

DOI: 10.2478/s12175-010-0019-5 Math. Slovaca **60** (2010), No. 3, 385–398

SOME TOPOLOGICAL AND GEOMETRIC PROPERTIES OF GENERALIZED EULER SEQUENCE SPACE

Emrah Evren Kara — Mahpeyker Öztürk — Metin Başarır

(Communicated by Michal Zajac)

ABSTRACT. In this paper, we introduce the Euler sequence space $e^r(p)$ of non-absolute type and prove that the spaces $e^r(p)$ and l(p) are linearly isomorphic. Besides this, we compute the α -, β - and γ -duals of the space $e^r(p)$. The results proved herein are analogous to those in [ALTAY, B.—BAŞAR, F.: On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (2002), 701–715] for the Riesz sequence space $r^q(p)$. Finally, we define a modular on the Euler sequence space $e^r(p)$ and consider it equipped with the Luxemburg norm. We give some relationships between the modular and Luxemburg norm on this space and show that the space $e^r(p)$ has property (H) but it is not rotund (R).

©2010 Mathematical Institute Slovak Academy of Sciences

1. Introduction

By w, we denote the space of all real valued sequences. Any vector subspace of w is called as a sequence space. We write l_{∞}, c, c_0 for the sequence spaces of all bounded, convergent and null sequences, respectively. Also by, bs, cs, l_1 and l_p we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively; where 1 .

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g\colon X\to\mathbb{R}$ such that $g(\theta)=0$, g(x)=g(-x) and scalar multiplication is continuous, i.e., $|\alpha_n-\alpha|\to 0$ and $g(x_n-x)\to 0$ imply $g(\alpha_nx_n-\alpha x)\to 0$ for all α 's in \mathbb{R} and all x's in X, where

²⁰⁰⁰ Mathematics Subject Classification: Primary 46A45, 46B45; Secondary 46E30, 46B20.

Keywords: Euler sequence space, paranormed sequence space, α -, β -, γ -duals, property (H), rotund property, LUR property.

 θ is the zero vector in the linear space X. Assume here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup p_k = H$ and $M = \max\{1, H\}$. Then the linear spaces l(p) and $l_{\infty}(p)$ were defined by Maddox [9] as follows:

$$l(p) = \left\{ x = (x_k) \in w : \sum_{k} |x_k|^{p_k} < \infty \right\}$$

and

$$l_{\infty}(p) = \left\{ x = (x_k) \in w : \sup_{k \in \mathbb{N}} |x_k|^{p_k} < \infty \right\}$$

which are the complete space paranormed by

$$g_1(x) = \left(\sum_k |x_k|^{p_k}\right)^{\frac{1}{M}}$$
 and $g_2(x) = \sup_{k \in \mathbb{N}} |x_k|^{\frac{p_k}{M}}$

iff inf $p_k > 0$, respectively. We assume throughout $(p_k)^{-1} + (p'_k)^{-1} = 1$ provided $1 < \inf p_k \le H < \infty$ and denote the collection of all finite subsets of \mathbb{N} by \mathscr{F} , where $\mathbb{N} = \{0, 1, 2, \dots\}$.

For the sequence spaces λ and μ , define the set $S(\lambda, \mu)$ by

$$S(\lambda, \mu) = \{ z = (z_k) \in w : xz = (x_k z_k) \in \mu \text{ for all } x \in \lambda \}.$$
 (1.1)

With the notation of (1.1), the α -, β - and γ -duals of a sequence space λ , which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} , are defined by

$$\lambda^{\alpha} = S(\lambda, l_1), \qquad \lambda^{\beta} = S(\lambda, cs), \qquad \lambda^{\gamma} = S(\lambda, bs).$$

If a sequence space λ paranormed by h contains a sequence (b_n) with the property that for every $x \in \lambda$ there is a unique sequence of scalars (α_n) such that

$$\lim_{n \to \infty} h\left(x - \sum_{k=0}^{n} \alpha_k b_k\right) = 0$$

then (b_n) is called a Schauder basis (or briefly basis) for λ . The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) and written as $x = \sum \alpha_k b_k$.

Let λ and μ be two sequence spaces and $A=(a_{nk})$ be an infinite matrix of real numbers a_{nk} , where $n,k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ , and we denote it by writing $A: \lambda \to \mu$, if for every sequence $x=(x_k) \in \lambda$ the sequence $Ax=\{(Ax)_n\}$, the A-transform of x, is in μ ; where

$$(Ax)_n = \sum_k a_{nk} x_k \qquad (n \in \mathbb{N}). \tag{1.2}$$

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By $(\lambda : \mu)$, we denote the class of all matrices A such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if the series on the right side of (1.2)

converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. A sequence x is said to be A-summable to α if Ax converges to α which is called as the A-limit of x.

