall that we are assuming that our spaces are completely regular Hausdorff
spaces. In particular, the regularity of X now ensures that L−(X) is Hausdorff,
as shown in our first proposition.

	��
���
��� 4.1� The space L−(X) is a Hausdorff space.

P r o o f. Let F,G ∈ L−(X) with F �= G. Then by Lemma 2.6, F �= G; say there
is an 〈x, t〉 ∈ G \ F . Since X ×R is regular, there exist disjoint open subsets W
and W1 of X × R such that F ⊆ W and 〈x, t〉 ∈ W1. Note that G ∩ W1 �= ∅.
Then W+ and W−

1 are disjoint open subsets of L−(X) containing F and G,
respectively. �

In order to show that L−(X) is completely regular, we need the following two
lemmas. In the first, for an F ∈ L (X), the notation F+ is used for the set of
all G ∈ L−(X) such that G ⊆ F .

����� 4.2� For each W ∈ L (X) with W (x) bounded for all x ∈ X, the
following are true.
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(1) The closure of W+ in L−(X) is contained in W+
max.

(2) The set W+
max is closed in L−(X).

P r o o f. Statement (2) follows from statement (1) because (Wmax)max = Wmax.
For statement (1), let F ∈ L−(X) be such that F /∈ W+

max. Then there is
some 〈x, t〉 ∈ F \ Wmax. Since Wmax(x) is closed, either t > supWmax(x) or
t < inf Wmax(x); say the former. Let s ∈ R with supWmax(x) < s < t, and let
O1 and O2 be disjoint open intervals with t ∈ O1 and s ∈ O2. Since F is lsc, x
has a neighborhood U1 such that for all x′ ∈ U1, F (x′)∩O1 �= ∅. By Lemma 2.4,
〈x, s〉 is not an almost lsc point of W , so that there exist neighborhood O3 of s
contained in O2 and nonempty open subset U2 of U1 such that U2×O3∩W = ∅.
But then U2 × O1 ∩ W = ∅. So define W0 = U2 × O1. Then F ∈ W−

0 and
W+ ∩W−

0 = ∅, showing that F is not in the closure of W+ in L−(X). �

����� 4.3� If F ∈ L−(X) and W is an open element of L (X) with F ⊆ W
and W (x) bounded for all x ∈ X, then there exists an open element W ′ of L (X)
such that F ⊆ W ′ and W ′

max ⊆ W .

P r o o f. Let a = inf F , b = supF , c = inf W , and d = supW . Define c1 =
(a+c)/2 and d1 = (b+d)/2, which, by Lemma 3.1, are in USC(X) and LSC(X),
respectively. Then c < c1 < a ≤ b < d1 < d. Define W1 =

{〈x, t〉 ∈ X × R :

c1(x) < t < d1(x)
}

, which, by Lemma 3.2, is an open subset of X ×R such that

F ⊆ W1. Also if Ŵ1 =
{〈x, t〉 ∈ X × R : c1(x) ≤ t ≤ d1(x)

}
, then Ŵ1 ⊆ W .

Let x ∈ X be momentarily fixed. Define r(x) = (c1(x) + a(x))/2 and s(x) =
(b(x) + d1(x))/2. Let Ux be a neighborhood of x such that Ux × [r(x), s(x)] ⊆
W1, c1(Ux) ⊆ (−∞, r(x)), and d1(Ux) ⊆ (s(x),∞). Since, by Proposition 2.4,
〈x, c1(x)〉 and 〈x, d1(x)〉 are not almost lsc points of F , there exist neighborhoods
V1 and V2 of c1(x) and d1(x), respectively, such that for every neighborhood U
of x contained in Ux, there exist nonempty open subsets O1

U and O2
U of U such

that for all x′ ∈ O1
U , F (x′) ∩ V1 = ∅ and for all x′ ∈ O2

U , F (x′) ∩ V2 = ∅. For
each neighborhood U of x contained in Ux, let K1

x,U = O1
U × (−∞, c1(x)] and

K2
x,U = O2

U × [d1(x),∞). Note that K1
x,U and K2

x,U are disjoint from F . Define

K1
x =

⋃{
K1

x,U : U is a neighborhood of x contained in Ux

}
, K2

x =
⋃{

K2
x,U :

U is a neighborhood of x contained in Ux

}
, and Kx = K1

x ∪K2
x.

Now let x vary over X, and define W ′ = W1 \K where K =
⋃{

Kx : x ∈ X
}

.
We need to show that W ′ ∈ L (X), F ⊆ W ′, and W ′

max ⊆ W .

