

DOI: 10.2478/s12175-010-0014-x Math. Slovaca **60** (2010), No. 3, 319–326

ON THE SPARSE SET TOPOLOGY

Pratulananda Das* — Amar Kumar Banerjee**

(Communicated by David Buhagiar)

ABSTRACT. In this paper we examine the regularity and pseudo-completeness of the sparse set topology introduced in [EAMES, W.: Local property of measurable sets, Canad. J. Math. 12 (1960), 632–640].

 $\bigcirc 2010$ Mathematical Institute Slovak Academy of Sciences

1. Introduction

The idea of sparse sets and proximal continuous mappings were first introduced by Sarkhel and De [13] in the real numbers. Subsequently in [2], the concept of sparse sets was studied in a topological group where a topology was generated with the help of these sets which was named the sparse set topology.

In 2002 the idea of sparse sets was considered by Das and Rashid [3] in a metric space where the density function (Eames [4]) is different from the others in the sense that it happens to exceed one sometimes. It was observed in [3] that the corresponding sparse set topology is also different from that of [2] in many respects.

In this paper we first examine some further properties of this topology and primarily show that the sparse set topology is regular and pseudo-complete under some general conditions.

2. Preliminaries

Let (X, ρ) be a metric space. Let \mathcal{C} be a class of closed sets from (X, ρ) and τ be a non-negative real valued function on \mathcal{C} . We assume that the empty set \emptyset and all the singleton sets are in \mathcal{C} , finite union of members of \mathcal{C} is in \mathcal{C} and that $\tau(I) = 0$ if and only if I contains at most one point. For each $A \subset X$,

2000 Mathematics Subject Classification: Primary 28D99, 54C35, 54E99. Keywords: sparse set topology, regularity, pseudo-completeness.

PRATULANANDA DAS — AMAR KUMAR BANERJEE

let $\mu(A)$, $0 \le \mu(A) \le \infty$, be defined by $\mu(A) = \lim_{\varepsilon \to 0+} \left[\inf \sum_{n=1}^{\infty} \tau(I_n)\right]$ where the infimum is taken over all possible countable collection of sets I_n from $\mathcal C$ such that $A \subset \bigcup_{n=1}^{\infty} I_n$ and the diameter of I_n , $\operatorname{diam}(I_n) < \varepsilon$ for all n. As in Eames [5] we assume that such a countable collection of sets from $\mathcal C$ exists for each set A and for every $\varepsilon > 0$. Then μ is an outer measure function [12, p. 35]. A set A is measurable if $\mu(B) = \mu(A \cap B) + \mu(A^c \cap B)$ for every $B \in \mathcal C$ where c stands for the complement. All Borel sets of (X, ρ) are measurable, cf. [12, pp. 102–106]. For every set A in X there is a measurable set B, called a measurable cover for A such that $A \subset B$ and $\mu(A) = \mu(B)$ ([12, pp. 107–108]) and so μ is a regular outer measure function.

DEFINITION 1. ([4]) Let $A \subset X$ and $p \in X$. Then the number D(A, p), $0 \le D(A, p) \le \infty$, called the density of A at p, is defined by

$$D(A, p) = \lim_{\varepsilon \to 0+} \left[\sup \frac{\mu(A \cap I)}{\tau(I)} \right]$$

where the supremum is taken over all sets I from \mathcal{C} such that $p \in I$ and $\operatorname{diam}(I) < \varepsilon$. When $\tau(I) = 0$ or ∞ we take $\frac{\mu(A \cap I)}{\tau(I)} = 0$.

In [4] it was shown that if the sets in \mathcal{C} satisfy certain regularity conditions and $\mu(A)$ is finite then

- (i) D(A, p) = 1 for almost all $p \in A$,
- (ii) D(A, p) = 0 for almost all $p \in A^c$ if and only if A is measurable.

The set function $D(\cdot, p)$ for a fixed $p \in X$ is monotone nondecreasing, finitely subadditive. Further if E, F are measurable then $D(E, p) + D(F, p) = D(E \cup F, p)$ a.e. in X provided $E \cap F = \emptyset$ and also $D(E, p) + D(E^c, p) = D(X, p)$ a.e. in X ([8]).

We now recall the definition of density topology on X.

