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ABSTRACT. In [HOLÁ, L’ .—HOLÝ, D.: Pointwise convergence of quasicontin-
uous mappings and Baire spaces, Rocky Mountain J. Math.] a complete answer
is given, for a Baire space X, to the question of when the pointwise limit of a se-
quence of real-valued quasicontinuous functions defined on X is quasicontinuous.

In [HOLÁ, L’ .—HOLÝ, D.: Minimal USCO maps, densely continuous forms and
upper semicontinuous functions, Rocky Mountain J. Math. 39 (2009), 545–562],
a characterization of minimal USCO maps by quasicontinuous and subcontinuous
selections is proved. Continuing these results, we study closed and compact sub-

sets of the space of quasicontinuous functions and minimal USCO maps equipped
with the topology of pointwise convergence. We also study conditions under
which the closure of the graph of a set-valued mapping which is the pointwise
limit of a net of set-valued mappings, is a minimal USCO map.
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1. Introduction

In the paper [24] Kempisty introduced a notion similar to continuity for real-
valued functions defined in R. For general topological spaces this notion can be
given by the following equivalent formulation.

A function f : X → Y is called quasicontinuous at x ∈ X if for every open
set V ⊂ Y , f(x) ∈ V , and open set U ⊂ X, x ∈ U , there is a nonempty open
set W ⊂ U such that f(W ) ⊂ V . If f is quasicontinuous at every point of X,
we say that f is quasicontinuous.
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The notion of quasicontinuity was perhaps the first time used by R. Baire
in [3] in the study of points of continuity of separately continuous functions.
As Baire indicated in his paper [3] the condition of quasicontinuity has been
suggested by Vito Volterra.

The notion of quasicontinuity recently turned out to be instrumental in the
proof that some semitopological groups are actually topological ones (see Bouziad
[8]), in the proof of some generalizations of Michael’s selection theorem (see Giles,
Bartlett [13]) and in characterizations of minimal usco maps via their selections
(see Holá, Holý [18]). In the paper of Matejdes [28] a characterization is given
for the minimality of maps via their quasicontinuous selections.

Quasicontinuity of real-valued separately continuous functions of two variables
has been studied very frequently in connection with the existence of points of
joint continuity for such functions (see Martin [29], Mibu [30], Piotrowski [36]).

Continuity points of quasicontinuous mappings were studied in many papers;
see for example Bledsoe [5], Holá, Piotrowski [21], Kenderov, Kortezov, Moors
[26], Levine [27], see also a survey paper of Neubrunn [34].

Of course it is very easy to verify that the pointwise limit of a sequence of
functions that are even continuous need not be quasicontinuous.

However it is known that the pointwise limit of an equicontinuous sequence
of functions is continuous. Of course equicontinuity is too strong; it is not nec-
essary to guarantee continuity of the pointwise limit of a sequence of continuous
functions.

In the paper of Beer and Levi [6] necessary and sufficient conditions for con-
tinuity of the pointwise limit of a net of continuous functions are given.

Minimal USCO maps are a very convenient tool in the theory of games (see
Christensen [9], Saint-Raymond [38]) or in functional analysis (see Borwein,
Moors [7]), where a differentiability property of single-valued functions is char-
acterized by their Clarke subdifferentials being convex minimal USCO maps).

There are many books and papers concerning topologies and convergences
on spaces of set-valued maps: Attouch [1], Aubin, Frankowska [2], Rockafellar,
Wets [37], Hammer, McCoy [17], Holá [15], [16], Holý [14], Holý, Vadovič [23].
In particular, graph convergence has found many applications to variational and
optimization problems, differential equations and approximation theory.

For topologies on the space of set-valued maps, there are mainly two ap-
proaches in the literature. For the first approach, hyperspace topologies on
set-valued maps with closed graphs, which were studied by DiMaio, Meccariello,
Naimpally [11], [33], Holá [15], McCoy [31], in which multifunctions are iden-
tified with their graphs and are considered as elements of the hyperspace. For
the second approach, there are extensions of natural topologies on the space of
continuous functions to the space of densely continuous forms, and to the spaces
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of USCO and minimal USCO maps, this approach was studied for example by
Holá [16] and Holý [14]. This is also studied in our paper.

