

DOI: 10.2478/s12175-010-0024-8 Math. Slovaca **60** (2010), No. 4, 447–460

RELATIVELY UNIFORM CONVERGENCES IN ARCHIMEDEAN LATTICE ORDERED GROUPS

JÁN JAKUBÍK — ŠTEFAN ČERNÁK

(Communicated by Jiří Rachůnek)

ABSTRACT. For an archimedean lattice ordered group G let G^d and G^{\wedge} be the divisible hull or the Dedekind completion of G, respectively. Put $G^{d^{\wedge}} = X$. Then X is a vector lattice. In the present paper we deal with the relations between the relatively uniform convergence on X and the relatively uniform convergence on G. We also consider the relations between the o-convergence and the relatively uniform convergence on G. For any nonempty class τ of lattice ordered groups we introduce the notion of τ -radical class; we apply this notion by investigating relative uniform convergences.

©2010 Mathematical Institute Slovak Academy of Sciences

1. Introduction

For references concerning sequential convergences cf. the expository article [7]. The notion of relatively uniform convergence has been systematically used in the theory of vector lattices; cf. the monographs [2], [12] and [15].

The relatively uniform convergence in archimedean lattice ordered groups was dealt with in [1], [7], [8], [13] and [14]; for related results, cf. also [4], [5].

If G is an ℓ -subgroup of a lattice ordered group H and if α is a convergence on H, then α induces a convergence on G which will be denoted by $\alpha(H, G)$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 06F20.

 $^{{\}tt Keywords:}$ lattice ordered group, vector lattice, relatively uniform convergence, o-convergence.

Supported by VEGA Agency grants 2/7141/27 and 1/3003/06.

This work was supported by the Slovak Research and Development Agency under the contract No APVV-0071-06.

This work has been partially supported by the Slovak Academy of Sciences via the project Center of Excellence – Physics of Information (grant I/2/2005).

Let G be an archimedean lattice ordered group. We denote by G^d and G^{\wedge} the divisible hull and the Dedekind completion of G, respectively. We put $G^{d^{\wedge}} = X$. Then X is a vector lattice. Under the natural embedding, G is an ℓ -subgroup of X.

For $(x_n) \in G^{\mathbb{N}}$ and $x \in G$ we write $x_n \to_o x$ if (x_n) o-converges to the element x. Further, we denote by u the relatively uniform convergence on the vector lattice X. The relatively uniform convergence in G will be denoted by α_u .

For any nonempty class τ of lattice ordered groups we introduce the notion of τ -radical class; we apply this notion by investigating relatively uniform convergences. (For the corresponding definitions, cf. Section 5 below.)

Under the above notation we prove the following results:

- 1) $u(X,G) = \alpha_u$.
- 2) If G is either divisible or σ -complete, then the relation

$$x_n \to_{\alpha_n} x \implies x_n \to_o x$$

is valid in G.

- 3) The relatively uniform completion of G under the convergence α_u is equal to the intersection of all $G_i \subseteq X$ such that
 - (i) $G \subseteq G_i$, and
 - (ii) G_i is a relatively uniformly complete ℓ -subgroup of X under the convergence u.
- 4) Let \mathcal{C} be the class of all lattice ordered groups satisfying the condition (C) (given in Section 5) and let \mathcal{K} be the collection of all lattice ordered groups G such that G is archimedean and relatively uniformly complete. Then \mathcal{K} is a \mathcal{C} -radical class of lattice ordered groups.

2. Relatively uniform convergence

For lattice ordered groups and for vector lattices we apply the notation as in [2].

For the sake of completeness we recall some definitions concerning vector lattices and lattice ordered groups.

Let V be a vector lattice. We say that a sequence (x_n) in V relatively uniformly converges to an element $x \in V$ if there exists $a \in V$, a > 0, such that for each real $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $|x_n - x| \le \varepsilon a$ for all $n \in \mathbb{N}$, $n \ge n_0$.

It is easy to verify that the mentioned definition for V is equivalent with the following one.