DEFINITION 2. ([7]) Let $\mathcal{D} = \{U \subset X : D(X - U, p) = 0 \text{ for all } p \in U\}$. Then \mathcal{D} is a topology on X called the density topology (in short d-topology) and thus (X, \mathcal{D}) is a topological space. Sets in \mathcal{D} are called d-open.

Open sets of (X, ρ) are d-open ([7]).

The following results of density topology will be needed.

Theorem 1. ([7]) If E is measurable then the set $\{x \in E : D(X - E, x) = 0\}$ is the d-interior of E.

THEOREM 2. ([7]) For any set E, $x \in X$ is a d-limit point of E if and only if D(E,x) > 0.

Theorem 3. ([7]) $\mu(E) = 0$ if and only if E is closed and discrete.

ON THE SPARSE SET TOPOLOGY

The definition of sparse sets in a metric space was given as follows.

DEFINITION 3. ([3]) A set $E \subset X$ is said to be sparse at a point $x \in X$ where $D(X,x) \neq 0$ if for every set $F \subset X$ with D(F,x) < D(X,x) we have $D(E \cup F,x) < D(X,x)$. If $x \in X$ is such that D(X,x) = 0 then any set $E \subset X$ is said to be sparse at x. The collection of all sets sparse at x will be denoted by S(x).

From the definition it is clear that D(E,x) = 0 implies $E \in S(x)$ and for any $x \in X, S(x)$ is a hereditary ring i.e., $E_1, E_2 \in S(x)$ implies $E_1 \cup E_2 \in S(x)$ and $E \in S(x), A \subset E$ implies $A \in S(x)$ ([4]). Also every measurable cover of $E \in S(x)$ belongs to S(x) ([4]).

DEFINITION 4. ([3]) Let $\mathcal{T} = \{E : E \subset X \text{ and } E^c \in S(x) \text{ for all } x \in E\}$. Then \mathcal{T} is a topology on X (see [3, Theorem 4]). The topology thus obtained is called the sparse set topology or in short s-topology. The sets of \mathcal{T} are called s-open.

The s-topology is finer than d-topology and if E is s-open, $x \in E$ then D(E,x) = D(X,x). If for some $x \in X$ with $D(X,x) \neq 0$, $D(E^c,x) < D(X,x)$ then x is a s-limit point of E. Also compact sets in s-topology are finite ([3]).

Throughout the paper, as in Definition 4, in $D(X, p) = \lim_{n \to \infty} \sup \frac{\mu(I_n)}{\tau(I_n)}$, the supremum will be taken over all closed sets I_n from \mathcal{C} with $p \in I_n$ and diam $(I_n) < \frac{1}{n}$ unless otherwise mentioned.

3. Regularity of (X, \mathcal{T})

In this section we shall show that under certain conditions, (X, \mathcal{T}) is regular. We first prove the following results which will be needed in Theorem 4.

Lemma 1. Open sets in (X, ρ) are s-open.

The proof is omitted.

Lemma 2. If E is measurable then the set $H = \{x \in E : E^c \in S(x)\}$ is the s-interior of E.

Proof. Clearly $H \subset E$. Let $H_1 = \{x \in E : D(X - E, x) = 0\}$. Since E is measurable, $\mu(E - H_1) = 0$. Now $H_1 \subset H$ and so $E - H \subset E - H_1$ which implies $\mu(E - H) = 0$. We first show that H is s-open. Let $x \in H$, and $F \subset X$ be such that D(F, x) < D(X, x). Since $x \in H$, $E^c \in S(x)$ and so $D(F \cup E^c, x) < D(X, x)$. Now $H^c = E^c \cup (E - H)$. Therefore

$$\begin{array}{l} D(F \cup H^c, x) = D(F \cup E^c \cup (E - H), x) \\ \leq D(F \cup E^c, x) + D(E - H, x) \\ = D(F \cup E^c, x) \quad \text{(since } \mu(E - H) = 0, \ D(E - H, x) = 0) \\ < D(X, x) \end{array}$$

PRATULANANDA DAS — AMAR KUMAR BANERJEE

This shows that $H^c \in S(x)$ and consequently H is s-open.