The matrix domain λ_A of an infinite matrix A in a sequence space λ is defined by

$$\lambda_A = \left\{ x = (x_k) \in w : \ Ax \in \lambda \right\} \tag{1.3}$$

which is a sequence space. In the most cases, the new sequence space λ_A generated by the limitation matrix A from a sequence space λ is the expansion or the contraction of the original space λ .

Altay, Başar and Mursaleen [3], Altay and Başar [2], Altay and Polat [4] and Polat and Başar [11] introduced the Euler sequence spaces e_p^r and e_∞^r , e_0^r and e_∞^r , e_0^r (Δ), e_c^r (Δ), e_c^r (Δ), e_0^r ($\Delta^{(m)}$) and e_c^r ($\Delta^{(m)}$), respectively, where $1 \leq p < \infty$. The main purpose of this paper is to introduce the Euler sequence space $e^r(p)$ and to determine its α -, β - and γ -duals. Furthermore, we show that the Euler sequence space $e^r(p)$ equipped with the Luxemburg norm has property (H) but it is not rotund, so it is not (LUR).

2. The generalized Euler sequence space $e^r(p)$ of non-absolute type

We introduce the sequence space $e^r(p)$, as the set of all sequences such that E^r -transforms of them are in the space l(p), that is

$$e^{r}(p) = \left\{ x = (x_k) \in w : \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_j \right|^{p_k} < \infty, \right.$$
$$0 < p_k \le H < \infty \right\}$$

where E^r denotes the method of Euler means of order r defined by the matrix $E^r = (e_{nk}^r)$

$$e_{nk}^{r} = \begin{cases} \binom{n}{k} (1-r)^{n-k} r^{k}, & 0 \le k \le n \\ 0, & k > n \end{cases}$$

for all $k \in \mathbb{N}$. It is known that the method E^r is regular for 0 < r < 1 and we assume unless stated otherwise that 0 < r < 1. With the notation (1.3) we can redefine the space $e^r(p)$ by

$$e^r(p) = (l(p))_{E^r}$$
 (2.1)

If λ is any normed or paranormed sequence space then we call the matrix domain λ_{ET} as the Euler sequence space.

If $(p_k) = p$ for every $k \in \mathbb{N}$, then we write e_p^r instead of $e^r(p)$ (see [3]).

Define the sequence $y = \{y_k(r)\}$, which will be frequently used, as the E^r -transform of a sequence $x = (x_k)$, i.e.,

$$y_k(r) = \sum_{j=0}^k \binom{k}{j} (1-r)^{k-j} r^j x_j \qquad (k \in \mathbb{N}).$$
 (2.2)

Now, we may begin with the following theorem which is essential in the text.

Theorem 1. $e^r(p)$ is a complete linear topological space paranormed by g defined by

$$g(x) = \left(\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} \right|^{p_{k}} \right)^{\frac{1}{M}} \qquad (0 < p_{k} \le H < \infty).$$

Proof. The linearity of $e^r(p)$ with respect to the coordinatewise addition and scalar multiplication follows from the inequalities which are satisfied for $x, y \in e^r(p)$ (see [7, p. 30]).

$$g(x+y) = \left(\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} (x_{j}+y_{j}) \right|^{p_{k}} \right)^{\frac{1}{M}}$$

$$\leq \left(\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} \right|^{p_{k}} \right)^{\frac{1}{M}}$$

$$+ \left(\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} y_{j} \right|^{p_{k}} \right)^{\frac{1}{M}}$$
(2.3)

and for any $\alpha \in \mathbb{R}$ (see [8])

$$|\alpha|^{p_k} \le \max\left\{1, |\alpha|^M\right\}. \tag{2.4}$$

It is clear that $g(\theta) = 0$ and g(x) = g(-x) for all $x \in e^r(p)$. Again the inequalities (2.3) and (2.4) yield the subaddivity of g and

$$g(\alpha x) = \max\{1, |\alpha|\}g(x).$$

Let $\{x^n\}$ be any sequence of the points of the space $e^r(p)$ such that $g(x^n - x) \to 0$ and (α_n) also be any sequence of scalars such that $\alpha_n \to \alpha$. Then, since the inequality