Since F ⊆ W1, to show that F ⊆ W ′, we need to show that F ∩ K = ∅.
Suppose, by way of contradiction, that there exits a 〈x, t〉 ∈ F ∩ K. Then
there exists a net 〈xλ, tλ〉λ in K that converges to 〈x, t〉; we may assume that
each 〈xλ, tλ〉 ∈ Ux × (r(x), s(x)). For each λ, there exists an x′

λ ∈ X with
〈xλ, tλ〉 ∈ Kx′

λ
. Since we can use a subnet, if necessary, we may assume that

each 〈xλ, tλ〉 ∈ K2
x′
λ
; so then d1(x′

λ) ≤ tλ. Since each x′
λ ∈ Ux, s(x) < d1(x′

λ).
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But then tλ < s(x) < d1(x′
λ) ≤ tλ, which is a contradiction. This shows that

F ⊆ W ′, and that each W ′(x) �= ∅.

Now to show that W ′ ∈ L (X), it suffices to show that each W ′(x) is con-
nected. Suppose, by way of contradiction, that for some x ∈ X, W ′(x) is not
connected; say r < s < t and r, t ∈ W ′(x) while s /∈ W ′(x). Then 〈x, s〉 ∈ K,
so that there exists a net 〈xλ, sλ〉 in K that converges to 〈x, s〉. Then for each
λ, there exists an x′

λ ∈ X with 〈xλ, sλ〉 ∈ Kx′
λ
. As before, we may assume that

each 〈xλ, sλ〉 ∈ K2
x′
λ
. Let p = (s+ t)/2. Since W ′ is open, x has a neighborhood

U such that for all x′ ∈ U , W ′(x′) ∩ (p,∞) �= ∅. Now there exists a λ such that
〈xλ, sλ〉 ∈ U×(−∞, p). But there exists some tλ ∈ W ′(xλ)∩(p,∞), so that since
sλ < tλ, we have 〈xλ, tλ〉 ∈ K2

x′
λ
. This contradicts the fact that K2

x′
λ
∩W ′ = ∅.

Therefore, each W ′(x) is connected, so that W ′ ∈ L (X).

It remains to show that W ′
max ⊆ W . Now Ŵ1 ⊆ W , so it suffices to show that

W ′
max ⊆ Ŵ1. Let 〈x, t〉 ∈ X×R\Ŵ1; say d1(x) < t. Let q = (d1(x)+t)/2, and let

V = (q,∞). For each neighborhood U of x contained in Ux, O2
U is a nonempty

open subset of U such that for all x′ ∈ O2
U , 〈x′, d1(x)〉 ∈ K2

x,U ⊆ Kx ⊆ X×R\W ′.
Then for each x′ ∈ O2

U , W ′(x′) ∩ V = ∅. Therefore, 〈x, t〉 is not an almost
lsc point of W ′, so that by Proposition 2.4, 〈x, t〉 /∈ W ′

max. This shows that

W ′
max ⊆ Ŵ1 ⊆ W , which finishes the proof. �

	��
���
��� 4.4� The space L−(X) is a completely regular space.

P r o o f. Let F ∈ L−(X) and let W+
0 ∩W−

1 ∩ · · · ∩W−
n be a basic open subset

of L−(X) containing F such that W0 is an open element of L (X) with each
W0(x) bounded, as given by Lemma 2.5. By Lemma 4.3, there exists an open
W ∈ L (X) such that F ⊆ W and Wmax ⊆ W0. For each x ∈ X, define
a(x) = inf F (x), b(x) = supF (x), c(x) = inf Wmax(x), and d(x) = supWmax(x).
This defines a, c ∈ USC(X) and b, d ∈ LSC(X) such that c < a ≤ b < d.
Now for each t ∈ [0, 1] and x ∈ X, define pt(x) = tc(x) + (1 − t)a(x) and
qt(x) = td(x) + (1 − t)b(x). Then for each t ∈ [0, 1], define

Ft =
{〈x, y〉 ∈ X × R : pt(x) ≤ y ≤ qt(x)

}
.