In [19], for Baire spaces, necessary and sufficient conditions for quasicon-
tinuity of the pointwise limit of a net of quasicontinuous functions are given.
Continuing these results, we study closed and compact subsets of the space of
quasicontinuous functions equipped with the topology of pointwise convergence.

In the paper [18] a characterization of minimal USCO maps by quasicontinu-
ous and subcontinuous selections is given. Using results of papers [18] and [19]
we study conditions under which the closure of the graph of a set-valued map-
ping, which is the pointwise limit of a net of set-valued mappings, is a minimal
USCO map. We also study closed and compact subsets of the space of minimal
USCO maps with topology of pointwise convergence.

2. Preliminaries

In what follows let X, Y be Hausdorff topological spaces and R be the space
of real numbers with the usual metric. Also, for x ∈ X, U (x) is always used to
denote a base of open neighborhoods of x in X. The symbol A and IntA will
stand for the closure and interior of the set A in a topological space, respectively.

We say that a function f : X → Y is subcontinuous ([12], [35]) at x ∈ X if for
every net

{
xσ : σ ∈ Σ

}
in X converging to x, there is a convergent subnet of{

f(xσ) : σ ∈ Σ
}
. A function f is subcontinuous if it is subcontinuous at every

point of X.

Remark 2.1� Evidently if Y = R, then notions subcontinuous function and
locally bounded function coincide.

Following [10] the term map is reserved for set-valued mappings. If F : X → Y
is a (set-valued) map, then

GrF =
{
(x, y) ∈ X × Y : y ∈ F (x)

}
is the graph of F . Notice that if f : X → Y is a single-valued function we will
use the symbol Gr f also for the graph of f .

We say that a mapping F : X → R (single-valued or set-valued) is locally
bounded at x ∈ X if there is U ∈ U (x) such that F (U ) is a bounded subset
of R. A map F is locally bounded if it is locally bounded at every point of X.

A map F : X → Y is upper semicontinuous at a point x ∈ X ([4]), if, for
every open set V containing F (x), there exists U ∈ U (x) such that

F (U ) =
⋃{

F (u) : u ∈ U
} ⊂ V.
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A map F is upper semicontinuous if it is upper semicontinuous at each point
of X.

Following Christensen [9] we say, that a map F is USCO if it is upper semi-
continuous and takes nonempty compact values.

Finally, a map F is said to be minimal USCO if it is a minimal element in the
family of all USCO maps (with domain X and range Y ); that is, if it is USCO
and does not contain properly any other USCO map from X into Y . By an easy
application of the Kuratowski-Zorn principle we can guarantee that every USCO
map from X to Y contains a minimal USCO map from X to Y (see Drewnowski
and Labuda [10]).

We denote by 2R the space of all closed subsets of R and by CL(R) the space
of all nonempty closed subsets of R. Denote by d the usual metric on R. The
open d-ball with center z0 ∈ R and radius ε > 0 will be denoted by Sε(z0) and
the ε-parallel body

⋃
a∈A

Sε(a) for a subset A of R will be denoted by Sε(A).

If A ∈ CL(R), the distance functional d(·, A) : R → [0,∞) is described by
the familiar formula

d(z, A) = inf
{
d(z, a) : a ∈ A

}
.

The Hausdorff (extended-valued) metric Hd on 2R ([4]) is defined by

Hd(A,B) = max
{
sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}},

if A and B are nonempty. If A �= ∅ take Hd(A, ∅) = Hd(∅, A) = ∞. We will
often use the following equality on CL(R):

Hd(A,B) = inf
{
ε > 0 : A ⊂ Sε(B) and B ⊂ Sε(A)

}
.

The topology generated by Hd is called the Hausdorff metric topology.

Denote by F (X, 2Y ) the set of all maps from a topological space X to a
topological space Y with closed values. Following the paper [17] we will define
the topology τp of pointwise convergence on F (X, 2R). We use the symbols τp
(Up), also for the topology (uniformity) of pointwise convergence on the space
F (X, 2R). The topology τp of pointwise convergence on F (X, 2R) is induced by
the uniformity Up of pointwise convergence which has a base consisting of sets
of the form

W (A, ε) =
{
(Φ,Ψ) : ∀x ∈ A Hd(Φ(x),Ψ(x)) < ε

}
where A is a finite subset of X and ε > 0. The general τp-basic neighborhood
of Φ ∈ F (X, 2R) will be denoted by W (Φ, A, ε), i.e.