$$g(x^n) \le g(x) + g(x^n - x)$$

holds by subaddivity of g, $\{g(x^n)\}$ is bounded and thus we have

$$g(\alpha_n x^n - \alpha x) = \left[\sum_k \left| \sum_{j=0}^k \binom{k}{j} (1 - r)^{k-j} r^j \left(\alpha_n x_j^n - \alpha x_j \right) \right|^{p_k} \right]^{\frac{1}{M}}$$

$$\leq |\alpha_n - \alpha| g(x^n) + |\alpha| g(x^n - x)$$

which tends to zero as $n \to \infty$. That is to say that the scalar multiplication is continuous. Hence, g is a paranorm on the space $e^r(p)$. It remains to prove the completeness of the space $e^r(p)$. Let $\{x^i\}$ be any Cauchy sequence in the space $e^r(p)$, where $x^i = \{x_0^{(i)}, x_1^{(i)}, x_2^{(i)}, \dots\}$. Then, for a given $\varepsilon > 0$ there exists a positive integer $n_0(\varepsilon)$ such that

$$g\left(x^{i} - x^{j}\right) < \varepsilon \tag{2.5}$$

for all $i, j \geq n_0(\varepsilon)$. Using the definition of g we obtain for each fixed $k \in \mathbb{N}$ that

$$\left|\left(E^{r}x^{i}\right)_{k}-\left(E^{r}x^{j}\right)_{k}\right|\leq\left[\sum_{k}\left|\left(E^{r}x^{i}\right)_{k}-\left(E^{r}x^{j}\right)_{k}\right|^{p_{k}}\right]^{\frac{1}{M}}<\varepsilon$$

for $i, j \geq n_0(\varepsilon)$ which leads us to the fact that $\{(E^r x^0)_k, (E^r x^1)_k, \dots\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $(E^r x^i)_k \to (E^r x)_k$ as $i \to \infty$. Using the infinitely many limits $(E^r x)_0, (E^r x)_1, \dots$, we define the sequence $\{(E^r x)_0, (E^r x)_1, \dots\}$. By the (2.5) for each $m \in \mathbb{N}$ and $i, j \geq n_0(\varepsilon)$

$$\sum_{k=0}^{m} \left| \left(E^r x^i \right)_k - \left(E^r x^j \right)_k \right|^{p_k} \le \left(g \left(x^i - x^j \right) \right)^M < \varepsilon^M. \tag{2.6}$$

Take any $i \geq n_0(\varepsilon)$. First let $j \to \infty$ in (2.6) and then $m \to \infty$, to obtain $g(x^i - x) \leq \varepsilon$. Finally, taking $\varepsilon = 1$ in (2.6) and letting $i \geq n_0(1)$ we have by Minkowski's inequality for each $m \in \mathbb{N}$ that

$$\left[\sum_{k=0}^{m} |(E^r x)_k|^{p_k} \right]^{\frac{1}{M}} \le g(x^i - x) + g(x^i) \le 1 + g(x^i)$$

which implies that $x \in e^r(p)$. Since $g(x^i - x) < \varepsilon$ for all $i \ge n_0(\varepsilon)$ it follows that $x^i \to x$ as $i \to \infty$ whence we have shown that $e^r(p)$ is complete.

Therefore, one can easily check that the absolute property does not hold on the space $e^r(p)$, that is $g(x) \neq g(|x|)$ for at least one sequence in the space $e^r(p)$, and this says that $e^r(p)$ is a sequence space of non-absolute type; where $|x| = (|x_k|)$.

THEOREM 2. The Euler sequence space $e^r(p)$ of non-absolute type is linearly isomorphic to the space l(p), where $0 < p_k \le H < \infty$.

Proof. To prove the theorem, we should show the existence of a linear bijection between the spaces $e^r(p)$ and l(p) for $0 < p_k \le H < \infty$. With the transformation T from $e^r(p)$ to l(p) by $x \mapsto y = Tx$. The linearity of T is trivial. Further, it is obvious that $x = \theta$ whenever $Tx = \theta$ and hence T is injective. Let $y \in l(p)$ and define the sequence $x = \{x_k(r)\}$ by

$$x_k(r) = \sum_{j=0}^k \binom{k}{j} (r-1)^{k-j} r^{-k} y_j \qquad (k \in \mathbb{N}).$$

Then,

$$\left(\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} \right|^{p_{k}} \right)^{\frac{1}{M}} = \left(\sum_{k} \left| \sum_{j=0}^{k} \delta_{kj} x_{j} \right|^{p_{k}} \right)^{\frac{1}{M}}$$

$$= \left(\sum_{k} \left| y_{k} \right|^{p_{k}} \right)^{\frac{1}{M}} = g_{1}(y) < \infty$$

where δ_{kj} are Kronecker delta's. Thus, we have that $x \in e^r(p)$. Consequently, T is surjective and is paranorm preserving. Hence, T is a linear bijection and this says us that the spaces $e^r(p)$ and l(p) are linearly isomorphic, as was desired. \square

Suppose that $1 < p_k \le s_k$ for every $k \in \mathbb{N}$. Then, it was well-known that $l(p) \subset l(s)$ which leads us to the immediate consequence that $e^r(p) \subset e^r(s)$.