We now show that for each t ∈ [0, 1], Ft = (Ft)max. Suppose, by way of
contradiction, that there exits a 〈x0, y0〉 ∈ (Ft)max \ Ft; say y0 > qt(x0). Let
ε = y0 − qt(x0). Since (Ft)max and Wmax are lsc, x0 has a neighborhood U0

such that for all x ∈ U0, (Ft)max(x) ∩ (y0 − ε/4, y0 + ε/4) �= ∅ and Wmax(x) ∩
(d(x0) − ε/4, d(x0) + ε/4) �= ∅. Let y1 = b(x0) + ε/4, so that 〈x0, y1〉 /∈ F .
Now F = Fmax, so that by Lemma 2.4, there exists an open subset U × (r, s)
contained in U0 × (y1 − ε/4, y1 + ε/4) with U × (r, s) ∩ F = ∅; in particular,
U×(r,∞)∩F = ∅. Then if x ∈ U , we have b(x) < y1+ε/4 = b(x0)+ε/2. Also for
x ∈ U , d(x) < d(x0) + ε/4, so that qt(x) = td(x) + (1− t)b(x) < t(d(x0) + ε/4) +
(1−t)(b(x0)+ε/2) = td(x0)+(1−t)b(x0)+tε/4+(1−t)ε/2 = qt(x0)+ε/2−tε/4 <
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qt(x0) + ε/2 = y0 − ε + ε/2 = y0 − ε/2. Since this is true for all x ∈ U , we have
U × (y0− ε/4, y0 + ε/4)∩Ft = ∅, and thus U × (y0− ε/4, y0+ ε/4)∩ (Ft)max = ∅.
But U ⊆ U0, which gives us the contradiction; and therefore, Ft = (Ft)max.

Now for each G ∈ L−(X), define f0(G) as follows. If G ⊆ Ft for some
t ∈ [0, 1], then take f0(G) = inf

{
t ∈ [0, 1] : G ⊆ Ft

}
. If G �⊆ Ft for all

t ∈ [0, 1], then take f0(G) = 1. This defines the function f0 : L−(X) → [0, 1].
To show that f0 is continuous, let G ∈ L−(X) and let ε > 0. First, suppose
that f0(G) > 0; we may assume that ε < f0(G). Let t ∈ (f0(G) − ε, f0(G)),
so that G �⊆ Ft. We know that Ft = (Ft)max, so that F+

t is closed in L−(X)
by Lemma 4.2. Define O1 = �L−(X) \ F+

t , which is a neighborhood of G in
L−(X). If G′ ∈ O1, then G′ �⊆ Ft, so that f0(G′) ≥ t > f0(G) − ε. Secondly,
suppose that f0(G) < 1; we may assume that ε < 1 − f0(G). Then there
exists a t ∈ (f0(G), f0(G) + ε) such that G ⊆ Ft. Let s ∈ (t, f0(G) + ε), and let
F o
s =

{〈x, y〉 ∈ X×R : ps(x) < y < qs(x)
}

. Then F o
s is an open subset of X×R

by Lemma 3.2. Now G ⊆ Ft ⊆ F o
s , so that O2 = (F o

s )+ is a neighborhood of G
in L−(X). If G′ ∈ O2, then G′ ⊆ F o

s ⊆ Fs, so that f0(G′) ≤ s < f0(G) + ε. Now
either f0(G) = 1, or f0(G) = 0, or 0 < f0(G) < 1. So either O1 is a neighborhood
of G such that 1− ε < f0(G′) for all G′ ∈ O1, or O2 is a neighborhood of G such
that f0(G′) < ε for all G′ ∈ O2, or O1 ∩ O2 is a neighborhood of G such that
f0(G)−ε < f0(G′) < f0(G)+ε for all G′ ∈ O1∩O2. Therefore, f0 is continuous.

Now momentarily fix i ∈ {
1, . . . , n

}
, and let 〈xi, yi〉 ∈ F ∩Wi. Since X × R

is completely regular, there exists a continuous function gi : X ×R → [0, 1] such
that gi(〈xi, yi〉) = 0 and gi(〈x, y〉) = 1 for all 〈x, y〉 ∈ X × R \ Wi. Define
fi : L−(X) → [0, 1] by fi(G) = inf

{
t ∈ [0, 1] : G ∩ g−1

i ([0, t)) �= ∅}. Then

fi(F ) = 0, and if G /∈ W−
i , we have fi(G) = 1. To show that fi is continuous,

let G ∈ L−(X) and let ε > 0. First, suppose that fi(G) > 0; we may assume
that ε < fi(G). Let t ∈ (fi(G) − ε, fi(G)), so that G ∩ g−1

i ([0, t]) = ∅. Then

Wi,1 = g−1
i ((t, 1]) is an open subset of X ×R containing G, and hence W+

i,1 is a

neighborhood of G. If G′ ∈ W+
i,1, then G′∩g−1

I ([0, t]) = ∅, and thus fi(G
′) ≥ t >

fi(G)− ε. Secondly, suppose that fi(G) < 1; we may assume that ε < 1−fi(G).
Then there exists a t ∈ (fi(G), fi(G) + ε) such that G ∩ g−1

i ([0, t)) �= ∅. Then

Wi,2 = g−1
i ([0, t)) is an open subset of X ×R, and so W−

i,2 is a neighborhood of

G. If G′ ∈ W−
i,2, then G′ ∩ g−1

i ([0, t)) �= ∅, and hence fi(G
′) ≤ t < fi(G) + ε.