Let $(x_n) \in V^{\mathbb{N}}$, $x \in V$. We say that the sequence (x_n) relatively uniformly converges to x in the vector lattice V if there exist an element a > 0 in V and a sequence of reals (λ_n) such that $\lambda_n \downarrow 0$ and $|x_n - x| \leq \lambda_n a$ for each $n \in \mathbb{N}$.

Under these assumptions we write $x_n \to_u x$ (or $x_n \xrightarrow{a}_u x$). If the role of the vector lattice V is to be emphasized then we write also $x_n \to_{u(V)} x$. (Cf. [2].)

Further, we say that the sequence (x_n) o-converges to the element x in the vector lattice V and we write $x_n \to_o x$ (or $x_n \to_{o(V)} x$, if the role of V is emphasized) if there exist sequences (u_n) and (v_n) in V such that $u_n \uparrow x$, $v_n \downarrow x$ and $u_n \leq x_n \leq v_n$ for each $n \in \mathbb{N}$.

As usual, the notation $u_n \uparrow x$ means that $u_n \leq u_{n+1}$ for each $n \in \mathbb{N}$ and $\bigvee_{n \in \mathbb{N}} u_n = x$. The meaning of the notation $v_n \downarrow x$ is similar.

Now, let (x_n) be a sequence in a lattice ordered group G and $x \in G$. To avoid the trivial case, we always assume that G has more than one element. Suppose that there exists an element b > 0 in G such that for every $p \in \mathbb{N}$ there is $n_0 \in \mathbb{N}$ with

$$p|x_n - x| \leq b$$
 for each $n \in \mathbb{N}, n \geq n_0$.

Then we say that the sequence (x_n) converges relatively uniformly to the element x in the lattice ordered group G and we write $x_n \to_{\alpha_u} x$ (or $x_n \to_{\alpha_u(G)} x$). (Cf. [12].)

The o-convergence in the lattice ordered group G is defined analogously as in the case of vector lattices.

If V is a vector lattice, then we denote by V_0 the corresponding lattice ordered group (i.e., when dealing with V_0 , the multiplication of elements of V with reals is not taken into account).

The following assertion is easy to verify.

Lemma 2.1. Let (x_n) be a sequence in a vector lattice V and $x \in V$. Then the following conditions are equivalent:

- (i) The sequence (x_n) converges relatively uniformly to the element x in the vector lattice V.
- (ii) The sequence (x_n) converges relatively uniformly to the element x in the lattice ordered group V_0 .

Suppose that G is an archimedean lattice ordered group. Consider the divisible hull G^d of G. Under the natural embedding, G is an ℓ -subgroup of G^d . If $y \in G^d$, y > 0, then there exist $n \in \mathbb{N}$ and $x \in G^+$ with $y = \frac{x}{n}$. (Cf. e.g., [10].) The lattice ordered group G^d is archimedean as well.

Lemma 2.2. Let (x_n) be a sequence in an archimedean lattice ordered group G and let $x \in G$. Then the following conditions are equivalent:

- (i) The sequence (x_n) converges relatively uniformly to the element x in the lattice ordered group G.
- (ii) The sequence (x_n) converges relatively uniformly to the element x in the lattice ordered group G^d .

Proof. The implication (i) \Longrightarrow (ii) is obvious, since G is embedded in G^d .

Assume that (ii) is valid. Thus there is an element b_1 in G^d such that for every $p \in \mathbb{N}$ there is $n_0 \in \mathbb{N}$ with

$$p|x_n - x| \leq b_1$$
 for each $n \in \mathbb{N}, n \geq n_0$.

There are $n_1 \in \mathbb{N}$ and $b_2 \in G^+$ such that

$$b_1 = \frac{b_2}{n_1}.$$

Then $b_1 \leq b_2$. Hence

$$p|x_n - x| \leq b_2$$
 for each $n \in \mathbb{N}$, $n \geq n_0$.

Therefore the condition (i) is satisfied.

Let G be as above. We put $X = G^{d \wedge}$. In view of [10], X is a vector lattice. Under the natural embeddings, both G and G^d are ℓ -subgroups of the lattice ordered group X_0 . (The symbol X_0 has an analogous meaning with respect to X as the symbol V_0 with respect to V.)