W (Φ, A, ε) = W (A, ε)[Φ] =
{
Ψ : Hd(Φ(x),Ψ(x)) < ε for every x ∈ A

}
.

In paper [18] the following characterization of minimal USCO maps is given:
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����������� 2.1� Let X, Y be topological spaces and Y be a T1 regular space.
Let F be a map from X to Y . Then the following are equivalent:

(1) F is a minimal USCO map;

(2) There exists a quasicontinuous and subcontinuous function f from X to Y
such that Gr f = GrF ;

(3) Every selection f of F is quasicontinuous, subcontinuous and Gr f = GrF .

3. Quasicontinuous functions and
topology of pointwise convergence

The Definition 3.1 and Proposition 3.1 are generalizations for nets of [19,
Definition 2.1, Proposition 2.1].

	
�������� 3.1� ([19]) Let
{
fλ : λ ∈ Λ

}
be a net of real-valued functions

defined on a topological space X. We say that the net
{
fλ : λ ∈ Λ

}
is equi-

quasicontinuous at x ∈ X if for every ε > 0 and every U ∈ U (x) there is λ0 ∈ Λ
and a nonempty open set W ⊂ U such that |fλ(z)− fλ(x)| < ε for every z ∈ W
and for every λ ≥ λ0. We say that

{
fλ : λ ∈ Λ

}
is equi-quasicontinuous if it is

equi-quasicontinuous at every x ∈ X.

����������� 3.1� Let
{
fλ : λ ∈ Λ

}
be a net of real-valued functions defined

on a topological space X convergent in the topology of pointwise convergence to
a real-valued function f . Let

{
fλ : λ ∈ Λ

}
be equi-quasicontinuous at x. Then

f is quasicontinuous at x.

P r o o f. Let ε > 0 and let U ∈ U (x). Since
{
fλ : λ ∈ Λ

}
is equi-quasi-

continuous at x, there exist λ0 ∈ Λ and a non empty open set W ⊂ U such that
|fλ(x)− fλ(w)| < ε

3 for every λ ≥ λ0 and every w ∈ W . Choice arbitrary point
w ∈ W .

The net
{
fλ : λ ∈ Λ

}
converges in the topology of poinwise convergence to f ,

i.e. there exist λ1 ≥ λ0 such that |f(w) − fλ1
(w)| < ε

3 and |f(x)− fλ1
(x)| < ε

3 .
Thus

|f(x)− f(w)| ≤ |f(x)− fλ1
(x)|+ |fλ1

(x)− fλ1
(w)|+ |fλ1

(w)− f(w)|
<

ε

3
+

ε

3
+

ε

3
= ε.

�
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�

��
� 3.1� ([19]) Let X be a Baire space. Let
{
fn : n ∈ Z

+
}
be a sequence

of real-valued quasicontinuous functions defined on X pointwise convergent to a
function f : X → R. Then the following are equivalent:

(1) f is quasicontinuous;

(2)
{
fn : n ∈ Z

+
}
is equi-quasicontinuous.

If F : X → Y is a mapping (single-valued or set-valued), then GrF can be
considered as map from X to R, where GrF (x) =

{
y ∈ R : (x, y) ∈ GrF

}
.

Denote by F (X,R) the set of all functions from a topological space X to R,
by Q(X) the space of all quasicontinuous function from X to R. We use the
symbol τp (Up) also for the topology (uniformity) of pointwise convergence on
F (X,R).

For the Tychonoff space X and for the space C(X) of continuous functions
from X to R the metrizability of (C(X), τp), the first countability of (C(X), τp)
and countability of X are equivalent ([32]).

�

��
� 3.2� For a topological space X the following are equivalent:

(1) (F (X,R),Up) is metrizable;

(2) (F (X,R), τp) is first countable;

(3) (Q(X),Up) is metrizable;

(4) (Q(X), τp) is first countable;

(5) X is countable.

P r o o f. The proof is similar to the proof of [22, Theorem 2.3]. Since we have
Q(X) ⊆ F (X,R), it is clear that (1) =⇒ (3) =⇒ (4) and (1) =⇒
(2) =⇒ (4).