Now either fi(G) = 1, or fi(G) = 0, or 0 < fi(G) < 1. So either W+
i,1 is a

neighborhood of G such that 1 − ε < fi(G
′) for all G′ ∈ W+

i,1, or W−
i,2 is a

neighborhood of G such that fi(G
′) < ε for all G′ ∈ W−

i,2, or W+
i,1 ∩ W−

i,2 is

a neighborhood of G such that fi(G) − ε < fi(G
′) < fi(G) + ε for all G′ ∈

W+
i,1 ∩W−

i,2. Therefore, fi is continuous.

Finally, letting i vary, define the continuous function f : L−(X) → [0, 1] by
f = max

{
f0, f1, . . . , fn

}
. Then f(F ) = 0, and if F /∈ W+

0 ∩ W−
1 ∩ · · · ∩ W−

n ,

533



R. A. MCCOY

then F �⊆ Wmax or F ∩Wi = ∅ for some i. It follows that for such F , f(F ) = 1,
which completes the proof that L−(X) is completely regular. �

5. Extension Theorem

A general problem is to determine how X and Y are related if C(X) and C(Y )
are homeomorphic. It may not be the case that X and Y must be homeomorphic.
For example, if X is the space of countable ordinals and Y is its (one point)
compactification, it is well-known that C(X) and C(Y ) are homeomorphic (see
Example II.2.17 in Part II).

This section combined with Part II gives a partial solution to the problem
above. In this section, we show that certain homeomorphisms from C(X) onto
C(Y ) extend to a special kind of homeomorphism from L−(X) onto L−(Y ),
and in the last section of Part II, a factorization is given for this special kind of
homeomorphism that shows how X and Y must be related.

A function µ : C(X) → C(Y ) is increasing (respectively, decreasing) provided
that if f1, f2 ∈ C(X) are such that f1 ≤ f2 , then µ(f1) ≤ µ(f2) (respectively,
µ(f1) ≥ µ(f2)). We say that µ is monotone provided that it is either increasing
or decreasing.

We now generalize this notion of monotone function by defining a function
µ : C(X) → C(Y ) to be bimonotone provided that for every f1, f2 ∈ C(X) with
f1 ≤ f2 and for every f ∈ C(X), it is true that f1 ≤ f ≤ f2 if and only if
min

{
µ(f1), µ(f2)

} ≤ µ(f) ≤ max
{
µ(f1), µ(f2)

}
. Then µ : C(X) → C(Y ) is a

bimonotone homeomorphism provided that it is a homeomorphism such that
both µ and µ−1 are bimonotone.

We also define a homeomorphism M : L−(X) → L−(Y ) to be an ordered
homeomorphism provided that for each F1, F2 ∈ L−(X), M (F1) ⊆ M (F2) if
and only if F1 ⊆ F2.

If µ : C(X) → C(Y ) is a bimonotone homeomorphism, then for each F ∈
L−(X), define

µ∗(F ) =
⋃{

µ(f) : f ∈ C(X) with f ⊆ F
}
.

Also if M : L−(X) → L−(Y ) is an ordered homeomorphism, then for each f ∈
C(X), let M∗(f) = M (f) where the second f is thought of as an element of
L−(X).

��
������ ������� 5.1� LetX and Y be binormal spaces. If µ : C(X)→C(Y )
is a bimonotone homeomorphism, then µ∗ : L−(X) → L−(Y ) is a well-defined
extension of µ that is an ordered homeomorphism; if M : L−(X) → L−(Y ) is
an ordered homeomorphism, then M∗ : C(X) → C(Y ) is a well-defined restric-
tion of M that is a bimonotone homeomorphism; and we have (µ∗)∗ = µ and
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(M∗)∗ = M . Therefore, there is a natural one-to-one correspondence between the
bimonotone homeomorphisms from C(X) onto C(Y ) and the ordered homeomor-
phisms from L−(X) onto L−(Y ). In particular, a function µ : C(X) → C(Y )
can be extended to an ordered homeomorphism from L−(X) onto L−(Y ) if and
only if µ is a bimonotone homeomorphism.

We will break the proof of the Extension Theorem 5.1 into a number of
lemmas. So for the following lemmas in this section, let X and Y be bi-
normal spaces, and let us start by working with the ordered homeomorphism
M : L−(X) → L−(Y ).