Next let U be any s-open set contained in E. From definition $U^c \in S(x)$ for all $x \in U$. Since $E^c \subset U^c$ and S(x) is hereditary, $E^c \in S(x)$ for all $x \in U$. Consequently $U \subset H$. Thus H is the s-interior of E.

We now deduce the main result of this section.

THEOREM 4. (cf. [7, Theorem 12]) (X, \mathcal{T}) is regular provided

- (A) $D(X,p) < \infty$ for all $p \in X$ and
- (B) $A \in S(p)$ if there exists a sequence $\{I_n\}$ from C, $p \in I_n$ and $\operatorname{diam}(I_n) < \frac{1}{n}$ for all n such that $\frac{\mu(A \cap I_n)}{\tau(I_n)} \to 0$ as $n \to \infty$.

Proof. Let $p \in X$ and F be a s-closed set such that $p \notin F$. Then $p \in X - F = U$ (say) where U is s-open. Let D(X, p) = l. Case I.

If l=0 then any set is sparse at p and so $X-\{p\}\in S(p)$. Hence $\{p\}$ is s-open. Also since $\{p\}$ is closed in (X,ρ) , $\{p\}$ is s-closed. Therefore, $X-\{p\}$ is s-open. Thus $p\in\{p\}$, $F\subset X-\{p\}$ and $\{p\}\cap X-\{p\}=\emptyset$ and so $\mathcal T$ is regular. Case II.

Let l > 0. Now since U = X - F is s-open and $p \in U$, D(U, p) = D(X, p) = l. Now D(X, p) = l implies $\lim_{n \to \infty} \sup \frac{\mu(I_n)}{\tau(I_n)} = l$. For each fixed n, put $\sup_{\substack{\text{diam}(I_n) < \frac{1}{n}}} \frac{\mu(I_n)}{\tau(I_n)} = b_n$.

Then $b_n \to l$ as $n \to \infty$. Since $\{b_n\}$ is non-increasing and (A) holds, we can assume without any loss of generality that $l \le b_n < \infty$ for all n.

Again since D(U, p) = l, if we write

$$\sup_{\operatorname{diam}(I_n) < \frac{1}{n}} \frac{\mu(U \cap I_n)}{\tau(I_n)} = a_n$$

where $I_n \in \mathcal{C}$ and $p \in I_n$ for all n, then $a_n \to l$ as $n \to \infty$. So for each $n \in \mathbb{N}$, we can find a closed set I_n in \mathcal{C} with $p \in I_n$ and $\operatorname{diam}(I_n) < \frac{1}{n}$ such that $\mu(U \cap I_n) > (a_n - \frac{1}{n^2})\tau(I_n)$.

Since μ is regular, there is a compact set C_n in (X, ρ) such that $C_n \subset U \cap I_n$ and $\mu(U \cap I_n) < \mu(C_n) + \frac{1}{n^2}\tau(I_n)$, i.e. $(a_n - \frac{1}{n^2})\tau(I_n) < \mu(U \cap I_n) < \mu(C_n) + \frac{1}{n^2}\tau(I_n)$, i.e.

$$\mu(C_n) > \left(a_n - \frac{2}{n^2}\right)\tau(I_n). \tag{1}$$

Let $C = \bigcup_{n=1}^{\infty} C_n$ and $E = C \cup \{p\}$. Now C_n being a compact subset is closed and so $C_n \cap I_n$, $(X - C_n) \cap I_n$ are all Borel sets which are measurable.

Then

$$\mu(C_n \cap I_n) + \mu\left((X - C_n) \cap I_n\right) = \mu(I_n)$$

i.e.,

$$\frac{\mu(C_n \cap I_n)}{\tau(I_n)} + \frac{\mu((X - C_n) \cap I_n)}{\tau(I_n)} = \frac{\mu(I_n)}{\tau(I_n)} \le b_n$$

i.e.,

$$\frac{\mu(C_n)}{\tau(I_n)} + \frac{\mu((X - C_n) \cap I_n)}{\tau(I_n)} \le b_n \quad \text{(since } C_n \subset I_n)$$

Using (1) we now have

$$\left(a_n - \frac{2}{n^2}\right) + \frac{\mu((X - C_n) \cap I_n)}{\tau(I_n)} < b_n$$

i.e.

$$\frac{\mu((X - C_n) \cap I_n)}{\tau(I_n)} < b_n - a_n + \frac{2}{n^2}$$

for all $n \in \mathbb{N}$.