Lemma 2.3. Let (x_n) be a sequence in G^d and $x \in G^d$. Then the following conditions are equivalent:

- (i) The sequence (x_n) converges relatively uniformly to the element x in the lattice ordered group G^d .
- (ii) The sequence (x_n) converges relatively uniformly to the element x in the vector lattice X.

Proof. Assume that (i) is valid. Since G^d is embedded in X_0 , in view of Lemma 2.1 we conclude that (ii) holds.

Further, suppose that (ii) is satisfied. Hence according to Lemma 2.1, (x_n) relatively uniformly converges to x in the lattice ordered group X_0 . In view of the construction of Dedekind completion of G^d , for each element $0 < b_1 \in G^{d \wedge}$ there exists an element $b_2 \in G^d$ such that $b_1 < b_2$. Now, applying the analogous argument as in the proof of Lemma 2.2, we conclude that the condition (i) is valid.

PROPOSITION 2.4. Let (x_n) be a sequence in an archimedean lattice ordered group G and $x \in G$. Put $G^{d \wedge} = X$. Then the following conditions are equivalent:

- (i) The sequence (x_n) converges relatively uniformly to the element x in the lattice ordered group G.
- (ii) The sequence (x_n) converges relatively uniformly to the element x in the vector lattice X.

Proof. This is a consequence of Lemmas 2.2 and 2.3.

In other words, we can say that the convergence α_u on the lattice ordered group G is induced by the convergence u on the vector lattice X.

The following example shows that if X is replaced by a vector lattice containing G and different from X, then Proposition 2.4 need not hold.

Example 1. Let \mathbb{R} be the additive group of all reals with the natural linear order. For each $i \in \mathbb{N}$ let $G_i = \mathbb{R}$. We put

$$H = \prod_{i \in \mathbb{N}} G_i.$$

Evidently, H is a vector lattice. For $h \in H$ and $i \in \mathbb{N}$ we denote by h(i) the component of h in the direct factor G_i ; further we put $\mathrm{supp}(h) = \{i \in \mathbb{N} : h(i) \neq 0\}$. Let G be the set of all $h \in H$ such that $\mathrm{supp}(h)$ is finite. Then G is an ℓ -subgroup of H; moreover, G is archimedean.

For $n \in \mathbb{N}$ we define $x_n \in G$ as follows: if $i \in \mathbb{N}$ and $i \neq n$, then the component $x_n(i)$ of x_n in G_i is equal to 0; if i = n, then $x_n(i) = \frac{1}{n}$.

There exists $a \in H$ such that a(i) = 1 for each $i \in \mathbb{N}$. Put $\lambda_n = \frac{1}{n}$ for each $n \in \mathbb{N}$. Thus

$$x_n = |x_n| \le \lambda_n a$$
 for each $n \in \mathbb{N}$,

hence $x_n \to_u 0$ in the vector lattice H. On the other hand, the relation $x_n \to_{\alpha_u} 0$ fails to be valid in the lattice ordered group G.

3. o-convergence

Again, let G be an archimedean lattice ordered group and let G^d , X be as above.

In view of [2, Chap. X, §9], we have:

Lemma 3.1. Let L be a lattice and let L_1 be the Dedekind completion of L. Then the o-convergence in L is induced by the o-convergence in L_1 .

Hence, in particular, we obtain:

Lemma 3.2. Let G be an archimedean lattice ordered group. Let (x_n) be a sequence in G and $x \in G$. Then the following conditions are equivalent:

- (i) The sequence (x_n) o-converges to x in G.
- (ii) The sequence (x_n) o-converges to x in G^{\wedge} .

THEOREM 3.3. (Cf. [2, Chap. XV, Theorem 19].) Let (x_n) be a sequence in archimedean vector lattice V and $x \in V$. Assume that (x_n) relatively uniformly converges to x in V. Then (x_n) o-converges to x in V.