����� 5.2� Let F1, F2 ∈ L−(X) be such that F1(x) ∩ F2(x) �= ∅ for all
x ∈ X. Then F1 ∩ F2 ∈ L−(X), M (F1) ∩M (F2) ∈ L−(Y ), and M (F1 ∩ F2) =
M (F1) ∩M (F2).

P r o o f. It is immediate that F1 ∩ F2 is a locally bounded member of L (X).
By considering almost lsc points, we see that (F1 ∩ F2)max ⊆ (F1)max = F1,
and (F1 ∩ F2)max ⊆ (F2)max = F2. Therefore, F1 ∩ F2 = (F1 ∩ F2)max, so that
F1 ∩ F2 ∈ L−(X). Now since M is ordered, we have M (F1 ∩ F2) ⊆ M (F1) and
M (F1 ∩ F2) ⊆ M (F2), and hence M (F1 ∩ F2) ⊆ M (F1) ∩ M (F2). Then note
that M (F1)(y) ∩ M (F2)(y) �= ∅ for all y ∈ Y , so that by the argument above,
M (F1) ∩M (F2) ∈ L−(Y ). Again using the argument above, but with M−1, we
have M−1(M (F1))∩M (F2)) ⊆ M−1(M (F1))∩M−1(M (F2)) = F1 ∩F2. It now
follows that M (F1) ∩ M (F2) = M (M−1(M (F1) ∩ M (F2))) ⊆ M (F1 ∩ F2), and
therefore, M (F1 ∩ F2) = M (F1) ∩M (F2). �
����� 5.3� Let f1, f2 ∈ C(X) with f1 ≤ f2, let g1 = min

{
M (f1),M (f2)

}
, let

g2 = max
{
M (f1),M (f2)

}
, let F =

{〈x, t〉 ∈ X × R : f1(x) ≤ t ≤ f2(x)
}
, and

let G =
{〈y, t〉 ∈ Y × R : g1(y) ≤ t ≤ g2(y)

}
. Then F ∈ L−(X), G ∈ L−(Y ),

and M (F ) = G.

P r o o f. It is immediate that F ∈ L−(X) and G ∈ L−(Y ). Now since f1, f2 ⊆ F ,
we have M (f1),M (f2) ⊆ M (F ). For each y ∈ Y , M (F )(y) is connected, and
every element of G(y) lies between M (f1)(y) and M (f2)(y), so it follows that G ⊆
M (F ). On the other hand, M (f1),M (f2) ⊆ G, so that f1, f2 ⊆ M−1(G). Again,
by the connectivity of each M−1(G)(x), we have F ⊆ M−1(G). Therefore,
M (F ) ⊆ G, which finishes the argument that M (F ) = G. �
����� 5.4� If M∗ : C(X) → C(Y ) is the restriction of M to C(X), then M∗
is a bimonotone homeomorphism.

P r o o f. The ordered property of M forces M∗ to map members of C(X) to
members of C(Y ), so it is clear that M∗ is a homeomorphism. Let f1, f2 ∈ C(X)
with f1 ≤ f2 and let f ∈ C(X). Define g1, g2, F , and G as in Lemma 5.3,
and thus M (F ) = G. Also let g = M∗(f) = M (f). If f1 ≤ f ≤ f2, then
f ⊆ F , so that by the ordered property of M , g = M (f) ⊆ M (F ) = G,

535



R. A. MCCOY

and hence g1 ≤ g ≤ g2. Conversely, if g1 ≤ g ≤ g2, then g ⊆ G, so that
f = M−1(g) ⊆ M−1(G) = F , and hence f1 ≤ f ≤ f2. Since g = M∗(f),
g1 = min

{
M∗(f1),M∗(f2)

}
, and g2 = max

{
M∗(f1),M∗(f2)

}
, we see that M∗ is

bimonotone. �

Now let us work on getting the extension by starting with the bimonotone
homeomorphism µ : C(X) → C(Y ).

����� 5.5� The bimonotone homeomorphism µ has the property that for every
f1, f2, f3 ∈ C(X) with f1 < f2 < f3,

min
{
µ(f1), µ(f3)

}
< µ(f2) < max

{
µ(f1), µ(f3)

}
.