We shall quote some lemmas which are needed in proving our theorems.

LEMMA 1.

(i) Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_1)$ if and only if there exists an integer B > 1 such that

$$\sup_{K \in \mathscr{F}} \sum_{k} \left| \sum_{n \in K} a_{nk} B^{-1} \right|^{p'_k} < \infty.$$

(ii) Let $0 < p_k \le 1$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_1)$ if and only if

$$\sup_{K \in \mathscr{F}} \sup_{k \in \mathbb{N}} \left| \sum_{n \in K} a_{nk} \right|^{p_k} < \infty.$$

LEMMA 2.

(i) Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_\infty)$ if and only if there exists an integer B > 1 such that

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| a_{nk} B^{-1} \right|^{p_k'} < \infty \tag{2.7}$$

TOPOLOGICAL AND GEOMETRIC PROPERTIES OF EULER SEQUENCE SPACE

(ii) Let
$$0 < p_k \le 1$$
 for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_{\infty})$ if and only if
$$\sup_{n,k \in \mathbb{N}} |a_{nk}|^{p_k} < \infty. \tag{2.8}$$

Lemma 3. Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : c)$ if and only if (2.7), (2.8) hold, and

$$\lim_{n \to \infty} a_{nk} = \beta_k \qquad \text{for} \quad k \in \mathbb{N}$$
 (2.9)

also holds.

Theorem 3. Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Define the set $D_1(p)$ as follows:

$$D_1(p) = \bigcup_{B>1} \Big\{ a = (a_k) \in w : \sup_{K \in \mathscr{F}} \sum_k \Big| \sum_{n \in K} \binom{n}{k} (r-1)^{n-k} r^{-n} a_n B^{-1} \Big|^{p'_k} < \infty \Big\}.$$

Then, $[e^r(p)]^{\alpha} = D_1(p)$.

Proof. Let us define the matrix B^r whose rows are the product of the rows of the matrix $E^{\frac{1}{r}}$ with the sequence $a=(a_n)$. Therefore, we easily obtain by bearing in mind the relation (2.2) that ([3])

$$a_n x_n = \sum_{k=0}^n \binom{n}{k} (r-1)^{n-k} r^{-n} a_n y_k = (B^r y)_n \qquad (n \in \mathbb{N}).$$
 (2.10)

Thus, we observe by (2.10) that $(a_n x_n) = ax \in l_1$ whenever $x \in e^r(p)$ if and only if $B^r y \in l_1$ whenever $y \in l(p)$. This means that $a = (a_n) \in [e^r(p)]^{\alpha}$ if and only if $B^r \in (l(p) : l_1)$. Then we derive by Lemma 1 with B^r instead of A that

$$\sup_{K \in \mathscr{F}} \sum_{k} \left| \sum_{n \in K} \binom{n}{k} (r-1)^{n-k} r^{-n} a_n B^{-1} \right|^{p'_k} < \infty.$$

This yields desired consequence that $[e^r(p)]^{\alpha} = D_1(p)$.

THEOREM 4. Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Define the sets $D_2(p)$ and D as follows:

$$D = \left\{ a = (a_k) \in w : \sum_{j=k}^{\infty} {j \choose k} (r-1)^{j-k} r^{-j} a_j \text{ exists for each } k \in \mathbb{N} \right\}$$

and

$$D_2(p) = \bigcup_{B>1} \left\{ a = (a_k) \in w : \sup_{n \in \mathbb{N}} \sum_{k} \left| \sum_{j=k}^{n} {j \choose k} (r-1)^{j-k} r^{-j} a_j B^{-1} \right|^{p'_k} < \infty \right\}.$$

Then
$$[e^r(p)]^{\beta} = D \cap D_2(p)$$
 and $[e^r(p)]^{\gamma} = D_2(p)$.