PROPOSITION 3.4. Assume that G is a divisible lattice ordered group. Let (x_n) be a sequence in G and $x \in G$. Then we have

$$x_n \to_{\alpha_u(G)} x \implies x_n \to_{o(G)} x.$$

Proof. Since G is divisible, $G^d = G$. Put $G^{d \wedge} = X$. Hence X is a vector lattice and $X = G^{\wedge}$.

Assume that the relation $x_n \to_{\alpha_u(G)} x$ is valid. Then according to Proposition 2.4 we have $x_n \to_{u(X)} x$. Thus Theorem 3.3 yields $x_n \to_{o(X)} x$. Applying Lemma 3.2 we obtain $x_n \to_{o(G)} x$.

Now, let us suppose that G is σ -complete lattice ordered group. Let (x_n) be a sequence in G, $x \in G$, and assume that the relation $x_n \to_{\alpha_u} x$ is valid in G.

We apply the notation as above. Further, we put $|x_n - x| = z_n$. Thus there is $b \in G$, b > 0, such that for each $k \in \mathbb{N}$ there exists $n_0(k) \in \mathbb{N}$ such that for each $n \ge n_0(k)$ we have $kz_n \le b$.

Hence for any $n \ge n_0(1)$ we get $z_n \le b$. Since G is σ -complete, for each $n \in \mathbb{N}$ with $n \ge n_0(1)$ there exists the join

$$t_n = \bigvee_{m \ge n} z_m$$

in G. We put

$$\overline{t} = t_{n_0(1)}$$

and for $n = 1, 2, ..., n_0(1) - 1$ we set

$$t_n = z_n \vee z_{n+1} \vee \cdots \vee z_{n_0(1)-1} \vee \overline{t}.$$

Therefore $t_n \geq t_{n+1}$ and $t_n \geq z_n \geq 0$ for each $n \in \mathbb{N}$.

Further, there exists $q \in G$ with

$$q = \bigwedge_{n \in \mathbb{N}} t_n;$$

clearly $q \geq 0$.

Let $k \in \mathbb{N}$. Take any $n \in \mathbb{N}$ with $n \geq n_0(k)$; we get

$$kq \le kt_n = k\left(\bigvee_{m \ge n} z_m\right) = \bigvee_{m \ge n} kz_m \le b.$$

Since G is archimedean, we conclude that q=0. Therefore we get that the relation

$$z_n \to_o 0$$

is valid in G. Thus we have also $-z_n \to_0 0$. Clearly

$$-z_n \le x - x_n \le z_n$$

for each $n \in \mathbb{N}$. Thus $x - x_n \to_o 0$ in G. This yields that $x_n \to_o x$ is valid in G.

It is well-known that σ -complete lattice ordered groups are archimedean. Hence, summarizing the above results, we have:

PROPOSITION 3.5. Let G be a σ -complete lattice ordered group. Let (x_n) be a sequence in G and $x \in G$ such that (x_n) converges relatively uniformly to the element x. Then (x_n) o-converges to the element x.

4. Relative uniform completion of G

We recall the definitions of a relatively uniformly Cauchy sequence in vector lattices and in lattice ordered groups (cf., e.g., [12] and [6]).

Let V be a vector lattice. A sequence (x_n) in V is called relatively uniformly Cauchy if there exists $b \in V$, b > 0, such that for every real $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $|x_n - x_m| \le \varepsilon b$ for each $m, n \in \mathbb{N}$, $m, n \ge n_0$.

Let G be a lattice ordered group. It is said that a sequence (x_n) in G is relatively uniformly Cauchy if there exists $b \in G$, b > 0, such that for every $p \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ with the property $p|x_n - x_m| \leq b$ for each $m, n \in \mathbb{N}$, $m, n \geq n_0$.

If every relatively uniformly Cauchy sequence in a vector lattice V converges relatively uniformly in V then V is called *relatively uniformly complete*. The concept of a relatively uniformly complete lattice ordered group is defined analogously.