P r o o f. Let f1, f2, f3 ∈ C(X) with f1 < f2 < f3, and define g1 =
min

{
µ(f1), µ(f3)

}
, g2 = µ(f2), and g3 = max

{
µ(f1), µ(f3)

}
. Let W ={〈x, t〉 ∈ X × R : f1(x) < t < f3(x)

}
, so that W+ is a neighborhood of f2 in

C(X). Since µ−1 is continuous, there exists a neighborhood W+
0 of g2 in C(Y )

such that µ−1(W+
0 ) ⊆ W+ where W0 =

{〈y, t〉 ∈ Y × R : h1(y) < t < h2(y)
}

for some h1, h2 ∈ C(Y ). Let k1 = (h1 + g2)/2 and k2 = (g2 + h2)/2. Then k1 <
g2 < k2 and k1, k2 ∈ W+

0 . Now µ−1(k1), µ−1(k2) ∈ µ−1(W+
0 ) ⊆ W+, and hence

f1 < µ−1(k1) < f3 and f1 < µ−1(k2) < f3. But then since µ is bimonotone, we
have g1 ≤ k1 ≤ g3 and g1 ≤ k2 ≤ g3, so that g1 ≤ k1 < g2 < k2 ≤ g3. �

����� 5.6� For each F ∈ L−(X) and each y ∈ Y , µ∗(F )(y) is connected.

P r o o f. Suppose that µ∗(F )(y) is not connected. Then there exist r < s < t
with r, t ∈ µ∗(F )(y) and s /∈ µ∗(F )(y). Let W = Y × R \ {〈y, s〉}. By the
continuity of µ, for each f ∈ C(X) with f ⊆ F , there exists an open subset
Wf of X × R with each Wf (x) connected and such that f ∈ W+

f in C(X) and

µ(W+
f ) ⊆ W+. Define W0 =

⋃{
Wf : f ∈ C(X) with f ⊆ F

}
. Then W0 is

an open subset of X × R with each W0(x) connected and such that F ⊆ W0

and µ(W+
0 ) ⊆ W+. Let fr, ft ∈ C(X) with fr, ft ⊆ F and µ(fr)(y) = r

and µ(ft)(y) = t. Now min
{
fr, ft

}
,max

{
fr, ft

} ⊆ F ⊆ W0, so there exist

f1, f2 ∈ C(X) with f1, f2 ⊆ W0 and f1 < min
{
fr, ft

} ≤ max
{
fr, ft

}
< f2.

Let g1 = min
{
µ(f1), µ(f2)

}
and g2 = max

{
µ(f1), µ(f2)

}
. Lemma 5.5 tells us

that g1 < µ(fr) < g2 and g1 < µ(ft) < g2. Then g1(y) < µ(fr)(y) = r
and g2(y) > µ(ft)(y) = t, so that g1(y) < s < g2(y). Then there exists a
g ∈ C(Y ) with g1 < g < g2 and g(y) = s. Since µ is bimonotone, we have
f1 ≤ µ−1(g) ≤ f2, so that µ−1(g) ∈ W+

0 . Therefore, g ∈ µ(W+
0 ) ⊆ W+, which

contradicts the fact that g(y) = s. �

����� 5.7� For each F ∈ L−(X) and each y ∈ Y , µ∗(F )(y) is bounded.

P r o o f. Suppose, by way of contradiction, that µ∗(F )(y) is unbounded for some
y ∈ Y ; say it is unbounded from above. Then for each n ∈ N, there exits
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an fn ∈ C(X) with fn ⊆ F and µ(fn) > n. Since X is binormal and F is
locally bounded, there exist f, f ′ ∈ C(X) with f < inf F and supF < f ′.
Then for each n, f < fn < f ′. Now µ is bimonotone, so for each n, we have
µ(fn) ≤ max

{
µ(f), µ(f ′)

}
. If µ(f ′)(y) ≤ µ(f)(y), then for each n, n < µ(fn)(y)

≤ µ(f)(y); which contradicts the continuity of µ(f) at y. The other case con-
tradicts the continuity of µ(f ′) at y. �

����� 5.8� For each F ∈ L−(X), µ∗(F ) = µ∗(F )max.