We first show that (4) =⇒ (5). Let f be the constant function mapping
each point to 0. Let

{
W (f, An, 1/m) : n,m ∈ Z

+
}
be a local base at f , where

An is a finite subset of X. Suppose that X is not countable; hence X \⋃An �= ∅
and there is x /∈ ⋃

An. For each n ∈ Z
+ there is Un ⊆ X open such that

x ∈ Un ⊆ Un ⊆ Ac
n. Define the function gn : X → Y by

gn(z) =

{
1, if z ∈ Un,

0, otherwise.

Then gn is quasicontinuous. Since gn /∈ W (f, x, 1) and gn ∈ W (f, An, 1/m) for
every n ∈ Z

+ and m ∈ Z
+, the family

{
W (f, An, 1/m) : n,m ∈ Z

+
}
can not

be a local base at f , a contradiction.

(5) =⇒ (1): It is evident thatW
(
A, 1

n

)
=

{
(f, g) : ∀ x∈A |f(x)− g(x)|< 1

n

}
,

where A is a finite subset of X and n ∈ Z
+ is a countable base for the uniformity

Up ([25]). This proves the theorem. �
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����������� 3.2� Let X be a topological space and let B be a closed subset
of (Q(X), τp). If every net in B which is convergent in (F (X,R), τp) is equi-
quasicontinuous, then B is closed also in (F (X,R), τp).

P r o o f. The proof follows from the Proposition 3.1. �

�

��
� 3.3� Let X be a countable Baire space and let B be a subset of Q(X).
Then B is closed in (F (X,R), τp) if and only if the following conditions are
satisfied

(a) B is a closed subset of (Q(X), τp);

(b) every sequence in B which is convergent in (F (X,R), τp) is equi-quasi-
continuous.

P r o o f. Let
{
fn : n ∈ Z

+
}

be a sequence in B convergent to a function
f ∈ F (X,R). Since B is closed in F (X,R) we have that f is quasicontinuous.
By Theorem 3.1,

{
fn : n ∈ Z

+
}
is equi-quasicontinuous. The converse follows

from the Proposition 3.2 and the Theorem 3.2 �

If B ⊆ F (X,R) and x ∈ X, then denote by B[x] the set
{
f(x) : f ∈ B

}
.

�

��
� 3.4� Let X be a topological space. Let B be a subset of Q(X). Then
B is compact relative to the pointwise topology if the following conditions are
satisfied

(a) B is a closed subset of (Q(X), τp);

(b) B[x] is a compact for every x ∈ X;

(c) every net in B has a equi-quasicontinuous subnet.

P r o o f. Let
{
fλ : λ ∈ Λ

}
be a net in B. By the assumption,

{
fλ : λ ∈ Λ

}
has a equi-quasicontinuous subnet

{
hω : ω ∈ Ω

}
. The product

∏
x∈X

B[x] is

a compact subset of RX =
∏

x∈X

Rx, where Rx = R for every x ∈ X, relative

to the product topology. Since the topology of pointwise convergence for every
subset of F (X,R) is the relativized product topology, net

{
hω : ω ∈ Ω

}
has a

convergent subnet
{
fδ : δ ∈ ∆

}
. The net

{
hω : ω ∈ Ω

}
is equi-quasicontinuous

and hence
{
fδ : δ ∈ ∆

}
is equi-quasicontinuous, too. The net

{
fδ : δ ∈ ∆

}
converges to a function f . By Proposition 3.1, f is quasicontinuous. Since B is
closed in (Q(X), τp) we have that f ∈ B and thus B is compact. �
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�

��
� 3.5� Let X be a countable Baire space. Let B be a subset of Q(X).
Then B is compact relative to the pointwise topology if and only if the following
conditions are satisfied

(a) B is a closed subset of (Q(X), τp);

(b) B[x] is a compact for every x ∈ X;

(c) every sequence in B has a equi-quasicontinuous subsequence.