A. I. Veksler [14] discussed the notion of a relative uniform completion of vector lattices. This notion can be applied to lattice ordered groups by a slight modification (cf. [1], [6], [12]):

Let H be an archimedean lattice ordered group with the properties

- (a) G is an ℓ -subgroup of H.
- (b) H is relatively uniformly complete.
- (c) If G is an ℓ -subgroup of K, K is an ℓ -subgroup of H and K is relatively uniformly complete, then K = H.

Then H is said to be a relative uniform completion of G.

A relative uniform completion exists and it is uniquely determined up to isomorphisms over G (cf. [6]).

Let V_0 and X_0 be as in Section 2. The following result is easy to verify.

Lemma 4.1. Let (x_n) be a sequence in a vector lattice V. Then the following conditions are equivalent:

- (i) (x_n) is a relatively uniformly Cauchy sequence in the vector lattice V.
- (ii) (x_n) is a relatively uniformly Cauchy sequence in the lattice ordered group V_0 .

As a consequence of Lemma 2.1 and Lemma 4.1 we get:

Lemma 4.2. The following conditions are equivalent:

- (i) V is a relatively uniformly complete vector lattice.
- (ii) V_0 is a relatively uniformly complete lattice ordered group.

THEOREM 4.3. Let G be an archimedean lattice ordered group and $X = G^{d \wedge}$. Assume that $\{G_i : i \in I\}$ is the system of all ℓ -subgroups K of X_0 satisfying the following conditions:

- (i) G is an ℓ -subgroup of K.
- (ii) K is a relatively uniformly complete ℓ -subgroup of X_0 .

Then $\bigcap_{i \in I} G_i$ is a relative uniform completion of G.

Proof. With respect to [14], X is a relatively uniformly complete vector lattice. By 4.2, X_0 is a relatively uniformly complete lattice ordered group. We have to prove that $H = \bigcap_{i \in I} G_i$ has the properties (a), (b) and (c). We consider the relative uniform convergence in X_0 .

- (a) Evidently, H is an ℓ -subgroup of X_0 and G is an ℓ -subgroup of H.
- (b) Let (x_n) be a sequence in H and let (x_n) be relatively uniformly Cauchy in H. Hence for each $i \in I$, (x_n) is a sequence in G_i and (x_n) is relatively uniformly Cauchy in G_i . According to the assumption (x_n) is relatively uniformly convergent in all G_i . Whence for each $i \in I$ there exist $x_i \in G_i$ and $0 < v_i \in G_i$ with $x_n \stackrel{v_i}{\to}_{\alpha_u} x_i$. Archimedeanicity of X_0 implies that limits in X_0 are uniquely determined (cf. [7]). Hence $x_i = x$ for each $i \in I$, so $x \in H$. Let $i \in I$ be fixed. Then $x_n \stackrel{v_i}{\to}_{\alpha_u} x$. According to the proofs of 2.2 and 2.3 there exists $v \in G$, $v \ge v_i$. Therefore $x_n \stackrel{v}{\to}_{\alpha_u} x$. By (a), $G \subseteq H$. Hence (x_n) is relative uniformly convergent in H. This implies that H is relatively uniformly complete.

(c) This is clear.
$$\Box$$

5. The C-radical class K

For a lattice ordered group G let c(G) be the system of all convex ℓ -subgroups of G. This system is partially ordered by the set-theoretical inclusion. Then c(G) is a complete lattice.

Let $(G_i)_{i\in I}$ be an indexed system of elements of c(G). In the lattice c(G) we have

$$\bigcap_{i \in I} G_i = \bigwedge_{i \in I} G_i.$$

We put $\bigcup_{i \in I} G_i = H_o$. Let H be the set of all elements $h \in G$ which can be written in the form $h = g_1 + g_2 + \dots + g_n$ with $g_1, \dots, g_n \in H_o$. Then the relation

$$H = \bigvee_{i \in I} G_i$$

is valid in the lattice c(G).

The notion of radical class of lattice ordered groups has been introduced in [11] and it was investigated in several papers.

We introduce a generalization of this notion as follows.