P r o o f. Suppose, by way of contradiction, that there exists a 〈y, t〉 ∈
µ∗(F )max \ µ∗(F ); say t > d where d = supµ∗(F )(y). Note that y can not
be an isolated point of Y because otherwise 〈y, t〉 would not be in the closure
of µ∗(F ). By Lemma 3.6 there exists a g ∈ C(Y ) with g ⊆ µ∗(F )max and
g(y) = t. Since g �⊆ µ∗(F ), we have µ−1(g) �⊆ F . So there exists an x ∈ X with
µ−1(g)(x) /∈ F (x); say µ−1(g)(x) > b where b = supF (x). Let s = µ−1(g)(x).
Since 〈x, s〉 /∈ F = Fmax, 〈x, s〉 is not an almost lsc point of F . So there ex-
ists a neighborhood O of s with the property that for every neighborhood U of
x, there is a nonempty open subset U0 of U such that F (x′) ∩ O = ∅ for all
x′ ∈ U0. In particular, let U be a neighborhood of x such that µ−1(g)(U ) ⊆ O
and such that for every z ⊆ U , F (z) ∩ (b − ε, b + ε) �= ∅, where ε = (s − b)/2;
and let U0 be a nonempty open subset of this U such that F (x′) ∩ O = ∅ for
all x′ ∈ U0. Choose an x0 ∈ U0. Since µ−1(g)(x0) ∈ O, there is an r ∈ O
with r < µ−1(g)(x0). Since X is binormal and F is locally bounded, there exist
f1, f2 ∈ C(X) with f1 ≤ inf F and supF ≤ f2. Since F (z) ∩ (b − ε, b + ε) �= ∅
for all z ∈ U , we have that supF (x′) ≤ inf O for all x′ ∈ U0, and so we can
choose f2 so that f2(x0) = r. Now µ is bimonotone, so that since µ−1(g) �≤ f2,
it follows that either min

{
µ(f1), µ)f2)

} �≤ g or g �≤ max
{
µ(f1), µ(f2)

}
. Sup-

pose g �≤ max
{
µ(f1), µ(f2)

}
; the proof in the other case is similar. Then

there is a y0 ∈ Y with max
{
µ(f1), µ(f2)

}
(y0) < g(y0). Since the functions

max
{
µ(f1), µ(f2)

}
and g are continuous, there is a neighborhood Wof y0 and a

σ > 0 such that W × (
g(y0)− σ, g(y0) + σ

)∩max
{
µ(f1), µ(f2)

}
= ∅. Define the

set-valued map G by

G(y′) =
[
min

{
µ(f1), µ(f2)

}
(y′),max

{
µ(f1), µ(f2)

}
(y′)

]

for all y′ ∈ Y . Then µ∗(F ) ⊆ G and G ∩W × (
g(y0) − σ, g(y0) + σ

)
= ∅, which

is a contradiction to the fact that the point 〈y0, g(y0)〉 is an almost lsc point of
µ∗(F )max. �

����� 5.9� For each F ∈ L−(X), µ∗(F ) is locally bounded.

P r o o f. Since F is locally bounded, there exist f1, f2 ∈ C(X) with f1 ≤ inf F
and supF ≤ f2. Then for every f ∈ C(X) with f ⊆ F , we have f1 ≤
f≤ f2, and hence min

{
µ(f1), µ(f2)

} ≤ µ(f) ≤ max
{
µ(f1), µ(f2)

}
. Therefore,
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min
{
µ(f1), µ(f2)

} ≤ inf µ∗(F ) and supµ∗(F ) ≤ max
{
µ(f1), µ(f2)

}
, showing

that µ∗(F ) is locally bounded. �

Lemmas 5.6 through 5.9 show that µ∗ : L−(X) → L−(Y ) is a well-defined
function. The same arguments used on (µ−1)∗ : L−(Y ) → L−(X) show that it
is also a well-defined function.

����� 5.10� For each F ∈ L−(X), (µ−1)∗(µ∗(F )) = F .

P r o o f. If f ∈ C(X) with f ⊆ F , then µ(f) ⊆ µ∗(F ), so that f = µ−1(µ(f)) ⊆
(µ−1)∗(µ∗(F )). This shows that F ⊆ (µ−1)∗(µ∗(F )). For the reverse con-
tainment, let f ∈ C(X) with f ⊆ (µ−1)∗(µ∗(F )). Suppose, by way of con-
tradiction, that f �⊆ F . Then f(x) /∈ F (x) for some x ∈ X; say f(x) > b
where b = supF (x). Now there exist f1, f2 ∈ C(X) such that f1 ≤ inf F and
supF ≤ f2. We can choose f2 so that f2(z) < f(z) for some z ∈ X. Since
f �≤ f1, we have either min

{
µ(f1), µ(f2)

} �≤ µ(f) or µ(f) �≤ max
{
µ(f1), µ(f2)

}
.

Now min
{
µ(f1), µ(f2)

} ≤ inf µ∗(F ) and supµ∗(F ) ≤ max
{
µ(f1), µ(f2)

}
, so

that µ(f) �⊆ µ∗(F ). We can repeat this argument to show that f = µ−1(µ(f)) �⊆
(µ−1)∗(µ∗(F )), which is a contradiction. �

Lemma 5.10 says that (µ−1)∗µ∗ is the identity map on L−(X). The same ar-
gument shows that µ∗(µ−1)∗ is the identity map on L−(Y ). Therefore,
µ∗ : L−(X) → L−(Y ) is a bijection.