Proof. Consider the equation

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} \left[\sum_{j=0}^{k} {k \choose j} (r-1)^{k-j} r^{-k} y_j \right] a_k$$

$$= \sum_{k=0}^{n} \left[\sum_{j=k}^{n} {j \choose k} (r-1)^{j-k} r^{-j} a_j \right] y_k = (T^r y)_n \qquad (2.11)$$

where $T^r = (t_{nk}^r)$ is defined by

$$t_{nk}^{r} = \begin{cases} \sum_{j=k}^{n} {k \choose j} (r-1)^{k-j} r^{-k} a_{j}, & 0 \le k \le n \\ 0, & k > n \end{cases}$$

for all $k, n \in \mathbb{N}$ ([3]). Thus, we deduce from Lemma 3 with (2.11) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in e^r(p)$ if and only if $T^r y \in c$ whenever $y = (y_k) \in l(p)$. That is to say that $a = (a_k) \in [e^r(p)]^{\beta}$ if and only if $T^r \in (l(p) : c)$. Therefore, we derive from Lemma 3 with (2.7) and (2.9) that

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|\sum_{j=k}^{n}\binom{j}{k}\left(r-1\right)^{j-k}r^{-j}a_{j}B^{-1}\right|^{p_{k}'}<\infty$$

and

$$\sum_{j=k}^{\infty} \binom{j}{k} (r-1)^{j-k} r^{-j} a_j \quad \text{exists for each} \quad k \in \mathbb{N}$$

which shows that $[e^r(p)]^{\beta} = D \cap D_2(p)$.

As this, we see from Lemma 2 with (2.11) that $a=(a_k)\in bs$ whenever $x=(x_k)\in e^r(p)$ if and only if $T^ry\in l_\infty$ whenever $y=(y_k)\in l(p)$. That is to say that $a=(a_k)\in [e^r(p)]^\gamma$ if and only if $T^r\in (l(p):l_\infty)$. Therefore, we derive from Lemma 2 with (2.7) that

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| \sum_{j=k}^{n} {j \choose k} (r-1)^{j-k} r^{-j} a_{j} B^{-1} \right|^{p'_{k}} < \infty$$

which shows that $[e^r(p)]^{\gamma} = D_2(p)$.

THEOREM 5. Let $0 < p_k \le 1$ for every $k \in \mathbb{N}$. Define the set $D_3(p)$ and $D_4(p)$ by

$$D_{3}(p) = \left\{ a = (a_{k}) \in w : \sup_{K \in \mathscr{F}} \sup_{k \in \mathbb{N}} \left| \sum_{n \in K} {n \choose k} (r-1)^{n-k} r^{-n} a_{n} \right|^{p_{k}} < \infty \right\}$$

$$D_{4}(p) = \left\{ a = (a_{k}) \in w : \sup_{n,k \in \mathbb{N}} \left| \sum_{j=k}^{n} {j \choose k} (r-1)^{j-k} r^{-j} a_{j} \right|^{p_{k}} < \infty \right\}$$

Then,
$$[e^r(p)]^{\alpha} = D_3(p)$$
, $[e^r(p)]^{\beta} = D \cap D_4(p)$ and $[e^r(p)]^{\gamma} = D_4(p)$.

Proof. This is easily obtained by proceeding as in the proofs of Theorem 1 and Theorem 2 above by using the second parts of Lemmas 1, 2 and 3 instead of the first parts. So, we omit the detail. \Box

Theorem 6. Define the sequence $b^{(k)}(r) = \left\{b_n^{(k)}(r)\right\}_{n \in \mathbb{N}}$ of elements of the space $e^r(p)$ for every fixed $k \in \mathbb{N}$ by

$$b_n^{(k)}(r) = \begin{cases} 0, & n < k \\ \binom{n}{k} (r-1)^{n-k} r^{-n}, & n \ge k. \end{cases}$$

Then, the sequence $\{b^{(k)}(r)\}_{n\in\mathbb{N}}$ is a basis for the space $e^r(p)$ and any $x\in e^r(p)$ has unique representation of the form

$$x = \sum_{k} \alpha_k(r) b^{(k)}(r)$$

where $\alpha_k(r) = (E^r x)_k$ for all $k \in \mathbb{N}$. ([3])

3. Some geometric properties of the space $e^r(p)$

In this section, we study some geometric properties of the space $e^r(p)$. Firstly, we remind them.