Let τ be a nonempty class of lattice ordered groups. A class \mathcal{A} of lattice ordered groups is said to be a τ -radical class if the following conditions are satisfied:

- (i) \mathcal{A} is closed with respect to isomorphisms.
- (ii) If $G \in \mathcal{A}$ and $G_1 \in c(G)$ then $G_1 \in \mathcal{A}$.
- (iii) If $G \in \tau$ and $\{G_i\}_{i \in I} \subseteq \mathcal{A} \cap c(G), I \neq \emptyset$, then $\bigvee_{i \in I} G_i \in \mathcal{A}$.

Obviously, a class \mathcal{A} of lattice ordered groups is a radical class if and only if it is a \mathcal{G} -radical class, where \mathcal{G} is the class of all lattice ordered groups.

We denote by \mathcal{C} the class of all lattice ordered groups H fulfilling the condition

(C) If $K \in c(H)$ and (x_n) is a sequence in K which is relatively uniformly Cauchy in H, then it is relatively uniformly Cauchy in K.

The condition (C) was applied in [8]. Some lattice ordered groups fulfil the condition (C) (e.g., the lattice ordered group R) and some do not (cf. [8, Example 4.9]).

Let \mathcal{K} be the class of all archimedean lattice ordered groups G such that G is relatively uniformly complete. In the present section we prove that \mathcal{K} is a \mathcal{C} -radical class.

For the classical Riesz Decomposition Theorem concerning lattice ordered groups, different formulations (and differenct proofs) have been applied in the literature. Let us quote a rather simple formulation (together with the proof) as given in [3, Introduction, Section 10].

THEOREM 5.1. (Cf. [3].) Let G be a lattice ordered group. If $0 < x \le d_1 + \cdots + d_n$ where $d_i \in G^+$ then $x = c_1 + \cdots + c_n$ where $0 \le c_i \le d_i$.

Proof. Let $c_1 = x \wedge d_1$ and $c = -c_1 + x$. Then $0 \le c_1 \le d_1$ and

$$0 \le c = -c_1 + x = -(x \land d_1) + x = (-x \lor -d_1) + x = 0 \lor (-d_1 + x) \le d_2 + \dots + d_n.$$

Thus by induction $c = c_2 + \cdots + c_n$ where $0 \le c_i \le d_i$, whence $x = c_1 + c_2 + \cdots + c_n$ where $0 \le c_i \le d_i$.

We will apply the idea of this proof below.

In what follows we assume that G is an archimedean lattice ordered group.

Lemma 5.2. Assume that $x, y, b_1 \in G^+$ and $x \leq y$. Put

$$x \wedge b_1 = x_1, \quad y \wedge b_1 = y_1, \quad x - x_1 = x_1', \quad y - y_1 = y_1'.$$

Then $y_1 - x_1 \leq y - x$ and $x'_1 \leq y'_1$.

Proof. (Cf. Fig. 1.) We put $x \vee y_1 = z$. Then we have $x \wedge y_1 = x_1$, hence $z - x = y_1 - x_1$ and $z - y_1 = x - x_1$. Since $x \leq z \leq y$, we obtain $z - x \leq y - x$, thus $y_1 - x_1 \leq y - x$.

Further,
$$y_1' \ge z - y_1 = x - x_1 = x_1'$$
.

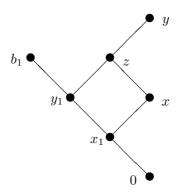


Figure 1

Applying Theorem 5.1 (together with the method of its proof) and using Lemma 5.2 we obtain:

Lemma 5.3. Assume that $p, q, d_1, \ldots, d_m \in G^+$, $d = d_1 + \cdots + d_m$, $p \leq q \leq d$. Then there are $c_i, c_i' \in G$ $(i = 1, 2, \ldots, m)$ such that

$$p = c_1 + \dots + c_m,$$

$$q = c'_1 + \dots + c'_m,$$

$$0 \le c_i \le d_i, \ 0 \le c'_i \le d_i, \ 0 \le c'_i - c_i \le q - p \text{ for } i = 1, 2, \dots, m.$$

Lemma 5.4. Assume that $x, y, d_1, \ldots, d_m \in G^+$, $d = d_1 + \cdots + d_m$, $x \leq d$, $y \leq d$. Then there are $x_i, y_i \in G^+$ $(i = 1, 2, \ldots, m)$ such that

$$x = x_1 + \dots + x_m,$$
 $y = y_1 + \dots + y_m,$
 $0 \le x_i \le d_i,$ $0 \le y_i \le d_i.$

Further we have

$$|x_i - y_i| \leq |x - y|$$
 for $i = 1, 2, \dots, m$.