This gives

$$\lim_{n \to \infty} \frac{\mu((X - C_n) \cap I_n)}{\tau(I_n)} = 0$$

and so

$$\lim_{n \to \infty} \frac{\mu((X - C) \cap I_n)}{\tau(I_n)} = 0 \tag{2}$$

since $X - C \subset X - C_n$ for all $n \in \mathbb{N}$. From (2) and condition (B) it follows that $X - C \in S(p)$. So $X - E \in S(p)$, since S(p) is hereditary. So by Lemma 2, p is an s-interior point of E and we can find an s-open set G such that $p \in G \subset E$.

We now prove that E^c is s-open. Let $y \notin E$. Since $p \neq y$, we can find a $\delta > 0$ such that $B(p,\delta) \cap B(y,\delta) = \emptyset$ where $B(p,\delta)$ and $B(y,\delta)$ denote the open balls centered at p and y respectively and radius δ . Let $k \in \mathbb{N}$ be such that $\frac{1}{k} < \delta$. Then $C_n \subset I_n \subset B(p,\delta)$ for all $n \geq k$ (since diam $(I_n) < \frac{1}{n}$).

We write $C = C'_1 \cup C'_2$ where $C'_1 = \bigcup_{i=1}^{k-1} C_i$ and $C'_2 = \bigcup_{i=k}^{\infty} C_i$, C'_1 being a finite union of closed sets is closed in (X, ρ) and so is d-closed. Since $y \notin C'_1$, y is not a d-limit point C'_1 . Also clearly $D(C'_2, y) = 0$. So by Theorem 2, y is not a d-limit point of C'_2 . Hence y is not a d-limit point of C which implies that D(C, y) = 0 (by Theorem 2). Since $\mu(\{p\}) = 0$, $D(\{p\}, y) = 0$ and so $D(E, y) \leq D(C, y) + D(\{p\}, y) = 0$ i.e. D(E, y) = 0 for all $y \in E^c$ which implies that E^c is d-open and so s-open. Clearly $E \subset U$ and so $E^c \supset F = X - U$ and $p \in G$ such that $G \cap E^c = \emptyset$. This completes the proof.

Definition 5. ([12]) A topological space is quasi-regular if every non empty open set contains the closure of some non-void open set.

Corollary 1. Under the conditions (A) and (B) of Theorem 4, (X, \mathcal{T}) is quasi-regular.

4. Pseudo-completeness of (X, \mathcal{T})

In this section we investigate the pseudo-completeness of (X, \mathcal{T}) . The following definitions are needed.

DEFINITION 6. ([12]) A pseudo-base for a topological space (X, τ') is a subset \mathcal{B} of τ' such that every non void element of τ' contains a non-void element of \mathcal{B} .

Definition 7. ([9]) A topological space X is pseudo-complete if

- (i) it is quasi-regular,
- (ii) there exists a sequence $\{P_i\}$ of pseudo-bases for X such that for every sequence of sets $\{U_i\}$ where $U_i \in P_i$ and $\overline{U}_{i+1} \subset U_i$ for all i, we have $\bigcap_i U_i \neq \emptyset$, where bar denotes the closure.

For the next theorem we note that every proper subset of X has a measurable cover $F \neq X$.

THEOREM 5. For a compact metric space (X, ρ) , (X, \mathcal{T}) is pseudo-complete if in addition to the conditions (A) and (B) of Theorem 4, τ is monotone non-decreasing and D(X, p) > 0 for all $p \in X$.

Proof.