Let $X = (X, \|\cdot\|)$ be a real Banach space and B(X) and S(X) be the closed unit ball and the unit sphere of X, respectively. A point $x \in S(X)$ is an H-point if for any sequence (x_n) in X such that $\|x_n\| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x implies $\|x_n - x\| \to 0$ as $n \to \infty$. If every point in S(X) is an H-point of B(X), then X is said to have the (H) property. A point $x \in S(X)$ is an extreme point if for every $x, y \in S(X)$ the equality 2x = y + z implies z = y. A point $x \in S(X)$ is a locally uniformly rotund point if for any sequence (x_n) in B(X) such that $\|x_n + x\| \to 2$ as $n \to \infty$, there holds $\|x_n - x\| \to 0$ as $n \to \infty$. A Banach space X is said to be rotund if every point of the unit sphere is an extreme point of B(X). If every of S(X) is a (LUR)-point of B(X), then X is said to be locally uniformly rotund (LUR). It is known that if X is LUR, then it is (R) and possesses property (H). ([12])

For $1 \leq p < \infty$, the Euler sequence space e_p^r was defined by Altay, Başar and Mursaleen [3] as follows:

$$e_p^r = \left\{ x = (x_k) \in w : \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^j x_j \right|^p < \infty \right\}$$

and this space equipped with the norm

$$||x||_{e_p^r} = \left(\sum_k \left|\sum_{j=0}^k {k \choose j} (1-r)^{k-j} r^j x_j\right|^p\right)^{\frac{1}{p}}.$$

In [10], Altay, Başar and Mursaleen proved some geometric properties, Banach-Saks and weak Banach-Saks properties of the space e_p^r . Now we assume that $p_k \geq 1$ for all $k \in \mathbb{N}$. For $x \in e^r(p)$, let

$$\rho(x) = \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} \right|^{p_{k}}$$

and define the Luxemburg norm on $e^r(p)$ by

$$||x|| = \inf\{\varepsilon > 0 : \rho\left(\frac{x}{\varepsilon}\right) \le 1\}, \quad x \in e^r(p).$$

Now, we give some propositions which are related with $\rho(x)$ and Luxemburg norm.

PROPOSITION 1. The functional ρ is convex modular on $e^r(p)$.

Proof. It is obvious that $\rho(x) = 0 \iff x = 0$ and $\rho(\alpha x) = \rho(x)$ for all scalar α with $|\alpha| = 1$. Let $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. By the convexity of the function $t \mapsto |t|^{p_k}$ for every $k \in \mathbb{N}$, we have

$$\rho (\alpha x + \beta y) =$$

$$= \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} (\alpha x_{j} + \beta y_{j}) \right|^{p_{k}}$$

$$= \sum_{k} \left| \alpha \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} + \beta \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} y_{j} \right|^{p_{k}}$$

$$\leq \alpha \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} \right|^{p_{k}} + \beta \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} y_{j} \right|^{p_{k}}$$

$$= \alpha \rho(x) + \beta \rho(y).$$

Then we have $e^r(p)$ is a modular space.

PROPOSITION 2. For $x \in e^r(p)$, the modular ρ on $e^r(p)$ satisfies the following properties:

- (i) If $0 < \alpha < 1$, then $\alpha^M \rho\left(\frac{x}{\alpha}\right) \le \rho(x)$ and $\rho\left(\alpha x\right) \le \alpha \rho(x)$.
- (ii) If $\alpha > 1$, then $\rho(x) \leq \alpha^M \rho\left(\frac{x}{\alpha}\right)$.
- (iii) If $\alpha \ge 1$, then $\rho(x) \le \alpha \rho(x) \le \rho(\alpha x)$.

TOPOLOGICAL AND GEOMETRIC PROPERTIES OF EULER SEQUENCE SPACE

Proof.

(i) Let $0 < \alpha < 1$. Then we have

$$\rho(x) = \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} \right|^{p_{k}}$$

$$= \sum_{k} \left| \alpha \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} \frac{x_{j}}{\alpha} \right|^{p_{k}}$$

$$= \sum_{k} \alpha^{p_{k}} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} \frac{x_{j}}{\alpha} \right|^{p_{k}}$$

$$\geq \sum_{k} \alpha^{M} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} \frac{x_{j}}{\alpha} \right|^{p_{k}}$$

$$= \alpha^{M} \sum_{k} \left| \alpha \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} \frac{x_{j}}{\alpha} \right|^{p_{k}}$$

$$= \alpha^{M} \rho \left(\frac{x}{\alpha}\right).$$

By the convexity of ρ , we have $\rho(\alpha x) \leq \alpha \rho(x)$, so (i) is obtained.

- (ii) is an easy consequence of (i) when α is replaced by $\frac{1}{\alpha}$.
- (iii) follows from the convexity of ρ .