Proof. The first part of the assertion of the lemma is a consequence of Theorem 5.1. For proving the assertion concerning $|x_i - y_i|$ and |x - y| it suffices to consider the elements $p = x \wedge y$, $q = x \vee y$ and to apply Lemma 5.3. We have clearly |x - y| = q - p and analogously for $|x_i - y_i|$.

Lemma 5.5. (Cf. [8].) Suppose that G is relatively uniformly complete and that G_1 is a convex ℓ -subgroup of G. Then G_1 is relatively uniformly complete.

Lemma 5.6. The following conditions are equivalent:

- (i) G is relatively uniformly complete.
- (ii) If (x_n) is a relatively uniformly Cauchy sequence in G such that $x_n \ge 0$ for each $n \in \mathbb{N}$, then (x_n) is relatively uniformly convergent in G.

Proof. The implication (i) \Longrightarrow (ii) is obvious. Assume that the condition (ii) is valid. Suppose that (y_n) is a relatively uniformly Cauchy sequence in G. Then (y_n) is bounded in G, hence there is $b \in G$ such that $b \leq y_n$ for each $n \in \mathbb{N}$. Put $y_n - b = x_n$; hence $0 \leq x_n$ for each $n \in \mathbb{N}$. Also, (x_n) is a relatively uniformly Cauchy sequence in G. In view of (ii), there exists $x \in G$ such that (x_n) relatively uniformly converges to x in G. Thus (y_n) relatively uniformly converges to x + b in G. Hence the condition (i) is satisfied.

The validity of the following assertion is obvious.

LEMMA 5.7. Let (x_n) and (y_n) be sequences in a lattice ordered group H. Suppose that (y_n) is a relatively uniformly Cauchy sequence in H and that $|x_n - x_m| \leq |y_n - y_m|$ for each $n, m \in \mathbb{N}$. Then (x_n) is a relatively uniformly Cauchy sequence in H.

LEMMA 5.8. Let H be a lattice ordered group satisfying the condition (C) and let $\{G_i\}_{i\in I}\subseteq c(H), \bigvee_{i\in I}G_i=H$. Assume that all G_i are archimedean and relatively uniformly complete. Then H is archimedean and relatively uniformly complete.

Proof. It is well-known that the collection of all archimedean lattice ordered groups is a radical class. Hence H is an archimedean lattice ordered group.

Let (x_n) be a relatively uniformly Cauchy sequence in H such that $0 \le x_n$ for each $n \in \mathbb{N}$. Then (x_n) is upper-bounded in H. Hence there is $b \in H$ such that $b \ge x_n$ for each $n \in \mathbb{N}$.

In view of the relation $H = \bigvee_{i \in I} G_i$ there exist $b_1, \ldots, b_m \in \bigcup_{i \in I} G_i$ such that $b = b_1 + \cdots + b_m$. Without loss of generality we can suppose that $b_1 \geq 0, \ldots, b_m \geq 0$.

There exist $i(1), \ldots, i(m) \in I$ such that $b_1 \in G_{i(1)}, \ldots, b_m \in G_{i(m)}$. Let $n \in \mathbb{N}$. Then $0 \le x_n \le b_1 + \cdots + b_m$. Hence according to Theorem 5.1 there are elements x_{n1}, \ldots, x_{nm} in H such that $0 \le x_{nk} \le b_k$ for each $k \in \{1, 2, \ldots, m\}$ and

$$x_n = x_{n1} + \cdots + x_{nm}$$
.