P r o o f. Suppose B is compact. The space (Q(X), τp) is Hausdorff so B is a
closed subset of (Q(X), τp). Projection px :

∏
x∈X

R → R is continuous and hence

the image B[x] of B is compact. Let
{
fn : n ∈ Z

+
}
be a sequence in B. Since

B is compact and, by Theorem 3.2, is metrizable, the sequence
{
fn : n ∈ Z

+
}

has a convergent subsequence. Thus by Theorem 3.3 this subsequence is equi-
quasicontinuous. The converse follows from the Theorems 3.4 and 3.2. �

4. Minimal usco maps and
topology of pointwise convergence

Let F be a USCO map from a topological space X to R. Define the function
fF as follows:

fF (x) = sup
{
y : y ∈ F (x)

}
.

Then of course fF is a selection of F and fF is upper semicontinuous. If F is a
minimal USCO map from a topological space X to R, then by [18, Theorem 2.6],
fF is also quasicontinuos and locally bounded.

We denote by UC(X) the space of all real valued upper semicontinuous func-
tions, by Q�(X) the space of all locally bounded functions from Q(X) and by
M (X) the space of all minimal USCO maps.

Define Ω: M (X) → Q�(X) ∩ UC(X) as follows: Ω(F ) = fF ([18]).

By Proposition 2.1, Gr fF = GrF .

����������� 4.1� ([18]) The mapping Ω: M (X) → Q�(X) ∩ UC(X) is a bi-
jection.

����������� 4.2� ([18]) Let X be a topological space. Then the mapping Ω
from (M (X), Up) onto (Q�(X) ∩ UC(X),Up) is uniformly continuous.

The mapping Ω−1 from (Q�(X) ∩ UC(X), τp) onto (M (X), τp) need not be
continuous, see [18, Example 4.3].

514



QUASICONTINUOUS FUNCTIONS, MINIMAL USCO MAPS, POINTWISE CONVERGENCE

�

��
� 4.1� Let X be a Fréchet topological space. Then the following are
equivalent:

(1) The spaces (M (X),Up) and (Q�(X) ∩ UC(X),Up) are uniformly isomor-
phic.

(2) X is a discrete topological space.

P r o o f.

(1) =⇒ (2): Suppose that X is not a discrete topological space. Since X is a
Hausdorff non discrete topological space, then there is a point x0 ∈ X such that
every U ∈ U (x0) is infinite set. Moreover X is a Fréchet space, so there exist a
sequence

{
xn : n ∈ Z

+
}
converging to x0 and open setsWn ⊂ X, where n ∈ Z

+,

with the following properties: xn ∈ Wn for every n ∈ Z
+,

{
Wn : n ∈ Z

+
}
is a

pairwise disjoint family and x0 /∈ ⋃{
Wn : n ∈ Z

+
}
.

Equip U (x0) with the natural direction: if U, V ∈ U (x0), then U ≥ V if and
only if U ⊆ V . Let f be the function identically equal to 1. For each U ∈ U (x0)
define a function fU : X → R as follows:

fU (x) =

{
0, x ∈ IntU ∩ Int

⋃{
W2i : i ∈ Z+

}
,

1, otherwise.

The net
{
fU : U ∈ U (x0)

}
converges to f in (Q�(X) ∩ UC(X), τp). Since

0 ∈ Gr fU (x0) for every U ∈ U (x0), the net
{
Gr fU : U ∈ U (x0)

}
does not

converge to Gr f in (M (X), τp). Hence mapping Ω−1 from (Q�(X)∩UC(X), τp)
onto (M (X), τp) is not continuous and so the spaces (M (X),Up) and
(Q�(X) ∩ UC(X),Up) are not uniformly isomorphic.

(2) =⇒(1): IfX is a discrete topological space then the spaceQ�(X) ∩ UC(X)
and the space M (X) are equal to the space of all continuous functions from X
to R. So we are done. �

Theorems 4.2, 4.3 and 4.4 give conditions under which a limit map of a net
of maps with nonempty compact values in (F (X, 2R), τp) is minimal USCO.

Denote by FLB(X, 2R) the set of all locally bounded maps from a topological
space X to R with closed values.

�

��
� 4.2� Let
{
Fλ : λ ∈ Λ

}
be a net of maps from a topological space

X to R with non empty compact values pointwise convergent to a map F ∈
FLB(X, 2R). Let the net

{
fFλ : λ ∈ Λ

}
be equi-quasicontinuous. Then F ∈

M (X) if and only if Gr fF = GrF .