PROPOSITION 3. For any $x \in e^r(p)$, we have

- $\text{(i)} \ \textit{If} \ \|x\|<1, \ then \ \rho\left(x\right)\leq \|x\|.$
- (ii) If ||x|| > 1, then $\rho(x) \ge ||x||$.
- (iii) ||x|| = 1 if and only if $\rho(x) = 1$.
- (iv) ||x|| < 1 if and only if $\rho(x) < 1$.
- (v) ||x|| > 1 if and only if $\rho(x) > 1$.
- (vi) If $0 < \alpha < 1$, $||x|| > \alpha$, then $\rho(x) > \alpha^M$.
- $\text{(vii)} \ \textit{If} \ \alpha \geq 1, \ \|x\| < \alpha, \ \textit{then} \ \rho(x) < \alpha^M.$

Proof. See [12, Propositions 2.4, 2.5].

PROPOSITION 4. Let (x_n) be a sequence in $e^r(p)$.

- (i) If $\lim_{n \to \infty} ||x_n|| = 1$, then $\lim_{n \to \infty} \rho(x_n) = 1$,
- (ii) If $\lim_{n\to\infty} \rho(x_n) = 0$, then $\lim_{n\to\infty} ||x_n|| = 0$.

Proof. See [12, Proposition 2.5].

LEMMA 4. Let (x_n) be a sequence in $e^r(p)$. If $\rho(x_n) \to \rho(x)$ and $x_n(k) \to x(k)$ for all k, then $x_n \to x$ as $n \to \infty$. ([12])

Theorem 7. The space $e^r(p)$ is a Banach space with respect to Luxemburg norm.

Proof. Let $(x^n) = (x_j^n)$ be a Cauchy sequence in $e^r(p)$. Given $\varepsilon \in (0,1)$. Thus, there exists $N \in \mathbb{N}$ such that $||x^n - x^m|| < \varepsilon^M$, for all $n, m \ge N$. By Proposition 3(i), we obtain

$$\rho\left(x^{n}-x^{m}\right)\leq\left\Vert x^{n}-x^{m}\right\Vert <\varepsilon^{M}\qquad\text{for all}\quad n,m\geq N.\tag{3.1}$$

This implies that

$$\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} \left(x_{j}^{n} - x_{j}^{m} \right) \right|^{p_{k}} < \varepsilon^{M} \quad \text{for} \quad n, m \ge N.$$

For fixed j, we get that

$$\left|x_{j}^{n}-x_{j}^{m}\right|<\varepsilon$$
 for all $n,m\geq N$.

Thus, (x_j^n) be a Cauchy sequence in \mathbb{R} for all $j \in \mathbb{N}$. Since \mathbb{R} is complete for each $j \in \mathbb{N}$, $x_j^m \to x_j$ as $m \to \infty$. So, for fixed j,

$$|x_j^n - x_j| < \varepsilon$$
 for $n \ge N$.

By (7.1)

$$\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} \left(x_{j}^{n} - x_{j}^{m} \right) \right|^{p_{k}} < \varepsilon \quad \text{for all} \quad n, m \ge N.$$

For every $j \in \mathbb{N}$, we have $x_j^m \to x_j$, so we obtain that $\rho(x^n - x^m) \to \rho(x^n - x)$ as $m \to \infty$. Thus,

$$\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} (x_{j}^{n} - x_{j}^{m}) \right|^{p_{k}} \to \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} (x_{j}^{n} - x_{j}) \right|^{p_{k}}$$

as $m \to \infty$. Hence, we have

$$\rho(x^n - x) < \varepsilon$$
, for all $n \ge N$.

So, $||x^n - x|| < \varepsilon$. And now, by the linearity of the sequence space $e^r(p)$, we can write

$$x = (x - x^n) + x^n$$

TOPOLOGICAL AND GEOMETRIC PROPERTIES OF EULER SEQUENCE SPACE

$$\sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j} \right|^{p_{k}}$$

$$= \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} (x_{j} - x_{j}^{n}) + \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j}^{n} \right|^{p_{k}}$$

$$\leq \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} (x_{j} - x_{j}^{n}) \right|^{p_{k}} + \sum_{k} \left| \sum_{j=0}^{k} {k \choose j} (1-r)^{k-j} r^{j} x_{j}^{n} \right|^{p_{k}}$$

$$\leq \varepsilon.$$

So, x is in $e^r(p)$. Hence, the sequence space $e^r(p)$ is a Banach space with respect to Luxemburg norm.

Theorem 8. The space $e^r(p)$ has property (H).