If $s, n \in \mathbb{N}$, then in view of Lemma 5.4 we have

$$|x_{nj} - x_{sj}| \le |x_n - x_s|$$

for each $j \in \{1, 2, ..., m\}$. In view of Lemma 5.7 we obtain that (x_{nj}) is a relatively uniformly Cauchy sequence in the lattice ordered group H.

According to the condition (C), (x_{nj}) is a relatively uniformly Cauchy sequence in $G_{i(j)}$ $(j=1,2,\ldots,m)$. Since $G_{i(j)}$ is relatively uniformly complete, the sequence (x_{nj}) relatively uniformly converges in $G_{i(j)}$ to some element x^j . From the fact that $G_{i(j)} \subseteq H$ we conclude that (x_{nj}) relatively uniformly converges to x^j also in the lattice ordered group H. Therefore the sequence (x_n) relatively uniformly converges in H to the element $x^1 + \cdots + x^m$.

For finishing the proof it suffices to apply Lemma 5.6. \Box

In view of Lemma 5.5, Lemma 5.8 and the fact that if G satisfies the condition (C), so does each convex ℓ -subgroup of G, we get:

Theorem 5.9. The collection K is a C-radical class of lattice ordered groups.

REFERENCES

- BALL, R. N.—HAGER, A. W.: Algebraic extensions of an archimedean lattice ordered group, II, J. Pure Appl. Algebra 138 (1999), 197–204.
- [2] BIRKHOFF, G.: Lattice Theory (3rd ed.), Amer. Math. Soc., Providence, RI, 1967.
- [3] CONRAD, P.: Lattice Ordered Groups, Tulane University, New Orleans, 1970.
- [4] ČERNÁK, Š.: Convergence with a fixed regulator in archimedean lattice ordered groups, Math. Slovaca 56 (2006), 167–180.
- [5] ČERNÁK, Š.: Convergence with a fixed regulator in lattice ordered groups and applications to MV-algebras, Soft Comput. 12 (2008), 453-462.
- [6] ČERNÁK, Š.—LIHOVÁ, J.: Convergence with a regulator in lattice ordered groups, Tatra Mt. Math. Publ. 39 (2005), 35–45.
- [7] ČERNÁK, Š.—LIHOVÁ, J.: Relatively uniform convergence in lattice ordered groups. In: Selected Questions of Algebra, Collection of Papers Dedicated to the Memory of N. Ja. Medvedev, Altai State Univ. Barnaul, Barnaul, 2007, pp. 218–241.
- [8] ČERNÁK, Š.—LIHOVÁ, J.: On a relative uniform completion of an archimedean lattice ordered group (To appear).
- [9] FRIČ, R.—KOUTNÍK, V.: Recent development in sequential convergence. In: Convergence Structures and Applications II. Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik, Akademie Verlag, Berlin, 1984, pp. 37–46.
- [10] JAKUBÍK, J.: Representations and extensions of ℓ-groups, Czechoslovak Math. J. 13 (1963), 267–283 (Russian).
- [11] JAKUBIK, J.: Radical classes and radical mappings of lattice ordered groups. In: Symposia Math. 31, Academic Press, New York-London, 1977, pp. 451–477.
- [12] LUXEMBURG, M.—ZAANEN, A.: Riesz Spaces, Vol. I, North Holland Publ., Amsterdam-London, 1971.
- [13] MARTINEZ, J.: Polar functions, III. On irreducible maps vs. essential extensions of archimedean ℓ-groups with unit, Tatra Mt. Math. Publ. 27 (2003), 189–211.

- [14] VEKSLER, A. I.: On a new construction of Dedekind completion of vector lattices and of ℓ-groups with division, Sibirsk. Mat. Zh. 10 (1969), 1206–1213 (Russian).
- [15] VULIKH, B. Z.: Introduction to the Theory of Partially Ordered Spaces, Wolters-Nordhoff Sci. Publ., Groningen, 1967.

Received 17. 6. 2008 Accepted 3. 1. 2009

Mathematical Institute Slovak Academy of Sciences Grešákova 6 SK-040 01 Košice SLOVAKIA

E-mail: kstefan@saske.sk Stefan.Cernak@tuke.sk