����� 5.11� The bijection µ∗ : L−(X) → L−(Y ) is continuous when L−(X)
and L−(Y ) have the upper Vietoris topology.

P r o o f. Let F ∈ L−(X) and let W+ be a basic neighborhood of µ∗(F ) where
W is a locally bounded element of L (Y ). Then there exists a W ′ ∈ L (Y )
with µ∗(F ) ⊆ W ′ and W ′

max ⊆ W . Note that W ′
max ∈ L−(Y ). Define W0

to be the interior of (µ−1)∗(W ′
max) in X × R. To show that F ⊆ W0, let

〈x, t〉 ∈ F . By Lemma 3.5, there exists an f ∈ C(X) with f ⊆ F and f(x) = t.
Since µ∗(F ) ⊆ W ′, we have µ(f) ⊆ W ′. Then there exist g1, g2 ∈ C(Y ) with
g1 < µ(f) < g2 and g1, g2 ⊆ W ′ ⊆ W ′

max. Let f1 = min
{
µ−1(g1), µ−1(g2)

}
and

f2 = max
{
µ−1(g1), µ−1(g2)

}
. Then by Lemma 5.5 applied to µ−1, f1 < f < f2

and µ−1(g1), µ−1(g2) ⊆ (µ−1)∗(W ′
max). We have f1, f2 ⊆ (µ−1)∗(W ′

max), so
that

{〈x′, t′〉 ∈ X × R : f1(x′) < t′ < f2(x′)
}

is an open subset of X × R

containing f and contained in (µ−1)∗(W ′
max), and thus contained in W0. There-

fore, 〈x, t〉 ∈ W0, showing that W+
0 is a neighborhood of F in L−(X). Finally,

if F ′ ∈ L−(X) with F ′ ∈ W+
0 , then F ′ ⊆ W0 ⊆ (µ−1)∗(W ′

max), so that
µ∗(F ′) ⊆ W ′

max ⊆ W , and hence µ∗(F ′) ∈ W+. �

The same argument as in Lemma 5.11 shows that (µ−1)∗ : L−(Y ) → L−(X)
is continuous when L−(X) and L−(Y ) have the upper Vietoris topology, so that
µ∗ : L−(X) → L−(Y ) is a homeomorphism with respect to the upper Vietoris
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topology. Now the fact that µ∗ is also a homeomorphism with respect to the
Vietoris topology follows from Proposition II.3.6 in Part II. That µ∗ is an ordered
homeomorphism comes directly from the definition of µ∗.

����� 5.12� For µ : C(X) → C(Y ), we have (µ∗)∗ = µ; and for M : L−(X) →
L−(Y ), we have (M∗)∗ = M .

P r o o f. For (µ∗)∗ = µ, observe that for each f ∈ C(X), µ∗(f) = µ(f), so
that (µ∗)∗(f) = µ(f). For (M∗)∗ = M , let F ∈ L−(X). Now (M∗)∗(F ) =⋃{

M (f) : f ∈ C(X) with f ⊆ F
} ⊆ M (F ) since M is ordered. To show that

M (F ) ⊆ ⋃{
M (f) : f ∈ C(X) with f ⊆ F

}
, let 〈y, t〉 ∈ M (F ). Then, by

Lemma 3.5, there exists a g ∈ C(Y ) with 〈y, t〉 ∈ g ⊆ M (F ). Now M−1(g) ⊆
M−1(M (F )) = F , so that 〈y, t〉 ∈ g ⊆ ⋃{

M (f) : f ∈ C(X) with f ⊆ F
}

. �

This finishes the proof of the Extension Theorem 5.1. The related Factoriza-
tion Theorem II.3.3 is proved in the following Part II.
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[4] DI MAIO, G.—HOLÁ, L’.—HOLÝ, D.—MCCOY, R. A.: Topologies on the space of
continuous functions, Topology Appl. 86 (1998), 105–122.

[5] DI MAIO, G.—MECCARIELLO, E.—NAIMPALLY, S. A.: Graph topologies on closed
multifunctions, Appl. Gen. Topol. 4 (2003), 445–465.

[6] DOWKER, C. H.: On countably paracompact spaces, Canad. J. Math. 3 (1951), 219–224.
[7] ENGELKING, R.: General Topology (Translated from the Polish by the author. Rev.

and completed ed.). Sigma Ser. in Pure Math. 6, Heldermann Verlag, Berlin, 1989.
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in General Topology, II (M. Hušek, et al., ed.), North Holland, Amsterdam, 2002,
pp. 253–285.
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