Proof. Let $x \in S(e^r(p))$, $x_n \in B(e^r(p))$ for all $n \in \mathbb{N}$ such that $x_n \to x$, weakly, and $||x_n|| \to 1$ as $n \to \infty$. By Proposition 3(iii), we have $\rho(x) = 1$. By Proposition 4(i), we obtain that $\rho(x_n) \to 1$ as $n \to \infty$. So $\rho(x_n) \to \rho(x)$ as $n \to \infty$. Since $x_n \to x$, weakly, ith coordinate mapping $\pi_i \colon e^r(p) \to \mathbb{R}$, defined by $\pi_i(x) = x_i$, is continuous, it implies that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. It follows from Lemma 4 that $x_n \to x$ as $n \to \infty$.

Corollary 1. For $1 \leq p < \infty$, $\left(e_p^r, \|x\|_{e_p^r}\right)$ has property (H).

Remark 1. For a bounded sequence of positive real numbers $p = (p_k)$ with $p_k = 1$ for all $k \in \mathbb{N}$, the space $e^r(p)$ equipped the Luxemburg norm is not retund, so it is not (LUR). To see this we put

$$x = x_k(r) = \left\{ \left(1 + \frac{1}{r} \right)^k \right\}, \qquad y = y_k(r) = \left\{ k \frac{(r-1)^{k-1}}{r^k} \right\}$$

Then $x, y \in S(e^r(p))$ because $\rho(x) = \rho(y) = 1$. Since $\rho\left(\frac{x+y}{2}\right) = 1$, we have by Proposition 3(iii) that $\left\|\frac{x+y}{2}\right\| = 1$. This shows that $e^r(p)$ is not rotund, so it is not (LUR).

REFERENCES

- ALTAY, B.—BAŞAR, F.: On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (2002), 701–715.
- [2] ALTAY, B.—BAŞAR, F.: Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57 (2005), 1–17.
- [3] ALTAY, B.—BAŞAR, F.—MURSALEEN: On the Euler sequence spaces which include the spaces l_P and l_{∞} I, Inform. Sci. 176 (2006), 1450–1462.

- [4] ALTAY, B.—POLAT, H.: On some Euler difference sequence spaces, Southeast Asian Bull. Math. **30** (2006), 209–220.
- [5] GROSSE-ERDMANN, K.-G.: Matrix transformations between the sequnce space of Maddox, J. Math. Anal. Appl. 180 (1993), 223–238.
- [6] LASCARIDES, C. G.—MADDOX, I. J.: Matrix transformations between some classes of sequences, Math. Proc. Cambridge Philos. Soc. 68 (1970), 99–104.
- [7] MADDOX, I. J.: Element of Functional Analysis (2nd ed.), University Press, Cambridge, 1988.
- [8] MADDOX, I. J.: Paranormed sequence spaces generated by infinite matrices, Math. Proc. Cambridge Philos. Soc. **64** (1968), 335–340.
- [9] MADDOX, I. J.: Spaces of strongly summable sequences, Q. J. Math. 18 (1967), 345–355.
- [10] MURSALEEN, M.—BAŞAR, F.—ALTAY, B.: Some Euler sequence spaces which include the spaces l_P and l_∞ II, Nonlinear Anal. 65 (2006), 707–717.
- [11] POLAT, H.—BAŞAR, F.: Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed. 27 (2007), 254–266.
- [12] SANHAN, W.—SUANTAI, S.: Some geometric properties of Cesaro sequence space, Kyungpook Math. J. 43 (2003), 191–197.
- [13] ÖZTÜRK, M.—BAŞARIR, M.: On k-NUC property in some sequence space involving lacunary sequence, Thai J. Math. 5 (2007), 127–136.
- [14] ÖZTÜRK, M.—BAŞARIR, M.: On opial property in some sequence space involving lacunary sequence (Submitted).
- [15] AYDIN, C.—BASAR, F.: Some generalizations of the sequence space a_p^r , Iran. J. Sci. Technol. Trans. A Sci. **30** (2006), 175–190.
- [16] BASAR, F.—ALTAY, B.—MURSALEEN, M.: Some generalizations of the space bv_p of p-bounded variation sequences, Nonlinear Anal. 68 (2008), 273–287.

Received 23. 7. 2008 Accepted 24. 11. 2008 Department of Mathematics Sakarya University 54187, Sakarya TURKEY

 $E\text{-}mail: eevrenkara@hotmail.com} \\ mahpeykero@sakarya.edu.tr \\ basarir@sakarya.edu.tr$