Step 1. We first construct a sequence of pseudo-bases $\{\mathcal{B}_n\}$ of (X,\mathcal{T}) . Let $U \neq X \in \mathcal{T}$. Then $U^c \in S(x)$ for all $x \in U$. Let F be a measurable cover of U^c (if U^c is measurable we take $F = U^c$). Then $F \in S(x)$ for all $x \in U$ and so for all $x \in F^c$ (since $F^c \subset U$). Hence $F^c \in \mathcal{T}$ and $F^c \subset U$. Let $x \in F^c$. For any $n \in \mathbb{N}$ let $B(x, \frac{1}{6n})$ be the ρ -open ball centred at x with radius $\frac{1}{6n}$. $B(x, \frac{1}{6n})$ is obviously \mathcal{T} -open. Let $V = B(x, \frac{1}{6n}) \cap F^c$. Then V is \mathcal{T} -open, $V \subset U$ and $\operatorname{diam}(V) < \frac{1}{2n}$. For each fixed n let \mathcal{B}_n consists of all such V's as U runs over \mathcal{T} . Then \mathcal{B}_n is a pseudo-base of (X, \mathcal{T}) .

Step 2. Let $V \in \mathcal{B}_n$. Then D(V, x) = D(X, x) = l (say) where x is the point used in step 1.

Now $D(X,x) = \lim_{k\to\infty} \sup_{\tau(I_k)} \frac{\mu(I_k)}{\tau(I_k)} = l$. We can choose a positive integer m such that

$$\sup \frac{\mu(I_k)}{\tau(I_k)} < l + \frac{1}{2n^2}$$

for all $k \geq m$.

Again let $a_k = \sup \frac{\mu(V \cap I_k)}{\tau(I_k)}$. Clearly we can find a $I_k \in \mathcal{C}$ such that $x \in I_k$, $\operatorname{diam}(I_k) < \frac{1}{k}$ and $\frac{\mu(V \cap I_k)}{\tau(I_k)} > a_k - \frac{1}{k^2}$.

Now for $k \geq m$, we have both

$$\frac{\mu(V \cap I_k)}{\tau(I_k)} > a_k - \frac{1}{k^2} \tag{3}$$

and

$$\frac{\mu(I_k)}{\tau(I_k)} \le \sup \frac{\mu(I_k)}{\tau(I_k)} < l + \frac{1}{2n^2}.$$
(4)

Now since V is measurable,

$$\mu(V \cap I_k) + \mu \left[(X - V) \cap I_k \right] = \mu(I_k)$$

i.e.

$$\frac{\mu(V \cap I_k)}{\tau(I_k)} + \frac{\mu\left[(X - V) \cap I_k\right]}{\tau(I_k)} = \frac{\mu(I_k)}{\tau(I_k)}$$

i.e.

$$\frac{\mu[(X-V)\cap I_k]}{\tau(I_k)} = \frac{\mu(I_k)}{\tau(I_k)} - \frac{\mu(V\cap I_k)}{\tau(I_k)} < l + \frac{1}{2n^2} - a_k + \frac{1}{k^2}.$$

As $k \to \infty$ we get $\lim_{k \to \infty} \frac{\mu[(X-V) \cap I_k]}{\tau(I_k)} \le \frac{1}{2n^2} < \frac{1}{n^2}$. Thus we can find a sequence of closed sets $\{I_k\}$ from $\mathcal C$ with $\operatorname{diam}(I_k) < \frac{1}{k}$ such that $\lim_{k \to \infty} \frac{\mu[(X-V) \cap I_k]}{\tau(I_k)} < \frac{1}{n^2}$ and consequently we can find a closed set A with $\operatorname{diam}(A) < \frac{1}{6n}$ from $\mathcal C$ such that

$$\frac{\mu[(X-V)\cap A]}{\tau(A)} < \frac{1}{n^2}.\tag{5}$$

Step 3. Let $\{U_n\}$ be a sequence of non void sets such that $U_n \in \mathcal{B}_n$ for each n and $s\text{-cl}(U_{n+1}) \subset U_n$ for all n. So $U_{n+1} \subset U_n$ for all $n \in \mathbb{N}$. Now \overline{U}_1 being a closed subset of a compact metric space is compact. Also $\{\overline{U}_n\}$ is a collection of closed subsets of \overline{U}_1 with finite intersection property. So $\bigcap_{n=1}^{\infty} \overline{U}_n \neq \emptyset$. Since

 $\operatorname{diam}(\overline{U}_n) \to 0 \text{ as } n \to \infty, \bigcap_{n=1}^{\infty} \overline{U}_n = \{x_0\} \text{ (say). Now by (5) for each } n \text{ there is a set } A_n \text{ in } \mathcal{C} \text{ such that } A_n \cap \overline{U}_n \neq \emptyset, \operatorname{diam}(A_n) < \frac{1}{6n} \text{ and } \frac{\mu[(X - U_n) \cap A_n]}{\tau(A_n)} < \frac{1}{n^2}.$