P r o o f. Suppose that F is a minimal USCO map. Since fF is a selection of F ,

by [18, Proposition 2.1], Gr fF = GrF .

We prove the converse. Since the space of all nonempty compact sets of R is
a closed set in (2R, Hd), F (x) must be a nonempty compact set for every x ∈ X.
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Since F is locally bounded, fF is locally bounded, too, and by Remark 2.1, fF is
subcontinuous. It is easy to see that

{
fFλ : λ ∈ Λ

}
pointwise converges to fF .

So by Proposition 3.1, fF is quasicontinuous. Since fF is quasicontinuous and

subcontinuous selection of F and Gr fF = GrF , by Proposition 2.1, F ∈ M (X).
�

Let F =
{
Fλ : λ ∈ Λ

}
be a net of maps from X to R. Let x ∈ X, denote by

F [x] =
{
y ∈ R : y ∈ Fλ(x), λ ∈ Λ

}
.

�

��
� 4.3� Let F =
{
Fλ : λ ∈ Λ

}
be a net of maps from a topological

space X to R with non empty compact values pointwise convergent to a map
F ∈ FLB(X, 2R) and let F [x] be a bounded subset of R. Let fλ be a selection
of Fλ for every λ ∈ Λ and let

{
fλ : λ ∈ Λ

}
be an equi-quasicontinuous net of

functions. Then F ∈ M (X) if and only if Gr f = GrF , where f is a cluster
point of the net

{
fλ : λ ∈ Λ

}
in the topology of pointwise convergence.

P r o o f. The proof is similar to the proof of Theorem 4.2, we only note the
following observation.

The product
∏

x∈X

F [x] is a compact subset of RX =
∏

x∈X

Rx, where Rx = R

for every x ∈ X, relative to the product topology. Thus there exists a subnet
of

{
fλ : λ ∈ Λ

}
which converges in the topology of pointwise convergence to a

function f . Evidently f is a selection of F . �

�

��
� 4.4� Let
{
Fn : n ∈ Z

+
}
be a sequence of maps from a topological

space X to R with non empty compact values pointwise convergent to a map F ∈
FLB(X, 2R). Let fn be a selection of Fn for every n ∈ Z

+ and let
{
fn : n ∈ Z

+
}

be an equi-quasicontinuous sequence of functions. Then F ∈ M (X) if and only

if Gr f = GrF , where f is a cluster point of the sequence
{
fn : n ∈ Z

+
}
in the

topology of pointwise convergence.

�

��
� 4.5� For a topological space X the following are equivalent:

(1) (F (X, 2R),Up) is metrizable;

(2) (F (X, 2R), τp) is first countable;

(3) (M (X),Up) is metrizable;

(4) (M (X), τp) is first countable;

(5) X is countable.

P r o o f. The proof is similar to the proof of Theorem 3.2, where in part
(4) =⇒ (5) we take Gr f and Gr gn instead of f and gn. �
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����������� 4.3� Let X be a topological space and let B be a closed subset of
(M (X), τp). Let for every net

{
Fλ : λ ∈ Λ

}
in B which is pointwise convergent

to a map F ∈ FLB(X, 2R), the net
{
fFλ : λ ∈ Λ

}
be equi-quasicontinuous and

let Gr fF = GrF . Then B is closed also in (FLB(X, 2R), τp).

P r o o f. The proof follows from Theorem 4.2. �

�

��
� 4.6� Let X be a countable Baire space and let B be a subset of M (X).
Then B is closed in (FLB(X,R), τp) if and only if the following conditions are
satisfied

(a) B is a closed subset of (M (X), τp).

(b) For every sequence
{
Fn : n ∈ Z

+
}

in B, which is pointwise conver-

gent to a map F ∈ FLB(X, 2R), the sequence
{
fFn : n ∈ Z

+
}

is equi-

quasicontinuous and Gr fF = GrF .

P r o o f. Let
{
Fn : n ∈ Z

+
}
be a sequence in B, which is pointwise convergent

to a map F ∈ FLB(X, 2R). Since B is closed in (FLB(X, 2R), τp), the map F is
minimal USCO. So by Proposition 2.1 the function fF is quasicontinuous and

Gr fF = GrF . Since the sequence
{
fFn : n ∈ Z

+
}
pointwise converges to fF ,

by Theorem 3.1 it is equi-quasicontinuous.

The converse follows from Proposition 4.3 and Theorem 4.5. �

If B ⊆ F (X, 2R) and x ∈ X, then denote by B[x] =
{
y ∈ R : y ∈ F (x),

F ∈ B
}
.

�

��
� 4.7� Let X be a topological space. Let B be a subset of M (X). Then
B is compact relative to the topology of pointwise convergence if the following
conditions are satisfied

(a) B is a closed subset of (M (X), τp).

(b) B[x] is a compact for every x ∈ X.

(c) If a net
{
Fλ : λ ∈ Λ

}
in B, pointwise converges to a map F ∈ F (X, 2R),

then the net
{
fFλ : λ ∈ Λ

}
is equi-quasicontinuous, fF is locally bounded

and Gr fF = GrF .

P r o o f. Let
{
Fλ : λ ∈ Λ

}
be a net in B. By [4], (B[x], d) is compact if and only

if
(
CL(B[x]), Hd

)
is compact. The product

∏
x∈X

CL(B[x]) is a compact subset

of CL(Rx)
X

=
∏

x∈X

CL(Rx), where Rx = R for every x ∈ X, relative to the

product topology, where the space CL(R) is equipped with the topology induced
by the metric Hd. Thus there exists a subnet

{
Fσ : σ ∈ Σ

}
of

{
Fλ : λ ∈ Λ

}
which converges in the topology of pointwise convergence to a map F . By above
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mentioned the map F has nonempty compact values. It is clear that
{
fFσ :

σ ∈ Σ
}
pointwise converges to fF . So by Proposition 3.1, fF is quasicontinuous

and since by (c), Gr fF = GrF , by Proposition 2.1, F ∈ M (X). �

�

��
� 4.8� Let X be a countable Baire space. Let B be a subset of M (X).
Then B is compact relative to the pointwise topology if and only if the following
conditions are satisfied

(a) B is a closed subset of (M (X), τp).

(b) B[x] is a compact for every x ∈ X.

(c) If a sequence
{
Fn : n ∈ Z

+
}
, in B, pointwise converges to a map F ∈

F (X, 2R), then the sequence
{
fFn : n ∈ Z

+
}
is equi-quasicontinuous, fF

is locally bounded and Gr fF = GrF .

P r o o f. Suppose B is compact. The space (M (X), τp) is Hausdorff so B is a
closed subset of (M (X), τp). For the proof of condition (b) see first part of
the proof of Theorem 4.7. The projections px :

∏
x∈X

CL(Rx) → CL(Rx), where

Rx = R for every x ∈ X, are continuous and hence the image CL(B[x]) of B is

compact and thus B[x] is compact. The condition (c) follows from Theorem 4.6.
The converse follows from Theorems 4.7 and 4.5. �

At last we will mention the so-called densely continuous forms introduced by
McCoy and Hammer in [17] and then studied by Holá, McCoy, Holý, Vadovič in
their papers [16, 20, 22, 23].

Let X, Y be Hausdorff topological spaces. Densely continuous forms from X
to Y can be considered as maps (set-valued mappings) from X to Y which have
a kind of minimality property found in the theory of minimal USCO maps. In
particular, every minimal USCO map from a Baire space X into a metric space
Y is a densely continuous form.

For each function f from X to Y denote by

C(f) =
{
x ∈ X : f is continuous at x

}
.

For every f ∈ DC(X, Y ), Gr(f
C(f)) is a subset of X × Y .

Denote by Gr(f
C(f)) the closure of Gr(f
C(f)) in X × Y .

We define the set D(X, Y ) of densely continuous forms by

D(X, Y ) =
{
Gr(f
C(f)) : f ∈ DC(X, Y )

}
.

The densely continuous forms from X to Y may be considered as maps: for
each x ∈ X and Φ ∈ D(X, Y ) define Φ(x) =

{
y ∈ Y : (x, y) ∈ Φ

}
.

Now define D� to by the set of all members of D(X,R) that are locally
bounded.
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Remark 4.1� If X is Baire space, than M (X) = D�(X) ([18]) and so in Theo-
rems 4.6 and 4.8 we can replace M (X) by D�(X).
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