Let $B_n = A_n \cup \{x_0\}$. Then $\{B_n\}$ is a sequence of closed sets of \mathcal{C} containing x_0 . Since for every $y \in A_n$,

$$\rho(y, x_0) \le \rho(y, x) + \rho(x, x_0) < \frac{1}{6n} + \frac{1}{2n} < \frac{1}{n}$$

where $x \in A_n \cap \overline{U}_n$, we have diam $(B_n) < \frac{1}{n}$. Now for each fixed k,

$$\frac{\mu[(X - U_k) \cap B_n]}{\tau(B_n)} \le \frac{\mu[(X - U_k) \cap A_n]}{\tau(A_n)}$$
$$\le \frac{\mu[(X - U_n) \cap A_n]}{\tau(A_n)} < \frac{1}{n^2} \quad \text{for all} \quad n \ge k$$

Hence

$$\frac{\mu[(X - U_k) \cap B_n]}{\tau(B_n)} \to 0 \quad \text{as} \quad n \to \infty$$

PRATULANANDA DAS — AMAR KUMAR BANERJEE

and so by (B), $X - U_k \in S(x_0)$. Then $D(X - U_k, x_0) < D(X, x_0)$ which implies $x_0 \in s\text{-cl}(U_k)$ for all $k \in \mathbb{N}$. Since $s\text{-cl}(U_{k+1}) \subset U_k$ for all $k, x_0 \in \bigcap_{k=1}^{\infty} U_k$ and this completes the proof.

REFERENCES

- CHAKRABORTY, S.—LAHIRI, B. K.: Proximal density topology in a topological group, Bull. Inst. Math. Acad. Sinica 15 (1985), 257–272.
- [2] CHAKRABORTY, S.—LAHIRI, B. K.: Sparse set topology, Bull. Calcutta Math. Soc. 82 (1990), 349–356.
- [3] DAS, P.—RASHID, M. M. A.: A new sparse set topology, Vietnam J. Math. 30 (2002), 113-120.
- [4] EAMES, W.: Local property of measurable sets, Canad. J. Math. 12 (1960), 632-640.
- [5] GOFFMAN, C.—WATERMAN, D.: Approximately continuous transformation, Proc. Amer. Math. Soc. 12 (1961), 116–121.
- [6] GOFFMAN, C.—NEUGEBAUER, C. J.—NISHIURA, T.: Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–503.
- [7] LAHIRI, B. K.—DAS, P.: Density topology in a metric space, J. Indian Math. Soc. (N.S.) 65 (1998), 107–117.
- [8] LAHIRI, B. K.—DAS, P.: Density and the space of approximately continuous mappings, Vietnam J. Math. 27 (1999), 123–130.
- [9] LEVEY, R. F.: Baire spaces and Blumberg functions, Notices Amer. Math. Soc. 20 (1973), A-292.
- [10] MARTIN, N. F. G.: A topology for certain measure spaces, Trans. Amer. Math. Soc. 112 (1964), 1–18.
- [11] MUNROE, M. E.: Introduction to Measure and Integration. Addison-Wesley Math. Ser., Addison-Wesley Publishing Company, Inc., Cambridge, MASS, 1953.
- [12] OXTOBY, J. C.: Cartesian product of Baire spaces, Fund. Math. 49 (1960/61), 157–166.
- [13] SARKHEL, D. N.—DE, A. K.: The proximally continuous integrals, J. Aust. Math. Soc. Ser. A 31 (1981), 26–45.
- [14] TALL, F. D.: The density topology, Pacific J. Math. 62 (1976), 275–284.
- [15] WHITE, H. E. (Jr.): Topological spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc. 44 (1974), 454–462.

Received 1. 9. 2008 Accepted 11. 12. 2008 *Department of Mathematics Jadavpur University Kolkata - 700 032 INDIA E-mail: pratulananda@yahoo.co.in

** Department of Mathematics St. Paul's C.M. College 33/1 Raja Rammohan Ray Sarani Kolkata – 700 009 INDIA